Proposed Email System Security based Bio-Chaos Modified Hash and Modified AES

Dr. Haider K. Hoomod¹, Arkan Mohammed Radi²

^{1, 2}University Al-Mustansiriya, College of Education, Department of Computer Science

Abstract: Email messages transmitted over internet can be pose a real threat to the integrity of information, especially if it relates to military matters because it insecure channel. The cryptography achieves confidentiality and authentication to message contents, so must therefore choose efficient algorithm relevant to this field such as algorithm Advanced Encryption Standard (AES) or Data Encryption Standard (DES) as well as biometric recognition and chaotic system In this paper will be using modified AES algorithm, key-bio-chaos that consist from biometric (Fingerprint) and chaotic system (Lu and Lorenz or Lorenz), also uses modified hash function MSHA-768 and MSHA-160/224/256/384/512 in constructing Email system security achieves high level of security and authentication on messages against threats and be easy to use by users, in addition to being compatible with many MailServer.

Keywords: Modified AES, chaos system (Lu, Lorenz), biometric (Fingerprint and palmprint), modified hash function SHA

1. Introduction

Electronic mail (E-mail) is one of important services of internet. There are number websites provide Internet service such as Gmail or Yahoo.. Etc. can anyone who accesses the site [1]. There are protocols used in send and receive Email messages between two mailbox. The SMTP is protocol enables the sender from transfer messages to the recipient; IMAP or POP3 is protocol enables the recipient from access to Email [2]. There are two main problems connected to the internet: the open system and an insecure area. Therefore, sensitive messages exchanged between sender's mailbox and recipient's mailbox pass through many from Mailservers and Internet Service Providers (ISP), these messages may be vulnerable to eavesdropping and this in itself poses a real threat to the privacy and data integrity from unauthorized [3]. Cryptographic algorithms achieve high level from security to E-mail system because provides confidentiality, integrity, authentication and non-repudiation to Email messages [4]. It is therefore necessary to use an encryption algorithm related to this field such as AES and use Hash functions to verify from message contents integrity [5]. Biometric and Chaos systems are a powerful option in improving and constructing encryption systems because they provide the sensitivity, randomness and authentication to cryptographic algorithms [6]. In this paper will be using modified AES algorithm, keybio-chaos and modified hash function MSHA-768 and MSHA-160/224/256/384/512 in constructing Email system security.

2. Advance Encryption Standard (AES)

The AES is an encryption/decryption algorithm using symmetric key in encryption the message contents. This algorithm has three types from keys are 128, 192, 256. Rounds number is 10, 12 and 14. Each round contains four operations are SubBytes, ShiftRows, MixColumns, AddRoundKey [7]. There are number from benefits of AES will be related in provide security to E-mail system are Secure, accepted cost, flexible, simplest. However, these methods have some shortcomings encryption speed has a poor efficiency at a low level , if data are large, it is therefore necessary to develop AES algorithm and make it

more efficient in implementing encryption and decryption [8, 9]. It is noticed that in the decryption process the three operations Sub-Byte, Shift-Rows and Mix-Columns in the encryption process are inversed in the decryption process, except Add-Round-Key still as it is.

3. Biometric Recognition

Amid various Biometric identifications technic, the fingerprint recognitions have been successful because it contain on two main characteristics are uniqueness and permanence, these properties do not change for lifetime and simplicity feature extraction by use image (fingerprint) [10]. This biometric can be used to generate an exclusive and unique key for each individual. These features make biometric a powerful option in building cryptographic systems because it can take advantage of strengths in both fields while encryption provides confidentiality, biometrics provides properties non-denial and cancel the need to remember password or key..etc. We can integrate it with a number of other technics, such as chaotic systems that make those systems more random and sensitive to the initial information [11]. Feature extraction of minutiae fingerprint by the operations described in the algorithm (1).

Algorithm (1): Feature extraction of fingerprint
Input: image fingerprint.
Output: crossing number
Step1: Read fingerprint image.
Step2: Convert RGB fingerprint image to the binary image
Step3: Use a thinning algorithm of Zhang-Suen (ZS) to
compute the fingerprint skeleton from the binary image.
Step4: Use Rutovitz Crossing Number CN to extract
minutiae from the skeleton of fingerprint image.
Step3: Save CN.
Step4: END.

The Zhang-Suen (ZS) algorithm

A very popular and well-proved thinning algorithm is the ZS algorithm proposed by Zhang and Suen. It is an iterative parallel thinning algorithm operating on a 3×3 neighborhood as shown in fig. (2). The ZS algorithm is a directional algorithm which is broken up into two sub-iterations. The

Volume 7 Issue 2, February 2018

<u>www.ijsr.net</u> <u>Licensed Under Creative Commons Attribution CC BY</u> first sub-iteration aims to delete the southeast boundary pixels and the northwest corner pixels, while the second one aims to delete the northwest boundary pixels and the southeast corner pixels (i.e., the opposite orientations) [12].

P9	P2	Р3
P8	P1	P4
P7	P6	P5

Figure 2: The ZS 3×3 neighborhood

In the first sub-iteration, the contour point p1 is deleted from the pattern, if it satisfies the following conditions:


(a) $2 \le B(p1) \le 6$ (b) A(p1) = 1(c) $p2 \times p4 \times p6 = 0$ (d) $p4 \times p6 \times p8 = 0$

In the second sub-iteration, the contour point p1 is deleted from the pattern, if it satisfies the following conditions:

(a) $2 \le B(p1) \le 6$ (b) A(p1) = 1(c') $p2 \times p4 \times p8 = 0$ (d') $p2 \times p6 \times p8 = 0$

Crossing Number (CN)

The concept of Crossing Number (CN) is widely used for extracting the minutiae. Rutovitz's definition of crossing number for a pixel P as shown in fig(3)[12].

$$CN = \frac{1}{2} \sum_{i=1}^{8} |P_i - P_{i+1}|$$

Where Pi is the binary pixel value in the neighborhood of P with Pi = (0 or 1) and P1 = P9. The skeleton image of fingerprint is scanned and all the minutiae are detected using the properties of CN, as illustrated in fig. (4) [13].

4. Chaotic Systems

Chaos theory is based on nonlinear behaviors (which are highly sensitive to their initial parameters), It has enabled structures sensitive equations of this theory from generate unpredictable random values that correspond with diffusion and confusion principles in order to construct cryptographic systems that have the maximum type of entropy and robust against any type of attacks . We need to use three-dimension chaotic system such as Lu and Lorenz are suitable to encrypt the three components of color image and In addition to text.

4.1 Lu Chaotic

The Lu chaotic uses three nonlinear equations for generate random values. These equations are as follows:

$$X = a(Y - X)$$
(1)

$$\overline{Y} = -XZ + cY$$
(2)

$$\overline{Z} = W + V$$
(2)

$$\mathbf{Z} = \mathbf{X}\mathbf{Y} - \mathbf{b}\mathbf{Y} \tag{3}$$

The X,Y,Z are variables represent the initial values of the system and a, b and c are represent control values[14].

4.2 Lorenz chaotic

The Lorenz chaotic also uses three nonlinear equations to generate random values. Mathematical formulas are as following [15]:

$$\overline{X} = \sigma(y - X)$$
(4)

$$\overline{Y} = X(\rho - Z) - Y$$
(5)

$$\overline{Z} = XY - \beta Z$$
(6)

In equations above contains on X,Y,Z are variables represent the initial values of the system and σ , ρ and β are represent control values [14].

5. Secure Hash Algorithm SHA

Hash function is one of the most important algorithms that provide authentication and detection of forgery in the message contents. Hash function works on generate hash value after taking the message contents that have variable length as input to function and any change in message contents event if single bit will lead to producing a completely different hash value[16].

