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Abstract: MapReduce is the program model and an association implementation for processing and generating large data sets. User 

specify a map function that process a key/value pair to generate a set of intermediate key/value pairs and a reduce function that merge 

all intermediate values associated with the same intermediate key. Our Implementation of MapReduce runs on a large cluster of 

commodity machines and is highly scalable; a typical MapReduce computation processes many terabytes of data of thousand machines 
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1. Introduction 
 

Google have implemented hundreds of special-purpose 

computations that process large amounts of raw data, such as 

crawled documents, web request logs, etc., to compute 

various kinds of derived data, such as inverted indices, 

various representations of the graph structure of web 

documents,.  However, the input data is usually large and the 

computations have to be distributed across hundreds or 

thousands of machines in order to finish in a reasonable 

amount of time. However, the input data is usually large and 

the computations have to be distributed across hundreds or 

thousands of machines in order to minimise in a reasonable 

amount of time. We realized that most of our computations 

involved applying a map operation to each logical .record. in 

our input in order to compute a set of intermediate key/value 

pairs, and then applying a reduce operation to all the values 

that shared  the same key, in order to combine the derived 

data appropriately. 

 

2. Programming Model 
 

The computation takes a set of input key/value pairs, and 

produces a set of output key/value pairs. The user of the 

MapReduce library expresses the computation as two 

functions: Map and Reduce. Map, written by the user, takes 

an input pair and produces a set of intermediate key/value 

pairs. The MapReduce library groups together all 

intermediate values associated with the same intermediate 

key I and passes them to the Reduce function. The Reduce 

function, also written by the user, accepts an intermediate 

key I and a set of values for that key. It merges together 

these values to form a possibly smaller set of values. 

Typically just zero or one output value is produced per 

Reduce invocation 

The user would write code similar to the following pseudo-

code:      

map(String key, String value):  

// key: document name 

 // value: document contents for each word w in value: 

EmitIntermediate(w, "1");  

reduce(String key, Iterator values):   

// key: a word 

// values: a list of counts  

 int result = 0; for each v in values: 

result += ParseInt(v);  

Emit(AsString(result)); 

 

3. More Examples 
 

Here are a few simple examples of interesting programs that 

can be easily expressed as MapReduce computations. 

a) Distributed Grep 
The map function emits a line if it matches a supplied 

pattern. The reduce function is an identity function that 

just copies the supplied intermediate data to the output. 

b) Count of URL Access Frequency 
The map function processes logs of web page requests 

and outputs< URL, 1>. The reduce function adds 

together all values for the same URL and emits <URL; 

total counti>pair 

c) ReverseWeb-Link Graph: 
The map function outputs <target, source> pairs for each 

link to a target URL found in a page named source. The 

reduce function concatenates the list of all source URLs  

Associated with a given target URL and emits the pair:  

<target, list(source)> 

d) Inverted Index 

The map function parses each document, and emits a 

sequence of <word, document ID>pairs. The reduce 

function accepts all pairs for a given word, sorts the 

corresponding document IDs and emits a <word, 

list(document ID)> pair. The set of all output pairs forms 

a simple inverted index. It is easy to augment this 

computation to keep track of word positions. 

 

4. Implementation 
 

Many different implementations of the MapReduce interface 

are possible. The right choice depends on the environment. 

For example, one implementation may be suitable for a 

small shared-memory machine, another for a large NUMA 

multi- processor, and yet another for an even larger 

collection of networked machines. 

 

This section describes an implementation targeted to the 

computing environment in wide use at Google: large clusters 

of commodity PCs connected together with switched 

Ethernet [4]. In our environment: 

 

1) Machines are typically dual-processor x86 processors 

running Linux, with 2-4 GB of memory per machine. 
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2) Commodity networking hardware is used . Typically 

either 100 megabits/second or 1 gigabit/second at the 

machine level, but averaging considerably less in overall 

bisection bandwidth. 

3) A cluster consists of hundreds or thousands of machines, 

and therefore machine failures are common. 

4) Storage is provided by inexpensive IDE disks attached 

directly to individual machines. A distributed _le system 

[8] developed in-house is used to manage the data stored 

on these disks. The _le system uses replication to provide 

availability and reliability on top of unreliable hardware. 

5) Users submit jobs to a scheduling system. Each job 

consists of a set of tasks, and is mapped by the scheduler 

to a set of available machines within a cluster 

 

A. Execution Overview 

The Map invocations are distributed across multiple 

machines by automatically partitioning the input data into a 

set of M splits. The input splits can be processed in parallel 

by different machines. Reduce invocations are distributed by 

partitioning the intermediate key space into R pieces using a 

partitioning function (e.g., hash(key) mod R). The number of 

partitions (R) and the partitioning function are specified by 

the user.. 

