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Abstract: This paper investigated the effect of channel inclination on the peristaltic transport of a couple stress fluid in an asymmetric 

and non-uniform channel through the porous medium under the action of an externally applied magnetic field .The effects of slip 

velocity on the channel walls have been taken into account and the effects particle size  . The non-linearity of the problem is analyzed by 

using the long wave length and low Reynolds number approximations. The mathematical expressions for axial velocity, stream function, 

pressure gradient and pressure rise per wave length have been derived analytically. The above said quantities are computed for a specific 

set of values of the different Parameters involved in the present model .The computational results are presented in the form of graphs . It 

is observed that, pressure gradient increases with the increase of Hartmann number , Froude number  whereas it decreases with the 

increasing values of the inclination 𝒂𝒏𝒈𝒍𝒆 of the channel, Darcy number, slip parameter, couple stress parameter and Reynolds number 

as well as non-uniform parameter of the channel. This study puts an important observation that the occurrence of trapping bolus can be 

eliminated with suitably adjusting couple stress effect and the application of strong magnetic field . The role of slip velocity has a 

reducing effect on the bolus size. Moreover, The size of the bolus is increased by increasing the Darcy number and non-uniform 

parameter of the channel. 
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1. Introduction 
 

It is well known that mixing and transporting of 

physiological fluids is referred as peristalsis, which is 

generated due to progressive waves of area contraction and 

expansion along the length of a distensible tube containing 

fluid. The mechanism behind this phenomenon is mainly 

neuromuscular property of any tubular smooth muscle 

structure. This type of muscular tube wall has a motion in 

wave frame with a fixed speed and wave length. This 

mechanism is found in urine transport from kidney to the 

bladder, the movement of chime into the gastrointestinal 

tract, fluids in the lymphatic vessels, bile from the 

gallbladder into the duodenum, the movement of 

spermatozoa in the ducts efferent of the male reproductive 

tract, the movement of the ovum in the fallopian tube and the 

circulation of blood in small blood vessels. This mechanism 

also finds many applications in bio-medical engineering to 

design roller and finger pumps, some bio-mechanical 

instruments, e.g., heart- lung machine, blood pump machine 

and dialysis machine. Akbar el at.[1] Peristaltic flow of a 

Williamson fluid in an inclined asymmetric channel with 

partial slip and heat transfer .Ali and Hayat[2] they have 

studied on the peristaltic flow of a micropolar fluid in an 

asymmetric channel by considering different kind of fluid 

models, wherein they found distinguishable effect of phase 

difference of wall motion on velocity and other flow 

characteristics. Kothandapani and Srinivas [3] have 

considered the non-linear peristaltic transport of a Newtonian 

fluid in an inclined asymmetric channel through a porous 

medium. However, to the best of author's knowledge, no one 

has considered the slip effect on peristaltic transport of 

couple stress fluid in an inclined asymmetric channel along 

with the externally applied magnetic field. Mekheimer[4] 

Effect of induced magnetic field on peristaltic flow of a 

couple stress fluid. Mishra and Rao [5] Peristaltic transport 

of a Newtonian fluid in an asymmetric channel. Ramesh [6] 

Influence of heat and mass transfer on peristaltic flow of a 

couple stress fluid through porous medium in the presence of 

inclined magnetic field in an inclined asymmetric channel. 

The idea of pumping characteristics was first introduced by 

Shapiro et al. [7] that the pumping is determined through the 

variation in time averaged flux with difference in pressure 

across one wave length. It is well known that, if the flow is 

steady in the wave frame the instantaneous pressure 

difference between two stations of one wave length apart is a 

constant. Shit and Ranjit [8] investigation of peristaltic 

transport of a couple stress fluid in an asymmetric and non-

uniform channel under the action of an externally applied 

magnetic field. Shit and Roy [9] Hydromagnetic effect on 

inclined peristaltic flow of a couple stress fluid. Therefore, 

our motivation is to examine the role of boundary slip when 

the non-uniform channel walls contracting and expanding. 

Srinivas and Pushparaj [10] Non- linear peristaltic transport 

in an inclined asymmetric channel. The couple-stress fluid 

may be considered as a special class of a non-Newtonian 

fluid, which takes into account the effect of particle size. To 

characterize the couple stress fluid, Stokes [11] gave a 

concept of constitutive relationship between the stress and 

strain rate in micro-continuum theory of fluids which allows 

for polar effects such as the presence of couple stresses, body 

couples and a non-symmetric stress tensor. The constitutive 

equations in these fluid models are very complex because of 

the involvement of various material constants leading to a 

boundary value problem so that the order of the differential 

equations is higher than the Navier-Stokes equations. He 

found that pressure rise is greater for a couple stress fluid 

than a Newtonian fluid model under similar circumstances. 

Owing to the abovementioned studies, we have investigated 

the effect of slip velocity on peristaltic flow of a couple 

stress fluid through an inclined asymmetric and non-uniform 

channel with porous medium . The long wave length and low 
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Reynolds number assumptions have been made to simplify 

the highly nonlinear terms in the governing equations. 

Therefore, our theoretical investigation bears the potential to 

useful in the field of bio-fluid dynamics. 

 

2. Mathematical Formulation and Solution 
 

Consider the peristaltic transport of an incompressible 

couple-stress fluid through an inclined asymmetric and non-

uniform channel with porous medium  under the action of an 

external magnetic field. generated by propagation of waves 

on the channel walls travelling with different amplitudes and 

phases but with  constant speed c (see Fig.1). 

