
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 2, February 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

MapReduce:Ordering and Large Scale Indexing in

Large Cluster

Iniyan Senthil Kumar .T
1
, Poovaraghan .R

2

Computer Science and Engineering, SRM University, Ramapuram, Chennai-600089, India

Abstract: MapReduce is the program model and an association implementation for processing and generating large data sets. User

specify a map function that process a key/value pair to generate a set of intermediate key/value pairs and a reduce function that merge

all intermediate values associated with the same intermediate key. Our Implementation of MapReduce runs on a large cluster of

commodity machines and is highly scalable; a typical MapReduce computation processes many terabytes of data of thousand machines

Keywords: MapReduce, Hadoop, Cluster, Large scale indexing, ordering

1. Introduction

Google have implemented hundreds of special-purpose

computations that process large amounts of raw data, such as

crawled documents, web request logs, etc., to compute

various kinds of derived data, such as inverted indices,

various representations of the graph structure of web

documents,. However, the input data is usually large and the

computations have to be distributed across hundreds or

thousands of machines in order to finish in a reasonable

amount of time. However, the input data is usually large and

the computations have to be distributed across hundreds or

thousands of machines in order to minimise in a reasonable

amount of time. We realized that most of our computations

involved applying a map operation to each logical .record. in

our input in order to compute a set of intermediate key/value

pairs, and then applying a reduce operation to all the values

that shared the same key, in order to combine the derived

data appropriately.

2. Programming Model

The computation takes a set of input key/value pairs, and

produces a set of output key/value pairs. The user of the

MapReduce library expresses the computation as two

functions: Map and Reduce. Map, written by the user, takes

an input pair and produces a set of intermediate key/value

pairs. The MapReduce library groups together all

intermediate values associated with the same intermediate

key I and passes them to the Reduce function. The Reduce

function, also written by the user, accepts an intermediate

key I and a set of values for that key. It merges together

these values to form a possibly smaller set of values.

Typically just zero or one output value is produced per

Reduce invocation

The user would write code similar to the following pseudo-

code:

map(String key, String value):

// key: document name

 // value: document contents for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

 int result = 0; for each v in values:

result += ParseInt(v);

Emit(AsString(result));

3. More Examples

Here are a few simple examples of interesting programs that

can be easily expressed as MapReduce computations.

a) Distributed Grep
The map function emits a line if it matches a supplied

pattern. The reduce function is an identity function that

just copies the supplied intermediate data to the output.

b) Count of URL Access Frequency
The map function processes logs of web page requests

and outputs< URL, 1>. The reduce function adds

together all values for the same URL and emits <URL;

total counti>pair

c) ReverseWeb-Link Graph:
The map function outputs <target, source> pairs for each

link to a target URL found in a page named source. The

reduce function concatenates the list of all source URLs

Associated with a given target URL and emits the pair:

<target, list(source)>

d) Inverted Index

The map function parses each document, and emits a

sequence of <word, document ID>pairs. The reduce

function accepts all pairs for a given word, sorts the

corresponding document IDs and emits a <word,

list(document ID)> pair. The set of all output pairs forms

a simple inverted index. It is easy to augment this

computation to keep track of word positions.

4. Implementation

Many different implementations of the MapReduce interface

are possible. The right choice depends on the environment.

For example, one implementation may be suitable for a

small shared-memory machine, another for a large NUMA

multi- processor, and yet another for an even larger

collection of networked machines.

This section describes an implementation targeted to the

computing environment in wide use at Google: large clusters

of commodity PCs connected together with switched

Ethernet [4]. In our environment:

1) Machines are typically dual-processor x86 processors

running Linux, with 2-4 GB of memory per machine.

Paper ID: ART201710015 DOI: 10.21275/ART201710015 398

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 2, February 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2) Commodity networking hardware is used . Typically

either 100 megabits/second or 1 gigabit/second at the

machine level, but averaging considerably less in overall

bisection bandwidth.

3) A cluster consists of hundreds or thousands of machines,

and therefore machine failures are common.