904

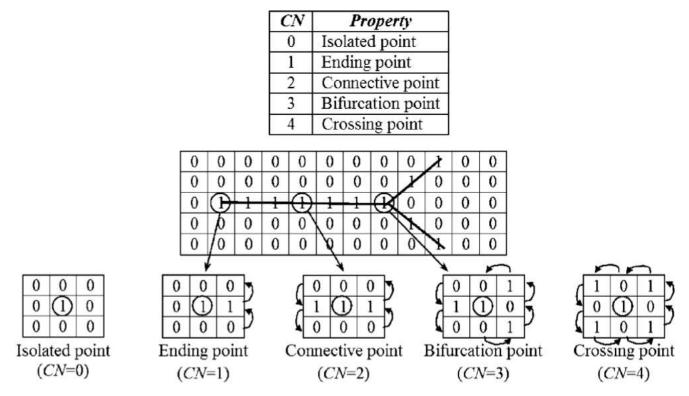


Figure 4: Crossing Number ("1": black pixels in the skeleton image)

6. The Proposed System

The system mainly consists from generate Key-bio-chaos, two models of modified AES, modified SHA. These parts uses in both from sending and receiving as shown in fig. (5), which generally shows two sides of the proposed system.

6.1 Generate Key-bio-chaos

The proposed system contain two models in generate keybio-chaotic. First model uses biometric recognition (Fingerprint) with chaotic system (Lorenz and Lu). Second model uses biometric recognition (Fingerprint) with chaotic system (Lorenz). These models uses on both sides of sending and receiving.

6.1.1First model key-bio-chaos generate (Fingerprint , Lu and Lorenz)

The algorithm (2) describes the process of generating a random key called key-bio-chaos:

Algorithm (2): Generate key-bio-chaos

Input: image fingerprint Image.
Output: key-bio-chaos
Step1: Start.
Step2: Apply Fingerprint image minutia extraction using
algorithm (3).
Step3: Apply the generate random values from system
chaotic (Lorenz and Lu) using algorithm (4).
Step4: Result is key-bio-chaos.
Step5: END

This algorithm (3) describe the steps the feature extraction of image biometric (Fingerprint).

Algorithm (3): The feature extraction of Fingerprint

Input: Image fingerprint.
Output: Three values X X Z
Step1: Start.

Step2: Read the content of the Fingerprint-Image (Img).

Step3: Resize Img with size (500x500) pixels.

Step4: convert the pixel of Img to Binary (BImg) by use binrization.

Step5: Apply Extraction cross points from BImg by using operations thinning and extraction crosses points in algorithm (1).

Step6: Split cross points to three sets (X,Y,Z) and then calculate the average for each.

Step7: save values X,Y,Z.

Step8: END.

In the fig (6) the minutia extraction of fingerprint gives a summary of the processes mentioned earlier in this section.

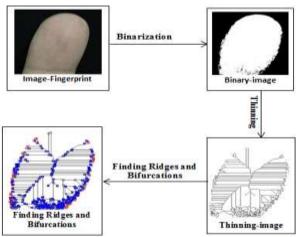


Figure 6: The minutia extraction of fingerprint

Volume 7 Issue 2, February 2018

<u>www.ijsr.net</u>

After extracting the three values X,Y,Z from the biometric (Fingerprint), they will be passed to the chaotic system (Lorenz and Lu) to generate random values called key-biochaos. The algorithm (4) describes the basic steps in generating random values.

Algorithm (4): generate random values.	
Input: Three values X, Y, Z.	

Output: keys-bio-chaos

Step1: Start.

Step2: Read three values X, Y, Z is output algorithm(3)

Step 3: Apply random three values X_{Lu} , Y_{Lu} , Z_{Lu} from

system chaotic (Lu) using algorithm (5).

Step4: Apply random matrices

PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo from system chaotic (Lorenz) using algorithm (6).}

Step5: END.

The algorithm (5) describes the generating steps random values by use the Lu chaotic after feature extraction of fingerprint.

Algorithm (5): Generate random values from the Lu chaotic Input: Initial conditions x, y, z, a, b, c.

Output: Three-values random XLu, YLu, ZLu,

Step1: Start.

Step2: Read three initial values x, y, z are output algorithm (3)

Step3: Read three parameters control are a=36, b=3, c=20 and time (Rounds)= 60.

Step4: Apply three equations (1,2,3) in section 4.1 of Lu

chaotic to generate Three-random groups XLu, YLu, ZLu

Step 5: Store three groups of values X_{Lu} , Y_{Lu} , Z_{Lu} in three matrices. Step 6: END

In this algorithm (6) shows the way of using the Lorenz system in this system in order to make initial values more complex cannot predict by the opponent.

Algorithm (6): Generate random values from the Lorenz chaotic

Input: values X_{Lu}, Y_{Lu}, Z_{Lu}, σ, ρ, β_. Output: Random matrices PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo}

Step1: Start.

Step2: Read three random values $\mathbf{x} \leftarrow \mathbf{X}_{Lu}$, $\mathbf{y} \leftarrow \mathbf{Y}_{Lu}$, $\mathbf{z} \leftarrow \mathbf{Z}_{Lu}$

Step3: Read three values constants $\sigma_{=10}$, $\rho_{=8/3}$, $\beta_{=35}$ are control parameters.

Step4:Apply three equations (4,5,6) in section 4.2 of Lorenz chaotic for generate three sets random $Y1_{Lo}, Y2_{Lo}, Y3_{Lo}$.

If attachment (image color) = (256*256)

Save three matrices $256*256 R_{Lo}, G_{Lo}, B_{Lo} \leftarrow Y1_{Lo}, Y2_{Lo}, Y3_{Lo}$ Else If (File, text) = Variable size

Save in One Matrix OM_{Lo} Y1_{Lo}, Y2_{Lo}, Y3_{Lo}

Step5: Split matrices ($R_{Lo}, G_{Lo}, B_{Lo}, or OM_{Lo}$) to blocks, each block has size 4*4. Step6: Perform permutation each block 4*4 of

Step6: Perform permutation each block 4*4 of R_{Lo}, G_{Lo}, B_{Lo} or $OM_{Lousing shift}$ Rows-2 byte process to left for increase random. Step7: Results save in matrices $PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo is keys-bio-chaos}$. $PR1_{Lo}, PG1_{Lo}, PB1_{Lo \leftarrow}, R_{Lo}, G_{Lo}, B_{Lo}$ $POM1_{Lo \leftarrow}, OM_{Lo}$ Step8: END

In step4 of algorithm (6) generate matrices random $(\mathbf{R_{Lo}}, \mathbf{G_{Lo}}, \mathbf{B_{Lo}} \text{ or } \mathbf{OM_{Lo}})$ will use to be XORED with the encrypted message contents (image, file, text) that is produced from modified AES, will be mentioned later. Those random matrices depend on the message contents size. The Lorenz system when deals with Email attachment (image) will be produce three random matrices ($\mathbf{R_{Lo}}, \mathbf{G_{Lo}}, \mathbf{B_{Lo}}$), each matrix has size 256*256 equal to the three dimensions (Red,Green,Blue) of the image 256*256, in the same way implement on the message content (text, file) but use one mask random ($\mathbf{OM_{Lo}}$).