 
Figure 1: A physical sketch of the problem 

 

Let Y' =ℎ1
′  (X' ,t') and Y' =ℎ2

′  (X' ,t') represent respectively 

the upper wall and lower wall of the channel ,such that 

1)  )ℎ1
′  (X' ,t') = 𝑑1  +  𝑋′ − 𝑐𝑡 ′ tan 𝛼 +𝑎1 cos  

2𝜋

𝜆
(𝑋′ − 𝑐𝑡 ′)  

(2)=−𝑑2 −  𝑋 ′ − 𝑐𝑡′ tan𝛼 +𝑎2 cos  
2𝜋

𝜆
(𝑋′ − 𝑐𝑡′ + 𝜙) ( ℎ2

′  (X ',t' 

where𝑎1 and 𝑎2 are the amplitudes of waves,𝜆 is the wave 

length, 𝜙 (0≤ 𝜙 ≤ 𝜋) the phase difference between the 

channel walls . X'  and Y'  are the rectangular Cartesian co-

ordinates with X'   measures the axis of the channel and Y' 

the transverse axis perpendicular to  X'. 𝑑1 and  𝑑2are the  

constant height of the upper wall and lower wall of the 

channelfrom the central line and 𝛼 denotes the inclination of 

the channel walls with the central axis- X'.The system is 

stressed by an external transverse uniform constant magnetic 

field of strength Β𝜊 . Due to the imposition of an external 

magnetic field in an electrically conducting fluid, there arises  

electromotive force (emf) inducing a current inside the flow 

region. Since the electrical conductivity of liquid is very 

small, the magnetic Reynolds number becomes too small. 

Therefore, we have neglected the induced electrical filed as 

well as induced magnetic field.  

 

The equations of motion for unsteady flow through an 

asymmetric channel of an incompressible couple stress fluid( 

cf. [3], [11] )with externally imposed magnetic field by 

neglecting the body couples are , 

(3)∇   . 𝑉 ′       = 0                                                                     

ρ  
𝜕𝑉 ′     

𝜕𝑡 ′ +  𝑉 ′     . ∇    𝑉 ′      = −∇   𝑃′ + μ∇2𝑉 ′      − η∇4𝑉 ′      + 𝑗′   × 𝐵′     −

  
𝜇

𝑘°
𝑉 ′     +  ρ 𝑔 𝑖 𝑠𝑖𝑛𝛼 − 𝑗 𝑐𝑜𝑠𝛼  4  

ρ  
𝜕𝑢′

𝜕𝑡 ′
+ 𝑈′

𝜕𝑢′

𝜕𝑥 ′
+ 𝑉 ′

𝜕𝑢′

𝜕𝑦′
 

= −
𝜕𝑃′

𝜕𝑥 ′
+ 𝜇∇2𝑢′ − 𝜂∇4𝑢′ +  𝐽′ × 𝐵′ 𝑥

−
𝜇

𝑘𝜊

𝑢′ +  ρ 𝑔 𝑠𝑖𝑛𝛼    5  

𝜌  
𝜕𝑣′

𝜕𝑡 ′
+ 𝑈′

𝜕𝑣′

𝜕𝑥 ′
+ 𝑉 ′

𝜕𝑣 ′

𝜕𝑦′
 = −

𝜕𝑃′

𝜕𝑦′
+ 𝜇𝛻2𝑣′ − 𝜂𝛻4𝑣′  

+ 𝐽′ × 𝐵′ 𝑦 −
𝜇

𝑘𝜊

𝑣 ′  −  ρ 𝑔 𝑐𝑜𝑠𝛼       6  

where V′    =(U', V', 0) be the velocity vector, P' is the fluid 

pressure, ρ the fluid density, μ the dynamic viscosity of the 

fluid, η is the constant associated with couple stress effect,B′     

(0,Βο  , 0) the magnetic field vector, E′     the electric field 

vector, g be the acceleration due to gravity , σ denotes the 

electrical conductivity of the fluid and  j′   is the current vector 

due to Ohm's law, given by  j′     = σ E′    + V′    × B′     . fourth 

term on the right hand side of Eq.(4) represent the body force 

per unit volume due to the application of an external 

magnetic field. Due to the assumption of low magnetic 

Reynolds number, the induced electric field is neglected. 

Therefore, the Ohm's law simply reduces to  j′     = σ V′    × B′      

It is noted that in our model there is no external electric field. 

and ∇2=
∂2

∂x ′ 2  +  
∂2

∂y′ 2 

,∇4=
∂4

∂x ′ 4  + 2
∂4

∂x ′ 2y′ 2  +  
∂4

∂y′ 4.   

 

It is further noticed that the flow field in laboratory frame 

(X', Y') and wave frame (x ',y') are treated as unsteady and 

steady motion respectively. Considering the relation between 

the wave frame (x', y') moving with a velocity c away from a 

fixed frame (X', Y') that follows from the following 

transformations.In addition to equation (5) and (6)become                                                 

 
𝜕𝑢′

𝜕𝑡 ′
= 0 ,

𝜕𝑣′

𝜕𝑡 ′
= 0 

 

𝑣′ x′ , y′ = 𝑉 ′       ,y'= Y' ,  x'= 𝑋 ′ − 𝑐𝑡 ′ ,𝑈′=𝑢′  (x′, y′) 

 

In which (u', v') and (U',V') are respectively the velocity 

components in the wave and laboratory frames. Using the 

abovementioned transformations, the governing Eqs .(3)  

,(5)and (6) can be written in the wave frame of reference as . 
𝜕𝑢′

𝜕x′
 +  

𝜕𝑣′

𝜕y′
= 0                                                                         (7) 

 

ρ   𝑢′ + 𝑐 
𝜕𝑢′

𝜕𝑥 ′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
 = −

𝜕𝑃′

𝜕𝑥 ′
+ 𝜇∇2𝑢′ − 𝜂∇4𝑢′  

                     +𝜍𝐵𝜊
2(𝑢′ + 𝑐) −

𝜇

𝑘ο

𝑢′ +   ρ 𝑔 𝑠𝑖𝑛𝛼        (8) 

 

ρ   𝑢′ + 𝑐 
𝜕𝑣′

𝜕𝑥 ′
+ 𝑣′

𝜕𝑣′

𝜕𝑦′
 = −

𝜕𝑃′

𝜕𝑦′
+ 𝜇∇2𝑣′ − 𝜂∇4𝑣 ′  

                                          −
𝜇

𝑘ο

𝑣′  −  ρ 𝑔 𝑐𝑜𝑠𝛼             (9) 

 

Let us introduce the following non-dimensional variables (cf. 

