A Comparison of Kings Vision Video Laryngoscope with Macintosh Laryngoscope in Adult Patients Undergoing Elective Surgical Procedure

Bina Patel¹, Jigisha Surti², Parul Jani³, Pragna Vachharajani⁴

¹(M.D) Assistant Professor, Surat Municipal Institute of Medical Education & Research, Surat
²3rd Year Resident Anaesthesiology, Surat Municipal Institute of Medical Education & Research, Surat
³(D.A) Tutor, Surat Municipal Institute of Medical Education & Research, Surat
₄(M.D., D.A.,PGDHHM.) Professor & Head, Department of Anesthesiology, Surat Municipal Institute of Medical Education & Research, Surat

Abstract: Airway management remains a vital primary skill for anaesthesiologist. We aimed at comparing the efficacy of direct laryngoscopy using the conventional Macintosh blade with indirect laryngoscopy using the King Vision video laryngoscope (KVVL) with regard to visualization of the laryngeal view, speed of intubation, intubation success rate, complications and hemodynamic stability. After approval from hospital ethical committee this study was carried out in 50 patients of American Society of Anaesthesiologist (ASA) physical status I & II, aged 20 to 60 years of either sex, scheduled for elective surgeries under general anaesthesia. All patients were divided in to two groups. Group K – patients were intubated using King vision laryngoscope and in Group M - patients were intubated using Macintosh laryngoscope. Kings vision video laryngoscope with channeled blade performed better during intubation as compared to Macintosh laryngoscope in terms of better visualization of glottis, lesser attempts for intubation, lesser airway trauma & reduced hemodynamic response to laryngoscopy.

Keywords: Direct laryngoscopy ,endotracheal intubation, video laryngoscopy, King’s Vision video laryngoscope.

1. Introduction

Endotracheal intubation remains the mainstay to secure airway under general anaesthesia. The leading cause of anaesthesia related injury is inability to intubate & secure the airway[¹]. Direct laryngoscopy has been the standard technique for intubation for almost a century.

Video laryngoscopes are indirect laryngoscopes used to visualize an enlarged video image of airway amongst which kings vision video laryngoscope is recently introduced laryngoscope for difficult airway[¹¹]. It is an indirect, optical laryngoscope that has been designed to provide a view of the glottis without alignment of the oral, pharyngeal and tracheal axis. It is available with two blades – channeled and nonchannelled.[³]

2. Aim of the Study

This study was carried out to compare the efficacy of king’s vision video laryngoscope with Macintosh Laryngoscope with regards to visualization of laryngeal view, speed of intubation, success rate of intubation, hemodynamic response and complications.
3. Material and Method

After approval from hospital ethical committee the present study was conducted in 50 patients aged between 20 to 60 years of either sex, ASA physical status I and II scheduled for different elective surgeries under general anaesthesia with endotracheal intubation.

Inclusion criteria for this study were weight 40-70kg, minimum mouth opening of 18 mm, all Mallampati Grades, thyromental distance of at least 6.5 cm, neck circumference less than 38 cm for men and less than 35 cm for women, free neck mobility.

Patients with Coronary artery disease, oral pathology, neck flexion deformity, patients needing Rapid Sequence Intubation were excluded from the study.

Patients were randomly divided into two equal groups of 25 patients each after taking written informed consent. Patients in Group K were intubated using Kings vision whereas in Group M were intubated using Macintosh laryngoscope.

All patients were subjected to thorough preoperative clinical assessment. Patients were kept nil per oral for 6 hours prior to the surgery. In recovery room, after securing intravenous access, injection Ringer lactate i.v. fluid was started. In operation theatre, baseline preoperative heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP) and oxygen saturation (SPO2) were noted.

Patients were preoxygenated with 100% Oxygen for 5 min. Intravenous Midazolam(0.02mg/kg) was administered before induction to allay anxiety. Patients were induced with injection propofol(2.5 mg/kg) mixed with inj. lignocaine (1.5mg/kg) and inj. Succinylcholine (1.5 mg/kg) i.v. After adequate muscle relaxation intubation was done with either Kings vision videolaryngoscope (Group K) or Macintosh laryngoscope (Group M). Intubation was done after central visualisation of glottis and confirmed with ETCO2 curve. Anesthesia was maintained with O2, N2O, Isoflurane, loading and intermittent dose of Inj. Vecuronium Bromide(0.1-0.2 mg/kg). At the end of the surgery patients were extubated after reversing neuromuscular blockade with Inj.Glycopyrolate (0.01mg/kg) and Inj. Neostigmine.(0.05 mg/kg)

Haemodynamic parameters like pulse rate, blood pressure, peripheral oxygen saturation (SpO2%) were assessed. These
parameters were measured continuously and recorded before induction, before laryngoscopy, immediately after intubation and 3 min after intubation.