In step6 of algorithm (5) generate random matrices PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo}. These matrices split into random blocks, each block equal 4*4 represent first keybio-chaos and at the same time perform operation multiplication number 3 with each block for produce new random blocks are second key-bio-chaos completely different from the first key, these two keys uses in Modified AES (MAES) and changes after the encryption process. Also these matrices PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo} derive from them random keys uses with Modified hash function (MSHA-768/512/384/256/224/160) by split them to blocks, each block represent key-bio-chaos uses with single round of modified hash algorithm, key length depend on version type of Modified hash function MSHA, MSHA-768 deals with two keys-bio-chaos have 64 and 80 blocks, MSHA-512/384 deals with key length 80 blocks, MSHA-256/224 deals with key length 64 blocks, MSHA-160 has key length 80 blocks, each round of MSHA has a dynamic random key completely different from the other round that will be mentioned later. These characteristics make MSHA algorithm more random and sensitive to values, as well as impossible to predict the Hash value or find two messages have the same Hash value and also being strong against all types attacks security.

6.1.2 Second model key-bio-chaos generate (Fingerprint) with Lorenz

This model is based on biometric (Fingerprint) and chaotic mapping (Lorenz). The algorithm (7) shown the process generate key-bio-chaos in this model.

Algorithm (7): Generate the second model key-bio-chaos Input: image fingerprint Image. Output: PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo}

Volume 7 Issue 2, February 2018

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Step1: Start.

Step2: Feature extraction of Fingerprint image by algorithm (3).

Step3: Generate random matrices

PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lo} by using algorithm(6). Step4: Save random matrices PR1_{Lo}, PG1_{Lo}, PB1_{Lo}, POM1_{Lois keys-bio-chaos.}

Step5: END

6.2 Encryption and decryption process

The proposed system contains two models of the modified AES algorithms are used in the encryption/decryption process for the message contents (body and attachments). The algorithm (8) shows the encryption process in sending side of proposed system

Algorithm (8): Encryption process in Sending Side of proposed system

Input: Plain-message contents (image, file, text).
Output: cipher-message contents (image,file,text).
Step1: Read Plain-Message contents (image, file, text) PM
Step2: If PM = attachment (image), PM resize (256*256)
Step3: Split PM into a set of block size 4*4 byte.
Step4: If PM= File or text, size block \neq 16 byte, add values
zeros to length block , block=16 ($4*4$) byte.
Step5: Generate two keys-bio-chaos K1, K2 by use
algorithms in section (6.1).
Step6: Apply modified AES algorithm (The first or second
model) on PM with K1,K2 to produce Message Encrypted
ME.
Step7: Generate Random Matrices RM use algorithms in
section (6.1).
If DM- attachment (image)

If PM= attachment (image) Generate three RM = 256*256*3 ME XOR RM Else

Generate One Random Matrix ORM = Size File or Text. ME XOR ORM

Step8: Result cipher-message (image,file,text).

Step9: END

This algorithm (9) describes the decryption process in receiving side of proposed system, there some processes in the encryption process will remain same, but some of them will be inverse. Processes that will remain as they are: generate two key-bio-chaos (block masks) and generate random matrices, some operations of modified AES will be reversed are XOR operation and shift-cycle. Also Move the XOR to up modified AES that was previously after the algorithm in encryption process.

Decryption process algorithm (3.10)

Input: Cipher-Message contents (image,file,text,keys-biochaos).

Output: plain-message contents (image,file,text). Step1: Start.

Step2: Read cipher-message contents (image,file,text).

Step3: If attachment (image), resize (256*256).

Step4: Message encrypted XOR three random matrices of image (256*256) / one matrix of message contents (file,text) generated by use algorithms in section(6.1).

Step5: Split the message conents (image, file, text) into a set of block size 4*4 byte.

Step6: Apply modified AES algorithm (two models) that take two keys-bio-chaos 4*4 generated by use algorithms in section(6.1) with blocks 4*4 byte for generate decrypt-Message DM

Step7: Output plain-message (image, file, text). Step8: END.

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

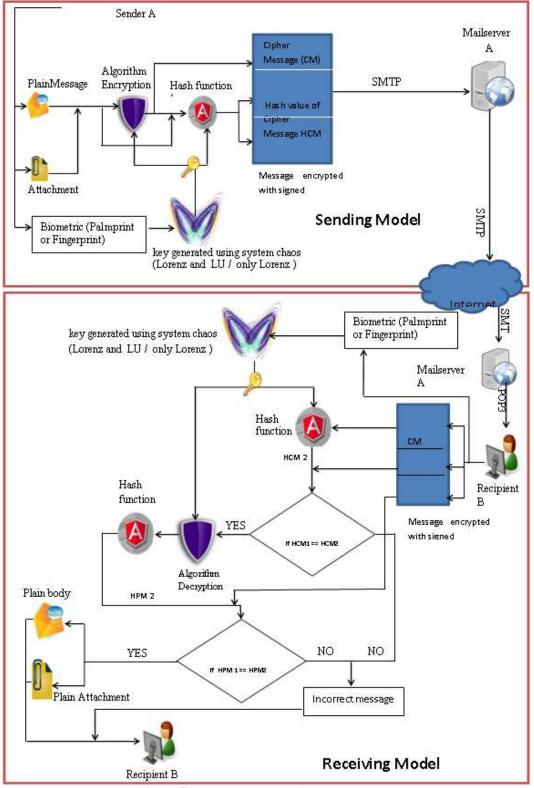


Figure 5: General processes of proposed system

The proposed AES algorithm is modified to the original AES, this algorithm done remove Mix-Column process because it makes the encryption and decryption process slow when deal with large data, this algorithm has been developed in two proposed models by adding two processes are Add-Shift-Cycle and Add-XOR operation to compensate for the process Mix-Column, also uses two random keys-bio-chaos rather one key in original AES algorithm. The way used in construct two models of modified AES algorithm makes execution time in proposed system less from original AES

algorithm with other security improvements in the entropy and the correlation as well as gives control possibility on rounds up to 10 rounds instead than static 10 rounds existed of original AES algorithm with maintaining its on efficiency and quality in the proposed algorithm in order to demonstrate this, rounds 3, 8 and 10 were used in this proposed algorithm, which proved to be better than the original AES algorithm

from original AES 6.2.1 The proposed First model (Modified AES) Volume 7 Issue 2, February 2018

<u>www.ijsr.net</u>

In this model of the modified AES is use same operations of original AES except Mix-Columns operation and compensation for it in two XOR and shift-cycle and two keys-bio-chaos which mentioned the way of their earlier generate rather than one secret key of original AES. These keys have length 4*4, each key-bio-chaos changes its random values after each encryption or decryption process as shown in fig. 7.

6.2.1 The proposed Second Model (Modified AES):

In this model uses the same encryption / decryption operations of the first model, but without the shift-cycle process.

6.3 Proposed hash functions (SHA-bio-chaos)

The proposed system uses the hash functions are modified SHA-768 and SHA-160/224/256/384/512 in the process signing the message contents. These functions works on

generate hash value more random and sensitivity than original SHA-160/224/256/384/512 because based on random key-bio-chaos that generated previously in algorithms the section (6.1) and gives two levels of authentication as shown in fig (8), in the first level, the message contents are taken after split them into equal blocks of size 1024 bits and then pass to the hash function SHA-512 for produce hash value has length 1024 or 512 bits. Hash value will pass with key-bio-chaos key to one type of Hash function (modified SHA-768 and SHA-160/224/256/384/512) for produce final hash values, Random key length is based on type MSHA algorithm. MSHA-768 deals with two keys-bio-chaos have length (64 and 80) blocks, SHA-512/384 deals with key length 80 blocks, SHA-256/224 has key length 64 blocks, SHA-160 has key length 80 byte, Each round of MSHA has a dynamic random key completely different from the other round that will be mentioned later.