Mishra and Rao[5]). 

Paper ID: ART20179754 DOI: 10.21275/ART20179754 8 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 7 Issue 2, February 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

, y = 
𝑦 ′

𝑑1
  , x =

𝑥 ′

𝜆
,ω =

𝜔 ′ 𝑑1 

𝑐
,
𝑑1

2𝑃′ (𝑋) 

𝜆𝜇𝑐
= 𝑃,,t = 

𝑐𝑡 ′

𝜆
𝜓 =

𝜓 ′

𝑐𝑑1
 

 

u =
𝑢 ′

𝑐
,v = 

𝜆𝑣′

𝑐𝑑1
 

ℎ1 x =
ℎ1

′  x 

𝑑1

= 1 +  
𝜆 tan 𝛼

𝑑1

 𝑥 +
𝑎1

𝑑1

cos 2𝜋𝑥       (10) 

 

ℎ2 x =
ℎ2

′  x 

𝑑1
= −

𝑑2

𝑑1
−  

𝜆 tan 𝛼

𝑑1
 𝑥 +

𝑎1

𝑑1
cos 2𝜋𝑥 + 𝜙   (11) 

 

where ψ represents the dimensionless stream function in 

which the velocity components u and v given by u = 
𝜕𝜓

𝜕𝑦
 and 

v = - 
𝜕𝜓

𝜕𝑥  
satisrying the continuity Eq. (7). 

 

Using the non-dimensional variables defined in Eqs. (8 ), (9), 

(10) and (11) transformed into following equations in terms 

of stream function 𝜓as 

 

𝑅𝑒. 𝛿   
𝜕𝜓

𝜕𝑦
.
𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥
.
𝜕

𝜕𝑦
 
𝜕𝜓

𝜕𝑦
+

𝜕2𝜓

𝜕𝑥𝜕𝑦
 = −

𝜕𝑃

𝜕𝑥
+ 𝛿2

𝜕3𝜓

𝜕𝑥2𝜕𝑦
 

 

+
𝜕3𝜓

𝜕𝑦3
−

1

𝛾2
 𝛿4

𝜕5𝜓

𝜕𝑥4𝜕𝑦
+ 2𝛿2

𝜕5𝜓

𝜕𝑥2𝜕𝑦3
+

𝜕5𝜓

𝜕𝑦5
  

 

−𝐻𝑎
2  

𝜕𝜓

𝜕𝑦
+ 1 −

1

𝐷𝑎
.
𝜕𝜓

𝜕𝑦

+
𝑅𝑒

𝐹𝑟
 sin[α]                                 (12 ) 

 

𝑅𝑒. 𝛿3   −
𝜕𝜓

𝜕𝑦
.
𝜕

𝜕𝑥
+

𝜕𝜓

𝜕𝑥
.
𝜕

𝜕𝑦
 
𝜕𝜓

𝜕𝑥
−

𝜕2𝜓

𝜕𝑥2
 = −

𝜕𝑃

𝜕𝑦
 

 

+𝛿2  𝛿2
𝜕3𝜓

𝜕𝑥3 +
𝜕3𝜓

𝜕𝑦2𝜕𝑥
 −

𝛿2

𝛾2  𝛿4
𝜕5𝜓

𝜕𝑥5 + 2𝛿2
𝜕5𝜓

𝜕𝑥3𝜕𝑦2 +
𝜕5𝜓

𝜕𝑦4𝜕𝑥
  

+
𝛿2

𝐷𝑎
.
𝜕𝜓

𝜕𝑥
−

𝑅𝑒

𝐹𝑟
cos α                             13  

 

The dimensionless parameters that appeared in Eqs. (12) and 

(13) 

 are defined as Re =
𝑐ρ𝑑1

𝜇
  the Reynolds number, 𝛿 =  

𝑑1

𝜆
  the 

Wave number, Ha=Β𝜊𝑑1 
𝜍

𝜇
the Hartmann number,  𝛾 =

𝑑1 
𝜇

𝜂
 the couple stress parameter , 𝐷𝑎 =

𝑘𝜊  

 𝑑1
2 the Darcy 

numberand Fr =
𝑐2

𝑔𝑑1
the Froude number. 