 

 
Figure 1: Shows the overall of a MapReduce operation in 

our implementation 

 

When the user program calls the MapReduce function, the 

following sequence of actions occurs (the numbered labels 

in Figure 1 correspond 

1) The MapReduce library in the user program _rst splits 

the input _les into M pieces of typically 16 megabytes to 

64 megabytes (MB) per piece (controllable by the user 

via an optional parameter). It then starts up many copies 

of the program on a cluster of machines. 

2) One of the copies of the program is special. the master. 

The rest are workers that are assigned work by the 

master. There are map tasks and R reduce tasks to assign. 

The master picks idle workers and assigns each one a 

map task or a reduce task. 

3) A worker who is assigned a map task reads the contents 

of the corresponding input split. It parses key/value pairs 

out of the input data and passes each pair to the user-

de_ned Map function. The intermediate key/value pairs 

produced by the Map function are buffered in memory. 

4) Periodically, the buffered pairs are written to local disk, 

partitioned into R regions by the partitioning function. 

The locations of these buffered pairs on the local disk are 

passed back to the master, who is responsible for 

forwarding these locations to the reduce workers. 

5) When a reduce worker is noti_ed by the master about 

these locations, it uses remote procedure calls to read the 

buffered data from the local disks of the map workers. 

When a reduce worker has read all intermediate data, it 

sorts it by the intermediate keys so that all occurrences of 

the same key are grouped together. The sorting is needed 

because typically many different keys map to the same 

reduce task. If the amount of intermediate data is too 

large to _t in memory, an external sort is used. 

6) The reduce worker iterates over the sorted intermediate 

data and for each unique intermediate key encountered, it 

passes the key and the corresponding set of intermediate 

values to the user's Reduce function. The output of the 

Reduce function is appended to a _nal output _le for this 

reduce partition. 

7) When all map tasks and reduce tasks have been 

completed, the master wakes up the user program. At this 

point, the MapReduce call in the user program returns 

back to the user code. 

 

B. Master Datastructure 

The master keeps several data structures. For each map task 

and reduce task, it stores the state (idle, in progress, or 

completed), and the identity of the worker machine (for non-

idle tasks). The master the conduit through which the 

location of intermediate file regions is propagated from map 

tasks to reduce tasks. Therefore, for each completed map 

task, the master stores the locations and sizes of the R 

intermediate file regions produced by the map task. Updates 

to this location and size information are received as map 

tasks are completed. The information is pushed 

incrementally, to workers that have in-progress reduce tasks. 

 

C. Fault Tolerance 

Since the MapReduce library is designed to help process 

very large amounts of data using hundreds or thousands of 

machines, the library must tolerate machine failures 

gracefully. 

 

Worker Failure 

The master pings every worker periodically. If no response 

is received from a worker in a certain amount of time, the 

master marks the worker as failed. Any map tasks 

completed by the worker are reset back to their initial idle 

state, and therefore become eligible for scheduling on other 

workers. Similarly, any map task or reduce task in progress 

on a failed worker is also reset to idle and becomes eligible 

for rescheduling.  

 

Master Failure 
It is easy to make the master write periodic checkpoints of 

the master data structures described above. If the master task 

dies, a new copy can be started from the last check pointed 

state. However, given that there is only a single master; its 

failure is unlikely; therefore our current implementation 

aborts the MapReduce computation if the master fails. 

Clients can check for this condition and retry the 

MapReduce operation if they desire. 
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D. Locality 

The MapReduce master takes the location information of the 

input _les into account and attempts to schedule a map task 

on a machine that contains a replica of the corresponding 

input data. Failing that, it attempts to schedule a map task 

near a replica of that task's input data (e.g., on a worker 

machine that is on the same network switch as the machine 

containing the data). MapReduce operations on a signi_cant 

fraction of the workers in a cluster, most input data is read 

locally and consumes no network bandwidth. 

 

E. Backup Task 

One of the common causes that lengthens the total time 

taken for a MapReduce operation is a straggler. a machine 

that takes an unusually long time to complete one of the last 

few map or reduce tasks in the computation. Stragglers can 

arise for a whole host of reasons. For example, a machine 

with a bad disk may experience frequent correctable errors 

that slow its read performance from 30 MB/s to 1 MB/s. The 

cluster scheduling system may have scheduled other tasks on 

the machine, causing it to execute the MapReduce code 

more slowly due to competition for CPU, memory, local 

disk, or network bandwidth. 