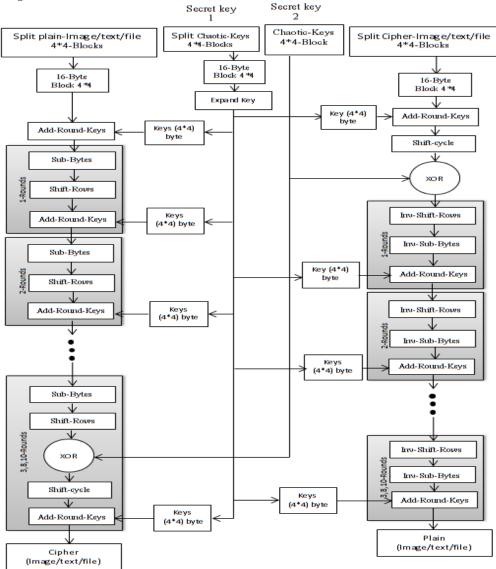


Figure 7: First model of Modified AES Encryption and Decryption Process

This way will apply on plain-message (body, attachment) to produce hash value and cipher-message (body, attachment) coming from modified AES to produce hash value, The proposed system will take these two hash values to be concatenated with each other for produce double hash value and then add value (1 or 2) to last hash value represents type MAES where 1 value is first model of MAES and other value 2 is second model. The purpose of this process is

Volume 7 Issue 2, February 2018 <u>www.ijsr.net</u>

make checking process of the message contents integrity upon receipt in two phases before and after operation decryption on cipher-message (body,attachment).

The method used in construct modified SHA-768 provides a high level of authentication and hash value longer and more random and sensitive than orgenal SHA-160/224/256/384/512 these properties makes it against Manin-the-middle attack and Brute-Force Attacks and prevent the collision of hash methods. Also from impossible find two different messages has same hashvalue.

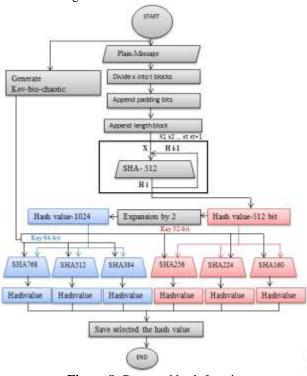


Figure 8: Proposed hash functions

6.3.1 The Proposed Secure Hash Algorithm SHA-768

In this algorithm using properties hash function SHA-512 and SHA-256 with two keys-bio-chaos by use algorithms in section (6.1), the first key consist from 80 random blocks, the second key consist from 64 random blocks. The fig. (9) Shows operation of the process of generating hash value by using MSHA-768.

This algorithm deals with hash value (1024 length-bits) of the SHA-512. Operation SHA-512 of this algorithm will take this hash value 1024 length-bit with dynamic key-bio-chaos has length 80 blocks generated previously in the algorithms section 6.1) for generate hash value (512-bit). SHA256 of this algorithm, It's uses the same compression processes used in SHA-512 but differ only in block size 512 and dynamic key bio-chaotic length 64 blocks to produce hash value 256bit. These two hash value will marge together and then rearrange their positions as shown in Fig. (10) even we get hash value a fixed length 768-bit and their values are different sizes because each value in hash value-512-bit represents 64-bit and hash value-256 represents 32-bit. These characteristics make MSHA-768 more random and sensitivity to the values and cannot unauthorized from compute same hash-value.

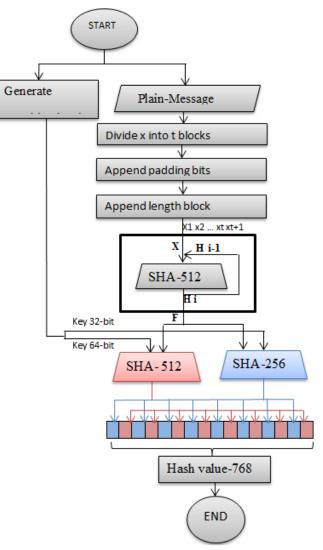


Figure 9: Proposed hash function MSHA-768

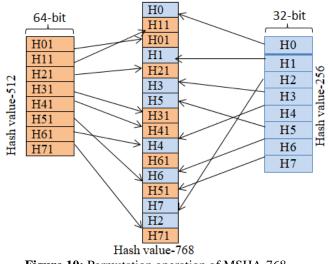


Figure 10: Permutation operation of MSHA-768

7. Experimental Results

This proposed system has been proven highly efficient against all types of threats by experiments on two models of modified AES that uses dynamic rounds, in this tests we will use 3,8 and 10 rounds, also been test key-bio-chaos and the

Volume 7 Issue 2, February 2018 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

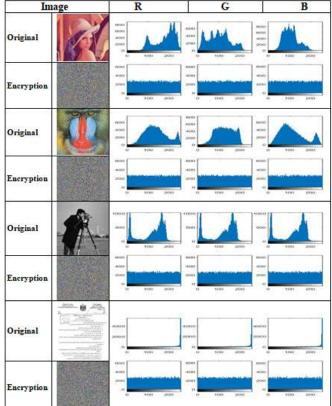
DOI: 10.21275/ART2018102

910

modified Hash function in side sending and receiving, experiments are:

7.1 Analysis of the Key Sensitivity

The proposed system is sensitive to the key change even if it is a slight change, for example we encrypt the contents of the message with a key (0.4), a small change in the key (0.400000000001) and then execute operation decryption was the result the message was not decrypted.


7.2 The Histogram Measure

This measurement shows the pixel distribution of the image graphicall. The Table (11) showing the histogram of plain and encrypted image produced from first mode of the MAES that use rounds 3 with key-bio-chaos based on biometric (fingerprint) and chaotic system (Lu and Lorenz).

The histogram analysis of attachment (image) in this table is very similar when apply original AES or second model of MAES that use 3 rounds with key-bio-chaos based on biometric (fingerprint) and chaotic system (Lu and Lorenz or Lorenz) on same message content (image).

7.3 Correlation Analysis

This test refer to the correlation between plain-message (body, attachment) and cipher-message (body, attachment) that result from encryption processes as shown in tables (12,13). The first model modified AES that use 3 rounds with key-bio-chaos based on biometric (fingerprint) and chaotic system (Lorenz) is slightly better than second models (MAES 2) and original AES.

Table 11: The histogram analysis of attachment (image)

Table 12: Correlation Analysis between plain and ciphermessage contents of (the original AES or MAES using
(fingerprint, Lu and Lorenz)

Attachment	Rounds-10		Rounds-10 Rounds-8		Rou	and the second	
(Image)	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	Original AES
120	0.0015	0.0021	0.0013	0.0042	-0.0031	0.0048	-0.0038
AL.	0.0015	-2.8871	-6.2570	0.0024	0.0022	-2.7945	0.0011
R	-0.0053	-0.0024	0.0023	-0.0018	-0.0016	-0.0028	-2.7860
	-0.0045	-0.0029	0.0036	0.0026	-0.0045	-0.0031	7.5076

(B) Correlation	of attachment	(File)
-----------------	---------------	--------

Attachment (File.txt)	Rounds-10		Rounds-8		Rou	Original	
	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	AES
16kB	0.0089	0.0021	0.0058	0.0141	0.0144	0.0067	0.0015
12kB	0.0037	0.0130	-0.0022	-6.7404	-0.0028	0.0054	-0.0016

(C) Correlation of body (Text)

(-)								
Characters	Rounds-10		Rounds-8		Roui	Original		
message	MAES	MAES	MAES	MAES	MAES	MAES	AES	
	1	2	1	2	1	2		
100	0.0153	0.1270	0.0112	0.0854	-0.0262	-0.1481	-0.0354	
250	-0.1511	-0.0868	0.1214	0.0397	-0.0148	0.4067	-0.0136	
500	-0.0332	-0.0868	0.0142	-0.0450	-0.0106	0.0080	-0.0781	