The instantaneous volumetric flow rate in the laboratory 

frame is given by    

𝑄 =   𝑈 𝑋′ , 𝑌′ , 𝑡 ′ 𝑑𝑌′                                                                        (14)
ℎ1
′

ℎ2
′

 

 

where ℎ1
′  and ℎ2

′   are functions of X' and 𝑡 ′  

Similarly, the rate of volume flow in the wave frame is 

obtained as 

𝑞 =   𝑢′ 𝑥 ′ , 𝑦′ 𝑑𝑦′                                                                   15 
ℎ1
′

ℎ2
′

 

Using the frames transformation into Eqs. ( 14 ) and ( 15), 

the relation between Q and q can be obtained as 

𝑄 = 𝑞 + 𝑐 ℎ1
′ − ℎ2

′                                                                (16) 

The time mean flow over a period T at a fixed position 𝑋′  is 

defined as 

𝑄′ =  
1

𝑇
 𝑄𝑑𝑡                                                                       (17)

𝑇

0

 

 

Using Eq. (16) in Eq. (17) the flow rate 𝑄′  has the form 

 

𝑄′ =  
1

𝑇
 𝑞𝑑𝑡 +

𝑇

0

 𝑐 ℎ1
′ − ℎ2

′  = 𝑞 + 𝑐𝑑1 + 𝑐𝑑2 

 

+2𝑐𝑥𝜆 tan 𝛼 + 𝑐𝑎1 cos(2𝜋𝑥) + 𝑐𝑎2 cos 2𝜋𝑥 + 𝜙  (18 ) 

 

 

Note that ℎ1(x) and ℎ2(x) represent the dimensionless form 

of the peristaltic channel walls given by the 

equations(10)and(11) of the form 

 

ℎ1 x = 1 + k𝑥 + 𝑎 cos 2𝜋𝑥                                            (19) 

 

ℎ2 x = −𝑑 − k𝑥 − 𝑏 cos 2𝜋𝑥 + 𝜙                                (20) 

 

where 𝑎 =
𝑎1

𝑑1
, 𝑏 =

𝑎2

𝑑1
 , 𝑑 =

𝑑2

𝑑1
, 𝑘 =  

𝜆 tan 𝛼

𝑑1
  is called the 

non-uniform parameter of the channel. 
The non-dimensional form of Eq. ( 18 ) is now given by 

𝜃 = 𝐹 + 1 + 𝑑 + 2𝑘𝑥 + 𝑎 cos 2𝜋𝑥 + 𝑏 cos 2𝜋𝑥 + 𝜙             (21) 

where θ =
Q ′

cd1
and F =

q

cd1
has the expression in the form 

𝐹 =  
𝜕𝜓

𝜕𝑦

ℎ1

ℎ2

𝑑𝑦 = 𝜓 ℎ1 − 𝜓 ℎ2                                        (22) 

 

Under the assumption of long wave length approximation 

(δ<< 1) and low Reynolds number, (cf. shapiro et al.[7]) 

eliminating pressure term using cross differentiation from the 

dimensionless Eqs. (12) and (13) one can write in a single 

differential equation in terms of stream function 𝜓 as 

 

𝜕6𝜓

𝜕𝑦6
− 𝛾2

𝜕4𝜓

𝜕𝑦4
+ 𝐻𝑎

2𝛾2
𝜕2𝜓

𝜕𝑦2
+

𝛾2

𝐷𝑎
.
𝜕2𝜓

𝜕𝑦2
= 0 23  

 

The boundary conditions in terms of the stream function  𝜓 

(x ,y) in the wave frame can be written as(cf. Shit et al.[9]) 

 

𝜕𝜓

𝜕𝑦
+ 𝛽

𝜕2𝜓

𝜕𝑦2
= −1    𝑜𝑛 𝑦 = ℎ1 

 

𝜕𝜓

𝜕𝑦
+ 𝛽

𝜕2𝜓

𝜕𝑦2
= −1   𝑜𝑛 𝑦 = ℎ2 

 

𝜓 =
𝐹

2
𝑜𝑛  𝑦 = ℎ1 

 

𝜓 = −
𝐹

2
𝑜𝑛  𝑦 = ℎ2                                                                        (24) 

 

𝜕3𝜓

𝜕𝑦3
= 0 𝑜𝑛 𝑦 = ℎ1 𝑎𝑛𝑑 𝑦 = ℎ2 

 

The solution of (23) satisfying the corresponding boundary 

conditions (24) is 
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𝜓 =
1

𝛾
2 D𝒶  −

ⅇ−a1𝑦c1

a3
−

ⅇa1𝑦c2

a3
+

ⅇ−a2𝑦c3

a4
+

ⅇa2𝑦c4

a4
  

     + c5 + 𝑦c6                                                                         (25) 

 

The velocity can be written as: 

𝑢 =
2 D𝒶(

a1c1ⅇ−a1𝑦

a3
−

a1c2ⅇa1𝑦

a3
−

a2c3ⅇ−a2𝑦

a4
+

a2c4ⅇa2𝑦

a4
)

𝛾
 

+ c6                                                                                             (26) 

Once we determined the stream functionψ, the axial pressure 

gradient can be obtained as 
𝜕𝑃

𝜕𝑦
= 0                                                                                    (27)   

𝜕𝑃

𝜕𝑥
=

𝜕3𝜓

𝜕𝑦3
−

1

𝛾2
.
𝜕5𝜓

𝜕𝑦5
− 𝐻𝑎

2  
𝜕𝜓

𝜕𝑦
+ 1 −

1

𝐷𝑎
.
𝜕𝜓

𝜕𝑦

+
𝑅𝑒

𝐹𝑟
sin α                                             (28) 

The pressure rise per wave length Δ𝑝 in non-dimensional 

form is defined by 

Δ𝑝 =  
𝜕𝑃

𝜕𝑥

1

0

dx                                                                       (29) 

 

3. Results and Discussion 
 

The analytical expressions for the axial velocity, pressure 

gradient, pressure rise and stream function are derived in this 

section. The numerical results corresponding to the 

abovementioned analytical expressions have been computed 

using MATHEMATICA subject to the  following data: 
 

D𝒶 = 0.1, 2 𝑎𝑛𝑑 6  , 𝐻𝒶 = 0.1, 1.6 𝑎𝑛𝑑 1.8, 𝑏 = 0.4, 

𝑎 = 0.5, 𝛾 = 2, 2.3 𝑎𝑛𝑑 2.8, , 𝑑 = 1, 𝛽 = 0.1 ,0.2 𝑎𝑛𝑑  0.5, 

𝜙 =
𝜋

4
,
𝜋

3
 𝑎𝑛𝑑 

𝜋

2
   , 𝐹 = 1 , −4 𝑎𝑛𝑑 − 6   , 

𝑘 = 0.2, 0.3 𝑎𝑛𝑑 0.6, 𝛼 =
𝜋

6
,
𝜋

4
 𝑎𝑛𝑑 

𝜋

3
   . 

