
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Designing an Intelligent Software Agent with

DECAF Multi-Agent Platform

Sanjay Yede
1
, V. N. Chavan

2

1P.G. Department of Computer Science and Technology, Degree College of Physical Education, HVPM, Amravati-444605, India

2Head, Department of Comp. Sci, Seth Kesarimal Porwal College, Kamtee, Nagpur, India

Abstract: DECAF (Distributed, Environment Centred Agent Framework) is a software platform that helps design, development, and

execution of “intelligent” software agents[15], to achieve solutions in complex problem domains. It provides an environment for the

execution of intelligent agents. The environment includes the ability to communicate with other agents, efficiently maintain the current

state of an executing agent, and select an execution path from a set of possible ones, so as to support persistent, flexible, and robust

actions. DECAF provides a modular platform for evaluating and disseminating results in agent architectures, including communication,

planning, action scheduling, execution monitoring, coordination, and learning. By modularizing the design of the software, researchers

can analyze and focus on specific issues in agent development, coordination and planning without disturbing other parts.

Keywords: Multi-Agent System, MAS architecture, Agent Communication, DECAF components

1. Introduction

DECAF is an agent development and execution environment

that allows a well-defined approach towards building multi-

agent systems. It provides necessary services of a large-

grained intelligent agent,[3,12] like: communication,

planning, scheduling, execution monitoring, coordination,

and eventually learning and self-diagnosis [5].

Agent development in a Multi-agent systems faces problem

of constructing a robust environment for executing agent

tasks. This environment must be able to use and understand

network and communication protocols, adapt in the face of

failure, and provide a platform for development of the agent

tasks themselves. Then the tasks must be organized

(programmed) to provide the “intelligence” of the agent

code, and multi-agent activity must be supported and

coordinated via scheduling and communication protocols

[11]. DECAF helps in prototyping MAS by taking care of

certain common details via reusable behaviors [2] and

providing standardized, domain-independent or easily

customizable middle agents [4]. Reusable behaviors include

things such as Agent Name Server registration and

deregistration, Agent Management protocols, and service

negotiation via middle agents such as matchmakers. DECAF

middle agents include agent name servers, matchmakers,

brokers, information extraction agents, web proxies, and

agent management agents.

2. DECAF Architecture

Following figure represents the high level structure of the

DECAF architecture [1]. There are five internal execution

modules and seven associated data structure queues in the

current DECAF implementation.

Figure 1: The DECAF architecture [7]

2.1 Agent Initialization

The execution module is responsible for controlling agent’s

task-flow in its entire life time. After initialization, each

module runs continuously and concurrently in its own

thread. An agent’s execution starts with the execution of

Agent Initialization Module. The Agent Initialization module

reads the plan file(s). Each task reduction specified in the

plan file is added to Task Templates Hash table, also called

as plan library. Next, the plan may make use of a Startup

module. The Startup task of an agent might, for example,

build any domain database/knowledge- base needed for

future execution of the agent, or register with a Matchmaker.

Any subsequent changes to initial data must come from the

agent actions during the completion of goals. Startup tasks

may assert certain continuous maintenance goals or initial

achievement goals for the agent. The Startup task is special

since no message will be received to begin its execution. If

such a Startup module is part of the plan file, the

initialization module will add it to the Task Queue for

immediate execution. Finally, the Agent Initialization

Module does register with the ANS and set up all socket and

network communication.

Paper ID: SEP14149 DOI: 10.21275/SEP14149 1572

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Dispatcher

Agent initialization is done once and then control is passed

to the Dispatcher which waits for incoming KQML

messages which are placed on the Incoming Message Queue.

An incoming message contains a KQML performative and

its associated information becomes an objective indicating

which capability within the agent is to be accomplished. An

incoming message can result in one of three actions by the

dispatcher,

 The message is attempting to communicate as part of an

ongoing conversation. The Dispatcher makes this

distinction mostly by recognizing the KQML in-reply-to

field designator, which indicates the message is part of

an existing conversation. In this case the dispatcher will

find the corresponding action in the Pending Action

Queue and set up the tasks to continue the agent action.

 The message indicates that it is part of a new

conversation. This will be the case whenever the

message does not use the, ’in-reply-to’ field. If so a new

objective is created and placed on the Objectives Queue

for the Planner. The dispatcher assigns a unique

identifier to this message which is used to distinguish all

messages that are part of the new conversation.

 The dispatcher is responsible for the handling of error

messages. If an incoming message is improperly

formatted or if another internal module needs to sends an

error message the Dispatcher is responsible for

formatting and sending the message.