 Table 13: Correlation Analysis between plain and cipher

 message contents of the original AES and MAES based
 fingerprint and Lorenz

Attachment	Rour	nds-10	Rou	Rounds-S		Rounds-3	
(Îmage)	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	AES
16l	0.2096	-5.8481	-0.0046	-0.0053	-0.0027	0.0012	-0.0044
TT.	-0.0011	-0.0025	0.0020	0.0059	0.0015	-0.0018	-2.3518
R	0.0023	-0.0075	-6.4494	-0.0037	-0.0022	-2.6217	4.8978
12:02	-3.2643	-5.5181	-0.0040	0.0034	0.0014	0.0047	0.0019

(B) Correlation of attachment (File)

Attachment (File.txt)	Rounds-10		Rounds-8		Rounds-3		Original
	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	AES
16kB	-0.0040	0.0061	-5.8425	0.0082	-0.0092	-4.6596	-0.0139
12kB	0.0110	-0.0014	-0.0061	0.0108	0.0031	0.0011	-0.0016

Characters	Rounds-10		Rour	ıds-8	Rou	Original				
message	MAES	MAES	MAES	MAES	MAES	MAES	AES			
	1	2	1	2	1	2				
100	-0.0560	0.0316	0.0480	0.0657	0.1631	0.0775	6.6073			
250	-0.0400	0.0445	-0.0736	-0.0721	0.1129	0.0091	-0.0144			
500	-0.0560	0.0316	0.0230	-0.0984	0.0285	0.0466	-0.0103			

7.4 MSE & PSNR Analysis

The MSE is must have a high value which means a high noise in the message contents encrypted, the PSNR is a

Volume 7 Issue 2, February 2018 www.ijsr.net

measure of the peak error between original message contents and encrypt / decrypt message contents.

The two models of MAES algorithm that proved by these tests not loss any bit after retrieving the message contents, take the samples in the tables of this section after execution encryption and decryption processes on these samples where the result was MSE = 0 and PSNR = Inf.

In this tables proved to be the two models of MAES that used 3 rounds are slightly better than original AES and two models that using 8 or 10 rounds after the comparing. Proved the first model (MAES1) is slightly better than second models (MAES2) and original AES.

In tables (14,15) below calculate PSNR and MSE between original and encrypted message contents by using two models of MAES or original.

Table 14: PSNR & MSE for Email message contents of original AES or two models of MAES using (3,8,10 rounds, fingerprint, Lu and Lorenz),

(A) PSNR	& MSE attachment	(image)
----------	------------------	---------

Image	· · · · · · · · · · · · · · · · · · ·	MAES-F	tounds-10	Sec	MAES-Rounds-8				
	MAES1		MA	ES2	MA	ES1	MA	ES2	
	MSE	PSNR	MSE	PSNR	MSE	PSNR	MSE	PSNR	
d	8.9294	8.6566	8.9123	8.6649	8.9265	8.6580	8.8845	8.6785	
T	8.2168	9.0178	8.2180	9.0172	8.2296	9.0110	8.1867	9.033	
8	9.4397	8.4152	9.4724	8.4002	9.3941	8.4363	8.2425	9.0042	
24.2	1.9238	5.3232	1.9205	5.3306	1.9303	5.3085	1.9315	5.3059	
Image		MAFS	Rounds-3	/	1 1	Origina	AFS		
timage	MA	ES1	MA	ES2		Origuis	0.705.0		
	MSE	PSNR	and an and the second	PSNR	M	SE	PSI	NR	
	A	8.6378	8,9104	8.6658	A CONTRACTOR OF A CONTRACTOR O		8.6383		
d	8.9681	8.0378	0.71/4	0.0030	0.5	010	0.0	303	
	8.9681 8.1969	9.0283	8.2131	9.0198		076	9.0		
			PREFAMILY CONSERVATION		8.2		9.0		

		MAES-R	ounds-10		MAES-Rounds-8				
message	MAES 1		MAES 2		MAES 1		MAES 2		
	MSE	PSNR	MSE	PSNR	MSE	PSNR	MSE	PSNR	
12KB	7,7440	9.2752	7.6056	9.3535	7.6844	9.3087	7.7040	9,2977	
16KB	7.7028	9.2983	7.6348	9.3368	7.6278	9.3408	7.6763	9.3133	
mesnage	MA	MAES-H ES 1	MAES 2			Origin	al AES		
message		MAES 1				MSE		PSNR	
	MSE	PSNR	MSE	PSNR					
12KB	7.7991	9.2443	7.6415	9.3330	7.6	475	9.3	296	
16KB	7.5489	9.3860	7.5436	9_3890	7.6	711	9.3	162	
		(C) F	SNR &	& MSE	body	(text)			
Charate -		A	ounds-10		MAES-Rounds-8				

	S. Carton	MINES?	Connets-1	9	ALLS DOUBUS 3				
menter	MAES 1		MA	MAES 2		MAES 1		ES 2	
	MSE	PSNR	MSE	PSNR	MSE	PSNR	MSE	PSNR	
100	7.8187	9.2335	5.7691	10.5537	6.3578	10.1317	7.4778	9.4271	
250	6.9389	9.7519	6.3495	10.1374	6.2711	10.1914	6.3039	10.1687	
500	7,5521	9.3841	8.2919	8.9782	7.0635	9.6746	7.3682	9:4912	
Classe		MAES	Rounds-3	K	Original AES				
in model	MA	MAES 1		MAES 2					
	MSE	PSNR.	MSE	PSNR	N	ISE	PS	NR	
100	7.6139	9.3487	8.2619	8.9940	\$.	2035	9.0	248	
250	7.5719	9.3727	6.6495	9.9369			9.4	232	
500	7.4563	9.4396	7.6928	9.3040			9.2648		

 Table 15: PSNR & MSE for Email message contents
 of original AES or two models of MAES fingerprint and Lorenz)

Image	dere al	MAES-F	Counds-10	and the second	MAES-Rounds-8				
	MAES1		MAES2		MAES1		MAES2		
	MSE	PSNR	MSE	PSNR	MSE	PSNR	MSE	PSNR	
1	8.9371	8.6528	8.9804	8,6318	8.9975	8.6236	8.9389	8.6520	
0	8.2319	9.0098	8.2045	9.0243	8.1891	9.0324	8,1581	9.0489	
1	9.3988	8,4341	9.4333	8.4182	9.4100	8.4289	9.4383	8.4159	
	1.9223	5.3266	1.9191	5.3337	1.9334	5.3016	1.9332	5.3021	
Image		MAES-	Rounds-3			Origin	al AES		
	MA	ESI	MA	ES2		11.000.00			
	MSE	PSNR	MSE	PSNR	M	SE	PS	NR	
1	8.9559	8.6437	8.9147	8.6637	8.9681		8.6378		
D	8.1992	9.0271	8.2343	9.0085	8,2	076	9.0	226	
-	9.4195	8.4245	9:4031	8.4321	9.4	149	8.4	266	

(B) PSNR & MSE attachme

5.3250

1 9230

1.9181

5.3362

	(B) PSV	NK & N	ISE at	tachme	ent (File	e)		
mettage		MAES-F	Rounds-10	0	MAES-Rounds-8				
	MAES 1		MAES 2		MAES 1		MAES 2		
	MSE	PSNR	MSE	PSNR	MSE	PSNR	MSE	PSNR	
12KB	7.6106	9.3506	7.7095	9.2945	7.8483	9.2171	7.6143	9.3485	
16KB	7.6620	9.3214	7.6879	9.3067	7.7580	9.2673	7.6642	9.3201	
mattage		MAES-	Rounds-3	8	Original AES				
	MA	ES 1	MAES 2						
	MSE	PSNR	MSE	PSNR	M	SE	PS	SNR	
12KB	7.7872	9.2510	7.6794	9.3115	7.6	475	9.3	296	
16KB	7.7439	9 2752	7 7349	9 2803	7.7	489	9.2	724	