𝐹𝑟 = 0.05 ,0.1 𝑎𝑛𝑑 1 , 𝑅𝑒 = 0.1 ,0.2 𝑎𝑛𝑑 0.3 
 

3.1 Velocity distribution  
 

Figs. 2-7 represent the variation of axial velocity u across the 

channel for different values of the  Hartmann number  𝐻𝒶, 

couple stress parameter 𝛾 , the slip parameter 𝛽, the Darcy 

number  D𝒶,  phase difference 𝜙 and the non-uniform 

parameter 𝑘 . Fig. 2 shows that the axial velocity decreases 

in the central region of the channel with increasing Hartmann 

number 𝐻𝒶, while the axial velocity increases in the 

boundary of the channel wall. The reason behind this fact is 

the Lorentz force that arises due to the application of an 

external magnetic field, which plays a vital role in 

decelerating the fluid motion. Similarly the axial velocity has 

reducing effect at the central region of the channel and 

accelerating effect near the channel walls for increasing 

couple stress parameter 𝛾 as shown in Fig. 3 In this case 

velocity decreases due to the increase of particle size 

suspended in the fluid itself and causes flattening of the 

velocity profiles. In order to satisfy the conservation of mass, 

the flow rate remains same for any value of these parameters 

at any cross section of the channel. From Fig. 4 shows that 

the axial velocity decreases in the central region of the 

channel with increasing the slip parameter 𝛽, while the axial 

velocity increases near the channel walls.This fact is 

influenced by the presence of velocity slip at the walls for 

which the axial velocity is faster at the peripheral region than 

in its core region. Therefore the slip effect has also 

significant impact on the axial velocity. It reduces the 

friction of force at the wall and propel to fluid flow 

accurately. From Fig. 5 we observed that the axial velocity 

also decreases at the central region with increasing the non-

uniform parameter 𝑘 of the channel, while the axial velocity 

increases in the boundary of the channel wall. It is examined 

in Fig.6 that by increasing phase difference  , the velocity of 

fluid decreases in the region yϵ[-1.5,-0.3] ,whereas it 

increases in the rest of region. Fig. 7 we observed that the 

axial velocity increase at the central region with the increase 

of the Darcy number  D𝒶, while the axial velocity decreases 

in the boundary of the channel wall.  

 

 
Figure 2: Variation of axial velocity u for different values of  

𝐻𝑎  with  D𝒶 = 0.1 , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 𝑑 = 1, 𝛽 = 0.1 

D𝒶 = 0.1 , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 𝑑 = 1, 𝛽 = 0.1, 𝜙 =
𝜋

4
,

𝐹 = 1, 𝑘 = 0.2, 𝑥 = 1 

 
Figure 3: Variation of axial velocity u for different values 

of𝛾    with𝐻𝒶 = 0.1 , D𝒶 = 0.1, 𝑎 = 0.5, 𝑏 = 0.4, 𝑑 = 1, 

𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2, 𝑥 = 1 

 
Figure 4: Variation of axial velocity u for different values 

of 𝛽  with D𝒶 = 0.1  , 𝐻𝒶 = 0.1  , 𝑎 = 0.5, 𝑏 = 0.4, 𝑑 = 1 , 

𝛾 = 2, 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2, 𝑥 = 1 
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Figure5:Variation of axial velocity u for different values 

of 𝑘 with D𝒶 = 0.1, 𝐻𝒶 = 0.1  , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 

𝑑 = 1, 𝜙 =
𝜋

4
, 𝐹 = 1, 𝛽 = 0.1, 𝑥 = 1 

 
Figure 6: Variation of axial velocity u for different values of 

  ∅ with  K = 0.2, 𝐻𝒶 = 0.1 , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 𝑑 = 1, 
𝛽 = 0.1 , 𝐹 = 1, 𝑥 = 1, D𝒶 = 0.1 

 
Figure 7: Variation of axial velocity u for different values of 

D𝒶 with 𝜙 =
𝜋

4
, 𝐻𝒶 = 0.1   , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 

𝑑 = 1, 𝛽 = 0.1, 𝐹 = 1, 𝑘 = 0.2 , 𝑥 = 1 

 

Pumping characteristics 3.2- 

Figs. 8-16 illustrate the variation of axial pressure gradient 

along the Length  of the channel in one wave length  x 

∈[0,1].  From these figures one can note that through the 

region  x ∈ [0.2,0.8]  , i.e. the narrowing part of the channel, 

flow cannot pass easily. Therefore, it requires more pressure 

gradient to make it as normal flow. Similarly in the wider 

part of the channel, i.e. in the region x ∈ [0,0.2] ∪ [0.8,1] 

fluid can pass easily because of the lower pressure gradient. 

Fig. 8. we observed that the magnitude of the axial pressure 

gradient increasing  with the increase of the Hartmann 

number 𝐻𝒶. From this figure. it may point out that when the 

applied magnetic field is high, then more pressure is needed 

to pass the same volume of fluid in the narrowing part of the 

channel. Fig. 9. we observed that the magnitude of the axial 

pressure gradient increasing  with the increase of the Froude 

number Fr which arises due to the inclination of the channel.  