4) Storage is provided by inexpensive IDE disks attached

directly to individual machines. A distributed _le system

[8] developed in-house is used to manage the data stored

on these disks. The _le system uses replication to provide

availability and reliability on top of unreliable hardware.

5) Users submit jobs to a scheduling system. Each job

consists of a set of tasks, and is mapped by the scheduler

to a set of available machines within a cluster

A. Execution Overview

The Map invocations are distributed across multiple

machines by automatically partitioning the input data into a

set of M splits. The input splits can be processed in parallel

by different machines. Reduce invocations are distributed by

partitioning the intermediate key space into R pieces using a

partitioning function (e.g., hash(key) mod R). The number of

partitions (R) and the partitioning function are specified by

the user..

Figure 1: Shows the overall of a MapReduce operation in

our implementation

When the user program calls the MapReduce function, the

following sequence of actions occurs (the numbered labels

in Figure 1 correspond

1) The MapReduce library in the user program _rst splits

the input _les into M pieces of typically 16 megabytes to

64 megabytes (MB) per piece (controllable by the user

via an optional parameter). It then starts up many copies

of the program on a cluster of machines.

2) One of the copies of the program is special. the master.

The rest are workers that are assigned work by the

master. There are map tasks and R reduce tasks to assign.

The master picks idle workers and assigns each one a

map task or a reduce task.

3) A worker who is assigned a map task reads the contents

of the corresponding input split. It parses key/value pairs

out of the input data and passes each pair to the user-

de_ned Map function. The intermediate key/value pairs

produced by the Map function are buffered in memory.

4) Periodically, the buffered pairs are written to local disk,

partitioned into R regions by the partitioning function.

The locations of these buffered pairs on the local disk are

passed back to the master, who is responsible for

forwarding these locations to the reduce workers.

5) When a reduce worker is noti_ed by the master about

these locations, it uses remote procedure calls to read the

buffered data from the local disks of the map workers.

When a reduce worker has read all intermediate data, it

sorts it by the intermediate keys so that all occurrences of

the same key are grouped together. The sorting is needed

because typically many different keys map to the same

reduce task. If the amount of intermediate data is too

large to _t in memory, an external sort is used.

6) The reduce worker iterates over the sorted intermediate

data and for each unique intermediate key encountered, it

passes the key and the corresponding set of intermediate

values to the user's Reduce function. The output of the

Reduce function is appended to a _nal output _le for this

reduce partition.

7) When all map tasks and reduce tasks have been

completed, the master wakes up the user program. At this

point, the MapReduce call in the user program returns

back to the user code.

B. Master Datastructure

The master keeps several data structures. For each map task

and reduce task, it stores the state (idle, in progress, or

completed), and the identity of the worker machine (for non-

idle tasks). The master the conduit through which the

location of intermediate file regions is propagated from map

tasks to reduce tasks. Therefore, for each completed map

task, the master stores the locations and sizes of the R

intermediate file regions produced by the map task. Updates

to this location and size information are received as map

tasks are completed. The information is pushed

incrementally, to workers that have in-progress reduce tasks.

C. Fault Tolerance

Since the MapReduce library is designed to help process

very large amounts of data using hundreds or thousands of

machines, the library must tolerate machine failures

gracefully.

Worker Failure

The master pings every worker periodically. If no response

is received from a worker in a certain amount of time, the

master marks the worker as failed. Any map tasks

completed by the worker are reset back to their initial idle

state, and therefore become eligible for scheduling on other

workers. Similarly, any map task or reduce task in progress

on a failed worker is also reset to idle and becomes eligible

for rescheduling.

Master Failure
It is easy to make the master write periodic checkpoints of

the master data structures described above. If the master task

dies, a new copy can be started from the last check pointed

state. However, given that there is only a single master; its

failure is unlikely; therefore our current implementation

aborts the MapReduce computation if the master fails.

Clients can check for this condition and retry the

MapReduce operation if they desire.