 

5. Performance 
 

In this section we measure the performance of MapReduce 

on two computations running on a large cluster of machines. 

One computation searches through approximately one 

terabyte of data looking for a particular pattern. The other 

computation sorts approximately one terabyte of data. These 

two programs are representative of a large subset of the real 

programs written by users of MapReduce. One class of 

programs shuffles data from one representation to another, 

and another class extracts a small amount of interesting data 

from a large data set. 

 

A.Cluster Configuration 

All of the programs were executed on a cluster that consisted 

of approximately 1800 machines. Each machine had two 

2GHz Intel Xeon processors with Hyper- Threading enabled, 

4GB of memory, two 160GB IDE disks, and a gigabit 

Ethernet link.  The machines were arranged in a two-level 

tree-shaped switched network with approximately 100-200 

Gbps of aggregate bandwidth available at the root. All of the 

machines were in the same hosting facility and therefore the 

round-trip time between any pair of machines was less than 

a millisecond. 

 

B.Grep 

The grep program scans through 1010 100-byte records, 

searching for a relatively rare three character pattern (the 

pattern occurs in 92,337 records). The input is split into 

approximately 64MB pieces (M = 15000), and the entire 

output is placed in one _le (R = 1). 

 

The entire computation takes approximately 150 seconds 

from start to _finish. This includes about a minute of startup 

overhead. The overhead is due to the propagation of the 

program to all worker machines, and delays interacting with 

GFS to open the set of 1000 input _les and to get the 

information needed for the locality optimization. 

 

 
 

C. Sort 

The sort program sorts 1010 100-byte records 

(approximately 1 terabyte of data). This program is 

modelled after the Tera Sort benchmark [10]. The sorting 

program consists of less than 50 lines of user code. A three-

line Map function extracts a 10-byte sorting key from a text 

line and emits the key and the original text line as the 

intermediate key/value pair. We used a built-in Identity 

function as the Reduce operator. This functions passes the 

intermediate key/value pair unchanged as the output 

key/value pair.  As before, the input data is split into 64MB 

pieces (M = 15000). We partition the sorted output into 4000 

_les (R = 4000). The partitioning function uses the initial 

bytes of the key to segregate it into one of R pieces. 

 

 
 

6. Related Work 
 

MapReduce can be considered a simplification and 

distillation of some of these models based on our experience 

with large real-world computations. More significantly, we 

provide a fault-tolerant implementation that scales to 

thousands of processors. In contrast, most of the parallel 

processing systems have only been implemented on smaller 

scales and leave the details of handling machine failures to 

the programmer. The MapReduce implementation relies on 

an in-house cluster management system that is responsible 

for distributing and running user tasks on a large collection 

of shared machines. Though not the focus of this paper, the 

cluster management system is similar in spirit to other 

systems such as Condor. 
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Our locality optimization draws its inspiration from 

techniques such as active disks [12, 15], where computation 

is pushed into processing elements that are close to local 

disks, to reduce the amount of data sent across I/O 

subsystems or the network. We run on commodity 

processors to which a small number of disks are directly 

connected instead of running directly on disk controller FS 

[5] has a very different programming model from 

MapReduce, and unlike MapReduce, is targeted to the 

execution of jobs across a wide-area network. However, 

there are two fundamental similarities. (1) Both systems use 

redundant execution to recover from data loss caused by 

failures. (2) Both use locality-aware scheduling to reduce the 

amount of data sent across congested network links. 

 

7. Conclusion 
 

The MapReduce programming model has been successfully 

used at Google for many different purposes. We attribute 

this success to several reasons. First, the model is easy to 

use, even for programmers without experience with parallel 

and distributed systems, since it hides the details of 

parallelization, fault-tolerance, locality optimization, and 

load balancing. Second, a large variety of problems are 

easily expressible as MapReduce computations. web search 

service, for sorting, for data mining, for machine learning, 

and many other systems. Third, we have developed an 

implementation of MapReduce that scales to large clusters 

of machines comprising thousands of machines. The 

implementation makes ef_cient use of these machine 

resources and therefore is suitable for use on many of the 

large computational problems encountered at Google. We 

have learned several things from this work.  First, restricting 

the programming model makes it easy to parallelize and 

distribute computations and to make such computations 

fault-tolerant. Second, network bandwidth is a scarce 

resource. A number of optimizations in our system are 

therefore targeted at reducing the amount of data sent across 

the network: the locality optimization allows us to read data 

from local disks, and writing a single copy of the 

intermediate data to local disk saves networks bandwidth. 

Third, redundant execution can be used to reduce the impact 

of slow machines, and to handle machine failures and data 

los 
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