However, the trend is reversed in the case of the inclination 

𝛼 of the channel , Darcy number  Da, slip parameter  β, 

couple stress parameter  γ, phase different ϕ , Reynolds 

number Re  as well as non- uniform  parameter k of the 

channel as shown in Figs.10 - 16 respectively . Therefore, 

the less pressure is required to fluid flow.  

 

Figs 17-25 depict  the variation of pressure rise in function of 

volumetric flow rate in the wave frame for different values of 

the Hartmann number 𝐻𝒶 , Froude number Fr ,couple stress 

parameter 𝛾 , Reynolds number Re  , the slip parameter 𝛽  , 

Darcy number D𝒶 , phase different 𝜙 , the non-uniform 

parameter 𝑘 and the inclination 𝛼 of the channel . The whole 

region is considered into five parts (i) peristaltic pumping 

region where (𝛥𝑝 > 0, 𝐹 > 0). (ii) augmented pumping(co-

pumping) region where (∆𝑝 < 0, 𝐹 > 0). (iii) when (∆𝑝 >
0, 𝐹 < 0), then it is a retrograde pumping region. (iv) There 

is a co-pumping region where (∆𝑝 < 0, 𝐹 < 0). (v)(∆𝑝 = 0) 

corresponds to the free pumping region.Fig.17 shows that 

pressure rise ∆𝑝increases with increasing Hartmann number 

𝐻𝒶. It can be seen from the graph that in a retrograde region 

(∆𝑝 > 0, 𝐹 < 0), the pumping rate decreases ina co-

pumping region where (∆𝑝 < 0, 𝐹 < 0) with an increase in 

𝐻𝒶.Fig.18 shows that pressure rise ∆𝑝decreases with 

increasing Darcy number D𝒶.It is observed the pumping 

increases in the region of augmented pumping and the co-

pumping region (∆𝑝 < 0). Fig. shows that pressure rise 

∆𝑝decreases with increasing couple stress parameter 𝛾. It is 

observed that in a retrograde pumping region ∆𝑝 > 0, 𝐹 <
0 ,the pumping rate increases in a co-pumping region where 

(∆𝑝 < 0)with an increase in 𝛾.  Fig.20 shows that pressure 

rise ∆𝑝decreases with increasing slip parameter 𝛽. It is 

observed that in a retrograde pumping region(∆𝑝 > 0, 𝐹 <
0), the pumping rate increases a co-pumping region where 

(∆𝑝 < 0) with an increase in 𝛽. Fig.21 shows that pressure 

rise ∆𝑝decreases with increasing non-uniform parameter  . It 

is observed that the pumping rate increases in the co-

pumping region (∆𝑝 < 0) and free pumping region (∆𝑝 =
0) .  Fig.22 shows that pressure rise ∆𝑝increases with 

increasing phase different 𝜙 in a retrograde pumping region. 

It is observed that the pumping rate decreases in the co-

pumping region (∆𝑝 < 0) with an increase in the phase 

different 𝜙. It is observed from Fig. 23 that an increase in 

Froude number Fr results in a decrease in retrograde 

pumping rate(∆𝑝 > 0, 𝐹 < 0) and also a decrease in the 

pressure rise. From Fig. 24 we observed that an increase in 

the inclination 𝛼 of the channel results in an increase in 

retrograde pumping rate (∆𝑝 > 0, 𝐹 < 0)and also an 

increase in the pressure rise. It is observed from Fig. 25 that 

an increase in Reynolds number Re results in an increase in 

retrograde pumping rate(∆𝑝 > 0, 𝐹 < 0) and also an 

increase in the pressure rise. It is noticed that there is a linear 

relationship between pressure rise for each wave length and 

volumetric flow rate. 

 

Figure 8: Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

different values H𝑎with D𝒶 = 0.1  , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 

𝑑 = 1, 𝛽 = 0.1 , 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2, 𝑦 = 1  , 𝑅𝑒 =

0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋    

 6
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Figure 9: Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

different values Fr with  𝛾 = 2 , 𝐻𝒶 = 0.1 , 𝑎 = 0.5, 𝑏 =

0.4 , 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2, 𝑦 = 1 𝑅𝑒 =

0.1, D𝒶 = 0.1 , 𝛼 =
𝜋    

 6
 

 

Figure 10: Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

different values 𝛼with D𝒶 = 0.1  , 𝛾 = 2, 𝑎 = 0.5, 𝑏 =

0.4, 𝑑 = 1, 𝛽 = 0.1 , 𝜙 =
𝜋

4
, 𝐹 = 1  , 𝑘 = 0.2, 𝑦 = 1 𝑅𝑒 =

0.1, 𝐹𝑟 = 0.05, 𝐻𝒶 = 0.1 

 

Figure 11:.Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

different values D𝒶with𝛾 = 2 , 𝐻𝒶 = 0.1 , 𝑎 = 0.5, 𝑏 = 0.4 , 

𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2, 𝑦 = 1 , 𝑅𝑒 =

0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋    

 6
 

 

 

Figure 12:.Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

different values of 𝛽 with D𝒶 = 0.1 , 𝐻𝒶 = 0.1 , 𝛾 = 2 , 

𝑎 = 0.5 , 𝑏 = 0.4 , 𝑑 = 1 , 𝜙 =
𝜋

4
 , 𝐹 = 1, 𝑘 = 0.2, 

𝑦 = 1  , 𝑅𝑒 = 0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋   

 6
 

 

Figure 13:.Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

different values γwith D𝒶 = 0.1 , 𝐻𝒶 = 0.1 , 𝑎 = 0.5, 

𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1,𝑘 = 0.2, 𝑦 =

1 , 𝑅𝑒 = 0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋    

 6
 

 

 