Paper ID: ART201710015 DOI: 10.21275/ART201710015 399

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 2, February 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

D. Locality

The MapReduce master takes the location information of the

input _les into account and attempts to schedule a map task

on a machine that contains a replica of the corresponding

input data. Failing that, it attempts to schedule a map task

near a replica of that task's input data (e.g., on a worker

machine that is on the same network switch as the machine

containing the data). MapReduce operations on a signi_cant

fraction of the workers in a cluster, most input data is read

locally and consumes no network bandwidth.

E. Backup Task

One of the common causes that lengthens the total time

taken for a MapReduce operation is a straggler. a machine

that takes an unusually long time to complete one of the last

few map or reduce tasks in the computation. Stragglers can

arise for a whole host of reasons. For example, a machine

with a bad disk may experience frequent correctable errors

that slow its read performance from 30 MB/s to 1 MB/s. The

cluster scheduling system may have scheduled other tasks on

the machine, causing it to execute the MapReduce code

more slowly due to competition for CPU, memory, local

disk, or network bandwidth.

5. Performance

In this section we measure the performance of MapReduce

on two computations running on a large cluster of machines.

One computation searches through approximately one

terabyte of data looking for a particular pattern. The other

computation sorts approximately one terabyte of data. These

two programs are representative of a large subset of the real

programs written by users of MapReduce. One class of

programs shuffles data from one representation to another,

and another class extracts a small amount of interesting data

from a large data set.

A.Cluster Configuration

All of the programs were executed on a cluster that consisted

of approximately 1800 machines. Each machine had two

2GHz Intel Xeon processors with Hyper- Threading enabled,

4GB of memory, two 160GB IDE disks, and a gigabit

Ethernet link. The machines were arranged in a two-level

tree-shaped switched network with approximately 100-200

Gbps of aggregate bandwidth available at the root. All of the

machines were in the same hosting facility and therefore the

round-trip time between any pair of machines was less than

a millisecond.

B.Grep

The grep program scans through 1010 100-byte records,

searching for a relatively rare three character pattern (the

pattern occurs in 92,337 records). The input is split into

approximately 64MB pieces (M = 15000), and the entire

output is placed in one _le (R = 1).

The entire computation takes approximately 150 seconds

from start to _finish. This includes about a minute of startup

overhead. The overhead is due to the propagation of the

program to all worker machines, and delays interacting with

GFS to open the set of 1000 input _les and to get the

information needed for the locality optimization.

C. Sort

The sort program sorts 1010 100-byte records

(approximately 1 terabyte of data). This program is

modelled after the Tera Sort benchmark [10]. The sorting

program consists of less than 50 lines of user code. A three-

line Map function extracts a 10-byte sorting key from a text

line and emits the key and the original text line as the

intermediate key/value pair. We used a built-in Identity

function as the Reduce operator. This functions passes the

intermediate key/value pair unchanged as the output

key/value pair. As before, the input data is split into 64MB

pieces (M = 15000). We partition the sorted output into 4000

_les (R = 4000). The partitioning function uses the initial

bytes of the key to segregate it into one of R pieces.

6. Related Work

MapReduce can be considered a simplification and

distillation of some of these models based on our experience

with large real-world computations. More significantly, we

provide a fault-tolerant implementation that scales to

thousands of processors. In contrast, most of the parallel

processing systems have only been implemented on smaller

scales and leave the details of handling machine failures to

the programmer. The MapReduce implementation relies on

an in-house cluster management system that is responsible

for distributing and running user tasks on a large collection

of shared machines. Though not the focus of this paper, the

cluster management system is similar in spirit to other

systems such as Condor.

Paper ID: ART201710015 DOI: 10.21275/ART201710015 400

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 2, February 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Our locality optimization draws its inspiration from

techniques such as active disks [12, 15], where computation

is pushed into processing elements that are close to local

disks, to reduce the amount of data sent across I/O

subsystems or the network. We run on commodity

processors to which a small number of disks are directly

connected instead of running directly on disk controller FS

[5] has a very different programming model from

MapReduce, and unlike MapReduce, is targeted to the

execution of jobs across a wide-area network. However,

there are two fundamental similarities. (1) Both systems use

redundant execution to recover from data loss caused by

failures. (2) Both use locality-aware scheduling to reduce the

amount of data sent across congested network links.