(C) PSNR & MSE body (text)

		$(\mathbf{U}) \mathbf{I} \mathbf{U}$		MIDL	oouy ((CAL)			
Characteri		MAES-R	counds-10	É	MAES-Rounds-8				
message	MAES 1		MAES 2		MAES 1		MAES 2		
	MSE	PSNR	MSE	PSNR	MSE	PSNR	MSE	PSNR	
100	6.9876	9.7215	6.6633	9.9279	5.9219	10.4402	6.9990	9.7144	
250	7.1452	9.6247	7.1292	9.6344	8.0619	9.1004	8.2985	8.9748	
500	7.9244	9.1751	8.3622	8.9416	7.2779	9.5447	8.5384	8.8510	
Characters		MAES-H	Rounds-3	- ter filler als	Original AES				
message	MA	ES1	MAES 2						
	MSE	PSNR	MSE	PSNR	М	SE	PSNR		
100	6.9384	9,7522	7.0137	9.7053	7.7	251	9.2	857	
250	6.7969	9.8417	7.8367	9.2235	and the second se		9.6567 9.3432		
500	7.7782	9.2560	7.4605	9.4371					

7.5 Entropy Analysis

1.9317

5:3055

This entropy calculates the uncertainty association of the random values, the good encryption algorithm should give low mutual information of values of the encrypted message contents, and this means that the entropy will be increased.

In the tables (16,17) below shown the entropy of message contents encrypted that produced from encryption processes from two models of MAES algorithm are better than the original AES algorithm.

In the above tables proved to be the two models of MAES that used 3 rounds are slightly better than original AES, in addition to two models that using 8 or 10 rounds after the

Volume 7 Issue 2, February 2018 www.ijsr.net

comparing, proved the first model (MAES 1) is slightly better than second models (MAES 2) and original AES.

Table 16: The entropy of message contents encrypted from original AES or two models of MAES (3,8 and 10 rounds,

fingerprint, Lu and Lorenz (A) The entropy of attachment (Image) encrypted

	Roun	ds-10	Rou	nds-8	Rou	nds-3	Original	
Image	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	AES	
X	7.9991	7.9992	7.9990	7.9990	7.9990	7.9991	7.9991	
U	7.9992	7.9992	7.9991	7.9990	7.9990	7.9990	7.9992	
	7.9991	7.9989	7.9991	7.9990	7.9991	7.9991	7.9972	
	7.9991	7.9991	7.9991	7.9990	7.9990	7.9990	7.9975	

(B) The entropy of attachment (File) encrypted

File.txt	Rounds-10		Rou	nds-8	Rou	Original	
	MAES	MAES	MAES	MAES	MAES	MAES	AES
	1	2	1	2	1	2	
16KB	7.9873	7.9882	7.9882	7.9878	7.9881	7.9902	7.9873
12KB	7.9858	7.9859	7.9839	7.9827	7.9860	7.9860	7.9851

(C) The entropy of body (text) encrypted

Message	Roun	ds-10	Rou	nds-8	Rou	nds-3	Original
	MAES	MAES	MAES	MAES	MAES	MAES	AES
	1	2	1	2	1	2	
100	6.6229	6.5545	6.4823	6.6601	6.5663	6.4059	6.4861
250	7.2839	7.1946	7.2590	7.1649	7.2066	7.2092	7.2297
500	7.5803	7.5558	7.5646	7.6478	7.6096	7.5073	7.5860

Table 17: The entropy of message contents encrypted from
 original AES or two models of MAES (fingerprint and Lorenz)

(A) The entropy of attachment (Image) encrypted

n. 1	Rour	nds-10	Rou	nds-8	Rou	nds-3	0
Image	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	Original AES
A	7.9990	7.9992	7.9990	7.9991	7.9992	7.9991	7.9990
A.	7.9991	7.9990	7.9991	7.9990	7.9991	7.9991	7.9991
R	7.9991	7.9991	7.9989	7.9990	7.9991	7.9991	7.9966
	7.9990	7.9990	7.9990	7.9991	7.9991	7.9990	7.9975

(B) The entropy of attachment (File) encrypted

(C) The execution times of side sending and side receiving in proposed Email security

The proposed system (Generate key-bio-chaos, MSHA-768, MAES 1- Rounds 3)	Exec	ution Time	sec
	256*256	File.txt size 16KB	250 characters
	Mes Attachn	sage conter	nts Body
e execution times of side sending and side receiving in proposed Email secu			

Volume 7 Issue 2, February 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART2018102

Image	Rous	ds-10	Rou	nds-8	Rou	nds-3	Original
	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	AES
16KB	7.9882	7.9890	7.9893	7,9888	7.9873	7.9889	7.9888
12KB	7.9830	7.9829	7.9851	7.9844	7.9848	7.9850	7.9851

(C) The entropy of body (text) encrypted

Characters	Rounds-10		Rou	Rounds-S		Rounds-3	
message	MAES 1	MAES 2	MAES 1	MAES 2	MAES 1	MAES 2	AES
100	6.5136	6.5115	6.5486	6.4608	6.5761	6.5858	6.6073
250	7.1106	7.1842	7.1707	7.1698	7.0852	7.1901	7.1169
500	7.6340	7.6659	7.5775	7.5932	7.6105	7.6221	7.5809

7.6 Execution Time

This test calculates the execution time of the encryption process and signing on the message contents (body, attachment) when sending and decrypting and checking the message contents when received as shown in the tables below. The tables (18,19) below shows less execution time in both models of the modified AES (MAES) algorithm based on secret key-bio-chaos in proposed system than the original AES algorithm.

Table 18: The execution time encryption and decryption process on message contents using original AES or two models of MAES (fingerprint, Lu and Lorenz) (A) The execution time encryption

Messa	ge contents	Roui	ids-10	Rou	nds-8
and the second s		MAES1	MAES2	MAES1	MAES2
Attachment	Image 256*256	9.851019 sec	8.775846sec	9.842241sec	8.734483 set
	File 12 KB	8.272637 set	7.827689 set	7.723713	7.736000 at
	File 16 KB	7.866435 sec	7.756252 sec	8.056971 acc	7.653901 set
Body	100 characters	7.446469 sec	7.503531 sec	7.300732 sec	8.403702 set
	250 characters	7.538814 mc	7.527858 sec	7.435561 sec	7.404396 zr
	500 characters	7.817969 sec	7.578949 mc	7.769408 sec	7.534536 er
Messa	ge contents	Rounds-3		Original AES	
		MAESI	MAE52	(CARINICS	
Attachment	Image 256*256	9.480075 att	8.142450 sec	94.163338 mm	
	File 12 KB	7.673952 20	7,610232 sec	13.040846 am	
	File 16 KB	7.814660 set	7,700114 sec	14,646122 set	
Body	100 characters	7.431482 mm	7.428018 mc	\$,491	767 mc
	250 characters	7.536364 sec	7.329275 sec	8.549	510 sec
	500 characters	7.737962 set	7,535775 mt	8.814781 att	