Figure 14:.Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
 for 

differentvalues 𝜙 with D𝒶 = 0.1 , 𝐻𝒶 = 0.1 , 𝛾 = 2 , 𝑎 =
0.5 , 𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1 , 𝐹 = 1, 𝑘 = 0.2, 𝑦 = 1 , 𝑅𝑒 =

0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋    

 6
 

 

Figure 15: Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
  for 

different values of Rewith  D𝒶 = 0.1 , 𝐻𝒶 = 0.1 , 𝑎 =

0.5, 𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1,𝛾 = 2, 𝑦 = 1 

𝛾 = 2, 𝐹𝑟 = 0.05, 𝛼 =
𝜋   

 6
 

 

Figure 16:.Distribution of pressure gradient 𝛿𝑝 =
𝜕𝑝

𝜕𝑥
  for 

different values of  k with D𝒶 = 0.1 , 𝐻𝒶 = 0.1 , 𝑎 = 0.5, 

𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1,𝛾 = 2, 𝑦 = 1 , 𝑅𝑒 =

0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋    

 6
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Figure 17:Variation of pressure rise ∆P with F for different 

values of𝐻𝒶 when D𝒶 = 0.1  , 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4, 

𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝑘 = 0.2, 𝑦 = 1,𝑅𝑒 = 0.1, 𝐹𝑟 =

0.05, 𝛼 =
𝜋    

 6
 

 
Figure 18:Variation of pressure rise ∆P with F for different 

values of ofD𝒶 when𝜙 =
𝜋

4
, 𝐻𝒶 = 0.1 , 𝑎 = 0.5, 

𝑏 = 0.4, 𝑑 = 1, 𝛽 = 0.1, 𝛾 = 2, 𝑘 = 0.2, 𝑦 = 1, 𝑅𝑒 =

0.1, 𝐹𝑟 = 0.05, 𝛼 =
𝜋    

 6
 

 
Figure 19:Variation of pressure rise ∆P with F for different 

values of𝛾  whenD𝒶 = 0.1, 𝐻𝒶 = 0.1, 𝛽 = 0.1, 𝑎 = 0.5, 𝑏 =

0.4, 𝑑 = 1, 𝜙 =
𝜋

4
, 𝑘 = 0.2, , 𝑦 = 1, 𝑅𝑒 = 0.1, 𝐹𝑟 =

0.05, 𝛼 =
𝜋    

 6
 

 
Figure 20:Variation of pressure rise ∆P with F for different 

values of𝛽  when D𝒶 = 0.1, 𝛾 = 2, 𝐻𝒶 = 0.1, 𝑎 = 0.5, 𝑏 =

0.4, 𝑑 = 1, 𝜙 =
𝜋

4
, , 𝑘 = 0.2, 𝑦 = 1, 𝑅𝑒 = 0.1, 𝐹𝑟 =

0.05, 𝛼 =
𝜋    

 6
 

 
Figure 21:Variation of pressure rise ∆P with F for different 

values ofk  when  D𝒶 = 0.1, 𝛾 = 2, 𝐻𝒶 = 0.1 , 𝜙 =
𝜋

4
, 𝑎 =

0.5 , 𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1   , 𝑦 = 1,𝑅𝑒 = 0.1, 𝐹𝑟 =

0.05, 𝛼 =
𝜋    

 6
 

 
Figure 22:Variation of pressure rise ∆P with F for different 

values of 𝜙  when D𝒶 = 0.1, 𝐻𝒶 = 0.1, 𝛾 = 2 , 𝑎 = 0.5, 𝑏 =
0.4, 𝑑 = 1 , 𝛽 = 0.1, , 𝑦 = 1, 𝑘 = 0.2, 𝑅𝑒 = 0.1, 𝐹𝑟 =

0.05, 𝛼 =
𝜋    

 6
 

 
Figure 23:Variation of pressure rise ∆P with F for different 

values of 𝐹𝑟  when D𝒶 = 0.1 , 𝐻𝒶 = 0.1, 𝛾 = 2 , 𝑎 =
0.5, 𝑏 = 0.4, 𝑑 = 1 , 𝛽 = 0.1, , 𝑦 = 1, 𝑘 = 0.2, 𝑅𝑒 = 0.1, 𝜙 =

𝜋

4
 , 𝛼 =

𝜋    

 6
 

 
 

Figure 24: Variation of pressure rise ∆P with F for different 

values of 𝛼  when 𝛾 = 2, 𝐻𝒶 = 0.1 , 𝜙 =
𝜋

4
, 𝑎 = 0.5 , 𝑏 =

0.4 , 𝑑 = 1 , 𝛽 = 0.1 , 𝑘 = 0.2  , 𝑦 = 1, 𝑅𝑒 = 0.1, 𝐹𝑟 =
0.05, D𝒶 = 0.1 
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Figure 25:Variation of pressure rise ∆P with F for different 

values of 𝑅𝑒  when D𝒶 = 0.1, 𝐻𝒶 = 0.1, 𝛾 = 2 , 𝑎 = 0.5, 𝑏 =

0.4, 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
 , 𝑦 = 1, 𝑘 = 0.2 , 𝐹𝑟 = 0.05, 𝛼 =

𝜋    

 6
 

 

Trapping phenomena3.3- 

It is known that the phenomenon of trapping is the formation 

of circulating bolus of the fluid is a region of closed stream 

lines that move with the wave speed in the wave frame. 