7. Conclusion

The MapReduce programming model has been successfully

used at Google for many different purposes. We attribute

this success to several reasons. First, the model is easy to

use, even for programmers without experience with parallel

and distributed systems, since it hides the details of

parallelization, fault-tolerance, locality optimization, and

load balancing. Second, a large variety of problems are

easily expressible as MapReduce computations. web search

service, for sorting, for data mining, for machine learning,

and many other systems. Third, we have developed an

implementation of MapReduce that scales to large clusters

of machines comprising thousands of machines. The

implementation makes ef_cient use of these machine

resources and therefore is suitable for use on many of the

large computational problems encountered at Google. We

have learned several things from this work. First, restricting

the programming model makes it easy to parallelize and

distribute computations and to make such computations

fault-tolerant. Second, network bandwidth is a scarce

resource. A number of optimizations in our system are

therefore targeted at reducing the amount of data sent across

the network: the locality optimization allows us to read data

from local disks, and writing a single copy of the

intermediate data to local disk saves networks bandwidth.

Third, redundant execution can be used to reduce the impact

of slow machines, and to handle machine failures and data

los

8. Acknowledgment

Josh Levenberg has been instrumental in revising and

extending the user-level MapReduce API with a number of

new features based on his experience with using MapReduce

and other people's suggestions for enhancements.

MapReduce reads its input from and writes its output to the

Google File System [8]. We would like to thank Mohit

Aron, Howard Gobioff, Markus Gutschke, David Kramer,

Shun-Tak Leung, and Josh Redstone for their work in

developing GFS. We would also like to thank Percy Liang

and Olcan Sercinoglu for their work in developing the

cluster management system used by MapReduce. Mike

Burrows, Wilson Hsieh, Josh Levenberg, Sharon Perl, Rob

Pike, and Debby Wallach provided helpful comments on

earlier drafts of this paper. The anonymous OSDI reviewers,

and our shepherd, Eric Brewer, provided many useful

suggestions of areas where the paper could be improved.

Finally, we thank all the users of MapReduce within

Google's engineering organization for providing helpful

feedback, suggestions, and bug reports.

References

[1] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

David E. Culler, Joseph M. Hellerstein, and David A.

Patterson. High-performance sorting on networks of

workstations. In Proceedings of the 1997 ACM

SIGMOD International Conference on Management of

Data, Tucson, Arizona, May 1997.

[2] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah

Treuhaft, David E. Culler, Joseph M. Hellerstein, David

Patterson, and Kathy Yelick. Cluster I/O with River:

Making the fast case common. In Proceedings of the

Sixth Workshop on Input/Output in Parallel and

DistributedSystems (IOPADS '99), pages 10.22, Atlanta,

Georgia, May 1999.

[3] Arash Baratloo, Mehmet Karaul, Zvi Kedem, and Peter

Wyckoff. Charlotte: Metacomputing on the web. In

Proceedings of the 9th International Conference on

Parallel and Distributed Computing Systems, 1996.

[4]] Luiz A. Barroso, Jeffrey Dean, and Urs H¨olzle. Web

search for a planet: The Google cluster architecture.

IEEE

Micro, 23(2):22.28, April 2003.

[5] John Bent, Douglas Thain, Andrea C.Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, and Miron Livny. Explicit

control in a batch-aware distributed _le system. In

Proceedings of the 1st USENIX Symposium on

Networked Systems Design and Implementation NSDI,

March 2004.

[6]] Guy E. Blelloch. Scans as primitive parallel

operations. IEEE Transactions on Computers, C-38(11),

November 1989.

[7]] Armando Fox, Steven D. Gribble, Yatin Chawathe,

Eric A. Brewer, and Paul Gauthier. Cluster-based

scalable network services. In Proceedings of the 16th

ACM Symposium on Operating System Principles,

pages 78. 91, Saint-Malo, France, 1997.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google _le system. In 19th Symposium on

O Operating Systems Principles, pages 29.43, Lake

George, New York, 2003

Paper ID: ART201710015 DOI: 10.21275/ART201710015 401

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