(B) The execution time decryption

Message contents		Rou	nds-10	Rounds-8	
		MAES1	MAES2	MAES1	MAES2
Attachment	Image 256*256	9.043659 wc	8.596041 sec	9.063720 sec	8.189102 sec
	File 12 KB	7.515947 set	7.455395 set	7.510585 sec	7,420146 sec
	File 16 KB	7.482476 at	7,402662 mm	7.470001 sec	7.59859 ant
Body	100 characters	7.181527 set:	7.254860 sei	7.108982 sec	7.229821 sec
	250 characters	7.238151 in:	7.221019 sec	7.215535 sec	7.424753 sec
	500 characters	7.363796 mt	7.271561 sec	7.429605 arc	7.448740 mt
Messag	e contents	Rounds-3		Original AES	
		MAES1	MAES2		
	Image 256*256	8.901579 set	8.584767 set	113.27	9143 per
Attachment	File 12 KB	7.413045 set	7.296634 see	14.944945 sec	
	File 16 KB	7.485100 sec	7.496819 mc	15.972820 asc	
	100 characters	7.109423 int	7.153613 set	8.319206 sec	
Body	250 characters	7.121094 set	7.219031 art	8.336629 sec	
	500 characters	7.362539 tet:	7.248593 sec	8.558679 m	

913

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Side Sending	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.286221 sec
Side Receiving	Generate key-bio-chaos Hash function (MSHA-768) of cipher message Decryption (MAES) Hash function (MSHA-768) of plain message	13.303234 sec
The propos	sed system (Generate key-bio-chaos, MSHA-768, MAES 2-	
Rounds 3)	• 、 • , , ,	Execution Times
Side Sending	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.202965 sec
Side Receiving	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.462084 sec
	ed system (Generate key-bio-chaos, MSHA-768, MAES 1-	Execution Times
Rounds 8)		
Side Sending	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	14.166585 sec
Side Receiving	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	14.548978 sec
The propos Rounds 8)	sed system (Generate key-bio-chaos, MSHA-768, MAES 2-	Execution Times
Side Sending	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.921903 sec
Side Receiving	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.981320 sec
	sed system (Generate key-bio-chaos, MSHA-768, MAES 1-	Execution Times
Rounds 10)	Generate key-bio-chaos	
Side Sending	Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.630406 sec
Side Receiving	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.715166 sec
	sed system (Generate key-bio-chaos, MSHA-768, MAES 2 -	Execution Times
Rounds 10		
Side Sending	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.501128 sec
Side Receiving	Generate key-bio-chaos Hash function (MSHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message	13.603525 sec

Table 19: The execution time encryption anddecryption process on the message contents in originalAES or two models of MAES (fingerprint and Lorenz)

(A) The execution time **encryption**

	· Contents	Roun	ds- 10	Rou	nds-8
Alessag	Message Contents		MAES2	MAES1	MAES2
	linage 256*256	6.964549 sec	6.835919 sec	6.726093 sec	6.721574 se
Attachment	File 12 KB	5.739927 sec	5.387179 sec	5.382051 sec	5.348970 æ
	File 16 KB	6.727623 sec	5.727409 and	5.441923 sec	5.403547 at
	100 characters	4.951485 sec	5:102434 mc	5.102466 sec	5.122349 se
Body	250 characters	5.030189 iec	5.120928 arc	5.112655 sec	5.106753 set
	500 characters	5.167929 ac	5.016906 sec	5.252646 sec	5.213016 se
Married	e Contents	Rounds-3		Optimized AFE	
Arcssag	e Contents	MAES1	MAES2	Original AES	
	Image 256*256	6.620555 inc	6.606002 sec	113.300675 sec	
Attachment	File 12 KB	5.371903 sec	5.213629 sec	14.689050 aec	
	File 16 KB	5.377481 sec	5.388753 sec	14.238186 sec	
Body	100 characters	5.142712 sec	5.110262 m	6.411	345 sec
	250 characters	5.078578 sec	5.123036 sec	6.173	763 sec
	500 characters	5.213657 sec	5,280198 sec	6.906	554 sec

Massaga	Contents	Roun	ds-10	Rounds-S		
Message	Contents	MAES 1	MAES 2	MAES 1	MAES 2	
	Image 256*256	7.065854 sec	7.917427 sec	7.466151 sec	7.232762 sec	
Attachment	File 12 KB	5.648506 sec	5.333531s	5.627567 sec	5.427509 sec	
	File 16 KB	6.127623 sec	6.581995 sec	5.256077 sec	5.360801 and	
Body	100 characters	5.672038s sec	5.587790 sec	5.358261 sec	5.356651 sec	
	250 characters	5.329278 sec	5.566675 sec	5.313142 sec	5.370438s	
	500 characters	5.338262 sec	5.350409 sec	5.317632 sec	5.355386 sec	
Margan	Contento	Rounds-3		Original AES		
Alessage	Contents	MAES1	MAES2	Origin	II ALS	
	Image 256*256	6.496409 sec	6.888125 sec	93.729720 sec		
Attachment	File 12 KB	5.635217 set	5.744040 sec	13.266672 sec		
	File 16 KB	5.688455 sec	5.553771 sec	12.994	756 sec	
Body	100 classacters	5.303229 set	5.017260 sec	7.566692 sec		
	250 characters	5.201876 sec	6.195080 sec	6.793	306 sec	
	500 characters	5.310427 sec	5.128923 sec			

(C) The execution times of side sending and receiving in proposed Email security

	side sending and receiving in proposed Ema	· · · · ·	Message contents	
		Attachment		Body
	Proposed system	256*256	File.txt size 16KB	250 characters
The proposed syst MAES 1 -Rounds	em (Generate key-bio-chaos, MSHA-768, 3)	1	Execution Times	
	Generate key-bio-chaos			
	Hash function (SHA-768) of plain message		11.567518 sec	
Side Sending	Encryption (MAES)			
	Hash function (SHA-768) of cipher message			
	Generate key-bio-chaos			
~	Hash function (SHA-768) of cipher message		11.486999 sec	
Side Receiving	Decryption (MAES)			
	Hash function (SHA-768) of plain message			
The proposed syst	em (Generate key-bio-chaos, MSHA-768,			
MAES 2-Rounds	3)]	Execution Times	
	Generate key-bio-chaos		11 (54000	
Side Sending	Hash function (SHA-768) of plain message	11.654233 sec		
Side Schulig	Encryption (MAES)			
	Hash function (SHA-768) of cipher message			
	Generate key-bio-chaos			
Side Receiving	Hash function (SHA-768) of cipher message	11.429304 sec		
Side Receiving	Decryption (MAES)			
	Hash function (SHA-768) of plain message			
	em (Generate key-bio-chaos, MSHA-768,]	Execution Times	
MAES 1-Rounds			11.004004	
	Generate key-bio-chaos		11.804094 sec	
<i></i>	Hash function (SHA-768) of plain message			
Side Sending	Encryption (MAES)			
	Hash function (SHA-768) of cipher message			
	Generate key-bio-chaos		11 206071	
Side Receiving	Hash function (SHA-768) of cipher message		11.806971 sec	
side Receiving	Decryption (MAES)			
	Hash function (SHA-768) of plain message			
The proposed syst MAES 2-Rounds	em (Generate key-bio-chaos, MSHA-768, 8)]	Execution Times	
	Generate key-bio-chaos			
~ ~ ~	Hash function (SHA-768) of plain message		11.989907 sec	
Side Sending	Encryption (MAES)			
	Hash function (SHA-768) of cipher message			
	() of of the source of the so			