Owing to the trapping phenomenon, there will exist 

stagnation points, where both the velocity components of the 

fluid vanish in the wave   frame. It is more necessary to study  

the stream lines pattern , because of the fact that the 

difference between the values of the stream function at any 

two points is used to calculate the flux of fluid or volumetric 

flow rate through a line connecting the two points. It is 

observed from Figs.26-30  that the bolus formation takes 

place on both sides of the central line of the channel in the 

expanded region. As the magnetic field strength increases the 

size of the trapped bolus decreases and vanishes in the 

presence of sufficiently strong magnetic field. Figs. 26(a, b, 

c)  give the variation of stream lines with the variation of the 

Hartmann number 𝐻𝒶. We have observed that as the 

Hartmann number increases the bolus size decreases. Figs. 

27(a, b, c)  give the variation of stream lines with the 

variation of the Darcy number  D𝒶. We have observed that 

as the Darcy number  D𝒶 increases the bolus size increase. 

Figs. 28 (a, b, c) We have observed that as the couple stress 

parameter 𝛾 increases the bolus size decreases and 

disappears at 𝛾 = 2.8 . The effects of slip parameter  on the 

distribution of stream lines are shown in Figs.29(a, b, c) The 

slip parameter also reduces the formation of trapped bolus. 

We observed that increase of the slip parameter 𝛽 the trapped 

bolus decreases in size and transported and disappears in the 

downstream direction. The phenomenon of reducing bolus 

size may help to prevent possible damage of red cells and 

other constituents. Figs.30.(a, b, c) illustrate the Variation of 

stream lines with the non-uniformity k of the asymmetric 

channel. We observed that as the non-uniform parameter 𝑘 

increases the trapped bolus also increases in size and 

transported in the downstream direction.These figures 

indicate that in the wider part of the channel, the flow is 

pulled by the wall, whereas in the a narrow part  . the fluid is 

pushed away from the wall. 

 

 
(a)                                    (b) 

 
(c) 

Figure 26: Streamlines (𝜓) pattern  for a 𝐻𝒶 =
0.1,  𝑏 𝐻𝒶 = 1.6,  c 𝐻𝒶 = 1.8    withD𝒶 = 0.1 , 𝛾 = 2 , 𝑎 =

0.5 , 𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1 , 𝑘 = 0.2 

 
(a)                                        (b) 

 
(c) 

Figure 27: Streamlines (𝜓) pattern  for a Da =
0.1,  b Da = 2,  c Da = 6    with𝐻𝒶 = 0.1 , 𝛾 = 2 , 𝑎 =

0.5 , 𝑏 = 0.4 , 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1 , 𝑘 = 0.2 

 
(a)                                        (b) 
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(c) 

Figure 28: Streamlines (𝜓) pattern for a γ = 2, (𝑏)γ =
2.3 , (𝑐)γ = 2.8 with𝐻𝒶 = 0.1 , D𝒶 = 0.1 , 𝑎 = 0.5 , 

𝑏 = 0.4, 𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2 

 

 
(a)                                        (b) 

 
(c) 

Figure 29:  Streamlines (𝜓) pattern for a β = 0.1, (𝑏)β =
0.2, (𝑐)β = 0.5    with𝐻𝒶 = 0.1, 𝛾 = 2, 𝑎 = 0.5 , 𝑏 =

0.4 , 𝑑 = 1, D𝒶 = 0.1 , 𝜙 =
𝜋

4
, 𝐹 = 1, 𝑘 = 0.2 

 
(a)                                        (b) 

 
(c) 

Figure 30: Streamlines (𝜓) pattern for a K = 0.2,  𝑏 K =
0.3, (𝑐)K = 0.6    with𝐻𝒶 = 0.1, 𝛾 = 2, 𝑎 = 0.5, 𝑏 = 0.4 , 

𝑑 = 1 , 𝛽 = 0.1, 𝜙 =
𝜋

4
, 𝐹 = 1, D𝒶 = 0.1 

4. Conclusions 

 

In this paper, we have theoretically studied the effects of slip 

velocity in a peristaltic transport of physiological fluids 

represented by non-Newtonian fluid model passing through 

an inclined asymmetric and non-uniform channel with 

porous medium under the long wave length and low 

Reynolds number assumptions . In this investigation, special 

emphasis has been paid to study such as velocity distribution, 

the pumping characteristic and  the trapping phenomena on 

the basis of a simple analytical solution. 

1) The axial velocity(u) at the central region decreases with 

the increasing values of the Hartmann number 𝐻𝒶 , 

couple stress parameter (γ) , the slip parameter(𝛽) and 

non-uniform parameter(𝑘) of the channel , whereas it 

increases in the boundary of the channel wall. 

2) The axial velocity(u) at the central region increases with 

the increasing values of theDarcy number ( D𝒶 ) , 
whereas it decreases in the boundary of the channel wall . 

3) The axial pressure gradient ( 
𝜕𝑃

𝜕𝑥
)increases with the 

increase of Hartmann number 𝐻𝒶  , Froude number     

(Fr )whereas it decreases with the increasing values of the 

inclination( 𝛼) of the channel , Darcy number ( D𝒶 ) ,slip 

parameter(𝛽) ,couple stress parameter (γ), phase 

difference (𝜙)and Reynolds number(Re) as well as non-

uniform parameter (𝑘)of the channel. 

4) There is a linear relationship between pressure rise for 

each wave length and volumetric flow rate 

5) The pressure rise increases in retrograde pumping with 

the increasing values𝐻𝒶 , 𝜙,𝛼 and Re whereasit decreases 

with the  increasing values 𝐷𝑎 , γ , 𝛽 , 𝑘 and Fr . 

6) It may interesting to note that the trapped bolus can be 

eliminated with the increasing of values couple stress 

parameter(γ)  and the application of strong magnetic field 

. The role of slip velocity (𝛽)has a reducing effect on the 

bolus size. whereas it increases the bolus size with the 

increasing values of the Darcy number ( D𝒶 ) and the 

non-uniform parameter (𝑘)of the channel. 
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