Time of intubation, noted as time from insertion of blade to appearance of ETCO2 curve, number of trials to successful intubation, percentage of glottic opening using Cormack-Lehane Scoring system, Grade I—Visualization of entire vocal cords, Grade IIa—Visualization of posterior part of vocal cords, Grade IIb—Visualization of arytenoids only, Grade IIIa—Epiglottis liftable, Grade IIIb—Epiglottis adherent or only tip visible, Grade IV—No glottic structures seen.

Complications like possible airway trauma & oesophageal intubation if any were noted. Maneuvres required during laryngoscopy—BURP manoeuvre ‘backward, upward, rightward & posterior external laryngeal pressure’ were noted. Two attempts were allowed for intubation.

Data were tested for normal distribution, and data analysis was performed using the independent t-test for two independent groups. Results are presented as ranges, percentages (%), arithmetic means (χ2) and SDs. The P value was considered statistically significant at less than 0.05.

4. Observation and Results

The mean age of patients was 35.0 ±10.27 years in group M (Macintosh group) and 32.68±9.43 years in group K (KVVL group) with no significant difference in age between the two studied groups (Table 1).

<table>
<thead>
<tr>
<th>Table 1: Comparison between the two studied groups according to age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Group M (n=25)</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

With regard to haemodynamic response, comparison between the two groups showed that the heart rate were significantly less in group- K compared to group - M immediately after intubation and at 3 min after intubation (Fig. 1).

![Comparison between the two studied groups according to heart rate (beats/min).](image1)

On comparing the two groups for BP, there was a significant difference in systolic & diastolic blood pressure on intubation using the KVVL as compared with the ML immediately after intubation and at 3min after intubation (Fig. 2).

![Figure 2](image2)
Comparison between the two studied groups according to Blood pressure (mmHg)

According to the laryngoscopic view, 10 patients who were intubated with the ML had grade 1, 11 had grade 2, and 9 patients had grade 3 Cormack and Lehane glottic view, in comparison with 21 patients who were intubated with the KVVL having grade 1 and 4 patients with grade 2 Cormack and Lehane glottic view. Therefore, there was a significant difference between both the groups. The KVVL improves the laryngoscopic view, achieving a better glottic view.

Comparison between the two studied groups according to laryngoscopic view

Regarding the number of trials, 5 patients needed more than one trial in the Macintosh group in comparison with 3 in the King vision group, and this was not significantly different (p value>0.05) (Table:2)

Table 2: Comparison between the two studied groups according to the number of trials for intubation

<table>
<thead>
<tr>
<th>NO.</th>
<th>Number of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group M (n=25)</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

KVVL reduced the need for optimization manoeuvres, laryngeal pressure manipulation (BURP) required while intubating and changing of blade size; this was statistically significant (Figs 4)

Comparison between the two studied groups according to BURP

The total tube insertion time was not significantly different between the two groups; the mean insertion time was 34.04±5.79 in group M and 31.6±4.29 in group K (p value >0.05).

5. Discussion

Securing a patent airway in patients undergoing general anesthesia is routinely performed using direct laryngoscopy with a Macintosh laryngoscope blade. However, successive intubation attempt to pass the vocal cords can have a tremendous impact on patient outcome. A good laryngeal view is often a prerequisite, if not a guarantee, for successful intubation. The recent introduction of video laryngoscopes incorporating optics at the tip of the intubation blade has proven advantageous of improved viewing of the glottis with fewer trauma to the patient and faster intubation time.[4]

The present study demonstrated that the KVVL maintains haemodynamic stability during endotracheal intubation. This is in agreement with Ralph LJ et al. in 2012, they concluded that endotracheal intubation using video-laryngoscopy causes less cardiovascular responses compared to classic direct laryngoscopy.[5] Similar results were reported by Maharaj CH et al in 2008 their study to evaluate evaluation of the Airtraq and Macintosh laryngoscopes in patients at increased risk for difficult tracheal intubation. They concluded that videolaryngoscope reduce the haemodynamic response after intubation.[6] Sherif M. Elhadi et al. in 2017 concluded that the KVVL performed better by reducing haemodynamic response to laryngoscopy and intubation.[2]

The kings vision videolaryngoscope improves the laryngoscopic view, achieving a better glottis view. This study is in agreement with Q.E Ali et al. in 2015, they concluded that KVVL improve the laryngeal view during intubation. Similar results were reported by Siddharta hanjura et al in 2017, they observed that KVVL improve glottis view during intubation.[7] A.A.J.van Zundertl et al,
7. During endotracheal intubation, intubation and the least usage of assisting manoeuvres resulted in a higher success rate, easier procedure of laryngoscopy and improvement of cardiovascular responses to laryngoscopy and intubation, The KVVL has been found to be more effective in reducing haemodynamic responses to laryngoscopy and intubation, and faster learning curve, resulting in higher success rates and airway trauma.

8. Conflicts of interest

There are no conflicts of interest.

References