Volume 7 Issue 2, February 2018

<u>www.ijsr.net</u>

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Commente losse bies alterna	
2	11.988734 sec
	11.700754 Sec
Decryption (MAES)	
Hash function (SHA-768) of plain message	
em (Generate key-bio-chaos, MSHA-768,	Encoder Theorem
10)	Execution Times
Generate key-bio-chaos	
Hash function (SHA-768) of plain message	11.810227 sec
Encryption (MAES)	
Hash function (SHA-768) of cipher message	
Generate key-bio-chaos	
Hash function (SHA-768) of cipher message	11.862863 sec
Decryption (MAES)	
Hash function (SHA-768) of plain message	
em (Generate key-bio-chaos, MSHA-768,	Execution Times
10)	Execution Times
Generate key-bio-chaos	
Hash function (SHA-768) of plain message	11.921787 sec
Encryption (MAES)	
Hash function (SHA-768) of cipher message	
Generate key-bio-chaos	44.0000.40
Hash function (SHA-768) of cipher message	11.800368 sec
Decryption (MAES)	
Hash function (SHA-768) of plain message	
	em (Generate key-bio-chaos, MSHA-768, 10) Generate key-bio-chaos Hash function (SHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message Generate key-bio-chaos Hash function (SHA-768) of plain message Decryption (MAES) Hash function (SHA-768) of plain message em (Generate key-bio-chaos, MSHA-768, 10) Generate key-bio-chaos Hash function (SHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of plain message Encryption (MAES) Hash function (SHA-768) of cipher message Generate key-bio-chaos Hash function (SHA-768) of cipher message Generate key-bio-chaos Hash function (SHA-768) of cipher message Decryption (MAES)

In the tables above are shown execution time of processes encryption and decryption in proposed system (two models) that use 3 rounds much less than original AES, the first models is better original AES and also slightly better from two models that uses 8,10 rounds after the comparing.

7.7 Bit Difference Analysis

This test is also called the avalanche effect. According to avalanche effect on hash value of the MSHA-768 and MSHA-160/224/256/384/512, if the value of greater than 50% means more secure, For example when apply modified hash function MSHA-768 and MSHA-160/224/256/384/512 based key-bio-chaos (fingerprint, Lu and Lorenz) on the email message1 contents the following: image file + text file (with at least size 16 kB) + text, Message2 content the following: image file + text file(with at least size 16 kB)+ text with changes one bit as shown table (20).

Ta	ble	20:	Bit	difference	e of	mod	lified	hash	functi	on

Hash function	Messages 1	Message 2		
MSHA-768	60.03%			
MSHA-512	61.	08%		
MSHA-384	50	.9%		
MSHA-256	56.83%			
MSHA-224	57.	57%		
MSHA-160	56.	92%		

7.8 Collision and Preimages Attacks

There are three important attacks on hash value m are collision attack, first-preimage attack, second-preimage attack was previously mentioned in the section 2.6.4. The table (21) shown the level of effort required on the hash value of MSHA-768 and MSHA-160/224/256/384/512 against these types from attacks.

Table 21: The level of effort required on hash value
--

	MSHA- 160	MSHA 224	MSHA 256	MSHA - 384	1000 Colora (C	MSHA - 768
Collision resistant	280	2224	2256	2384	2512	2768
Preimage resistant	2160	2224	2256	2384	2512	2768
Second preimage resistant	2160	2112	2128	2 ¹⁹²	2256	2384

8. Conclusion

E-mail provides an important means of communication between users. In this paper was proposed E-mail system secure consist from MAES, MHSA and generate key-biochaos based on biometric (fingerprint) and chaos (Lorenz and Lu or Lorenz). this proposed system capable of providing a high level of security for contents message and speed in encryption and decryption between two parties via open network in addition to compatible with many MailServers.

References

- [1] Mohammed Hassouna, Nashwa Mohamed, Bazara Barry and Eihab Bashier, "An End-to-End Secure Mail System Based on Certificateless Cryptography in the Standard Security Model", (IJCSI) International Journal of Computer Science, Vol. 10, Issue 2, No 3, March 2013.
- [2] Dharmendra Choukse, Umesh Kumar Singh, Lokesh Laddhani and Rekha Shahapurkar, "Designing Secure Email Infrastructure", Wireless and Optical Communications Networks (WOCN), 2012 Ninth International Conference on. IEEE, 2012.
- [3] Julian Jang, Surya Nepal and John Zic, "Trusted Email Protocol: Dealing with Privacy Concerns from Malicious Email Intermediaries", Computer and Information Technology, 2008. CIT 2008. 8th IEEE International Conference on. IEEE, 2008.

- [4] Afnan S. Babrahem, Eman T. Alharbi, Aisha M. Alshiky, Saja S. Alqurashi and Jayaprakash Kar, "Study of the Security Enhancements in Various E-Mail Systems", Journal of Information Security 6.1 (2015): 1, 2015.
- [5] Mehrdad AhmadZadeh Raji1, Fatemeh Amiri2, and Mohsen Ahmadian,"A New secure email scheme Using Digital Signature with S/MIME", International Journal of Computer Networks and Communications Security, VOL. 4, NO. 3, MARCH, 56–62, 2016.
- [6] Sonia Gupta and Amar Kumar Mohapatra,"Privacy Protection of Data Using Chaos and Biometric Template", (IJECCE) International Journal of Electronics Communication and Computer Engineering, Volume 4, Issue 3, 2013.
- [7] Bernales, Luis Hernando Santamaria, and Cesar Leonardo Nino, "A hybrid encryption system with a Token device to avoid leak of information in corporate email", Xaverian Pontifical University, School of Electronic Engineering, Bogota, Colombia, May, 2014.
- [8] Katie Ho, Akhil Nistala and Kevin Tu,"End-To-End Message Encryption for Tinder", May 11, 2016,.
- [9] Kundankumar Rameshwar Saraf, Vishal Prakash Jagtap and Amit Kumar Mishra,"Text and Image Encryption Decryption Using Advanced Encryption Standard", International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Volume 3, Issue 3, May – June 2014.
- [10] Kumar Ankit and Jayaram Rekha,"Biometrics as a Cryptographic Method for Network Security", Indian Journal of Science and Technology, Vol 9(22), June 2016.
- [11] Sayani Chandra, Sayan Pau, Bidyutmala Saha and Sourish Mitra, "Generate an Encryption Key by using Biometric Cryptosystems to secure transferring of Data over a Network ", IOSR Journal of Computer Engineering (IOSR-JCE), Volume 12, Issue 1 (May. -Jun. 2013), PP 16-22.
- [12] Lynda Ben Boudaoud, Basel Solaiman and Abdelkamel Tari "A modified ZS thinning algorithm by a hybrid approach", Springer, DOI 10.1007/s00371-017-1407-4, 2017.
- [13] Feng Zhao and Xiaoou Tang "Preprocessing and postprocessing for skeleton-based fingerprint minutiae extraction", Elsevier Ltd, doi:10.1016/j.patcog.2006.09.008, 2006.
- [14] Ling Bin, Liu Lichen and Zhang Jan," Image encryption algorithm based on chaotic map and S-DES", Advanced Computer Control (ICACC), 2010 2nd International Conference on. Vol. 5. IEEE, 2010.
- [15] Rezza Moieni, Subariah Ibrahim and Leyla Roohi," A High Capacity Image Steganography Method Using Lorenz Chaotic Map", Institute of Research Engineers and Doctors, ISBN: 978-981-07-6261-2 doi:10.3850/ 978-981-07-6261-2_01, 2013.
- [16] William Stallings, "Cryptography and Network Security: Principles and Practice", Sixth Edition, Pearson Education: Printed in the United States of America, ISBN-10: 0133354695, ISBN-13: 978-0133354690, 2014.
- [17] Sadiq A. Mehdi and Rabiha Saleem Kareem, "Using Fourth-Order Runge-Kutta Method to Solve Lü Chaotic

Volume 7 Issue 2, February 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART2018102

System", American Journal of Engineering Research (AJER), e-ISSN: 2320-0847 p-ISSN : 2320-0936, Volume-6, Issue-1, pp-72-77, 2017 .