2.3 Planner

The Objectives Queue at any given moment will contain the

instantiated plans/task structures (including all actions and

sub-goals) that should be completed in response to all

incoming requests. The initial, top-level objectives are

roughly equivalent to the BDI “desires” concept[14], while

the expansion into plans is only part of the traditional notion

of BDI “intentions”, which for DECAF is divided into three

reasoning levels, planning, scheduling, and execution. The

Plan scheduler goes to sleep state when the Objectives

Queue becomes empty and remains in sleeps state till the

queue is empty. The purpose of the Plan Scheduler is to

determine which actions are to be executed when and in

what order[13]. This determination is currently based on

whether all of the provisions for a particular module are

available. Some provisions come from the incoming

message and some provisions come as a result of other

actions being completed. This means the objectives queue is

checked any time a provision becomes available to see

which actions can be executed now. The Planner monitors

the Objectives Queue and matches new goals to an existing

task template as stored in the Plan Library. A copy of the

instantiated plan, in the form of an HTN corresponding to

that goal is placed in the Task Queue area, along with a

unique identifier and any provisions that were passed to the

agent via the incoming message. If a subsequent message

comes in requesting the same goal, then another instantiation

of the same plan template will be placed in the task queue

with a new unique identifier. The Task Queue at any given

moment will contain the instantiated plans/task structures

that should be completed in response to an incoming request.

2.4 Scheduler

The Scheduler waits until the Task Queue is non-empty. The

scheduling functions are actually divided into two separate

modules; the Task Scheduler and the Agenda Manager. The

purpose of the Task Scheduler is to evaluate the HTN task

structure to determine a set of actions which will “best” suit

the users’ goals. The input is a task HTN will reflect all

possible actions, and the output is a task HTN pruned to

reflect the desired set of actions. Once the set of actions have

been determined, the Agenda Manager (AM) is responsible

for setting the actions into execution. This determination is

based on whether all of the provisions for a particular

module are available. Some provisions come from the

incoming message and some provisions come as a result of

other actions being completed. This means the Tasks Queue

Structures are checked any time a provision becomes

available to see which actions can be executed now. The

other responsibility of the AM is to reschedule actions when

a new task is requested. Every task has a window of time

that is used for execution. If subsequent tasks can be

completed while currently scheduled tasks are running then

a commitment is made to running the task on time.

Otherwise the AM will respond with an error message to the

requester that the task cannot be completed in desired time.

2.5 Executor

The Executor is set into operation when the Agenda Queue

is non-empty. Once an action is placed on the queue the

Executor immediately places the task into execution. One of

two things can occur at this point: The action can complete

normally. (Note that “normal” completion may be returning

an error or any other outcome) and the result is placed on the

Action Result Queue. The framework distributes the result as

provisions to downstream actions that may be waiting in the

Task Queue. Once this is accomplished the Executor

examines the Agenda queue to see if there is further work to

be done. The other case is when the action partially

completes and returns with an indication that further actions

will take place later. This is a typical result when an action

sends a message to another agent, requesting information,

but could also happen for other blocking reasons (i.e. user or

Internet I/O). The remainder of the task will be completed

when the resulting KQML message is returned. To indicate

that this task will complete later it is placed on the Pending

Action Queue. Actions on this queue are keyed with a reply-

to field in the outgoing KQML message[17]. When an

incoming message arrives, the Dispatcher will check to see

if an in-reply-to field exists. If so, the Dispatcher will check

the Pending action queue for a corresponding message. If

one exists, that action will be returned to the Agenda queue

for completion. If no such action exists on the Pending

action queue, an error message is returned to the sender.

3. Features of DECAF

DECAF provides an end-to-end environment for the

execution of agent tasks. It provides an operating

environment, where jobs are entered and executed to

completion without user intervention. Also a set of system

services for ease of software development have been

Paper ID: SEP14149 DOI: 10.21275/SEP14149 1573

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

provided. In order to support the development of agents,

following tools are supplied with DECAF:

 Plan Editor: It is a GUI interface that allows graphic

programming of agent tasks and actions. The Plan Editor

allows editing of features needed to reason about

scheduling activities, representation of message sending,

use of library plans, and control flow logic.

 Middle Agents: These have been developed to support

common multi-agent activities. A middle agent is an agent

that facilitates agent operation while not directly related to

completing a specific task.

 Matchmaker: The Matchmaker agent serves as a “yellow

page service” to assist agents in finding services usual for

task completion.

 Broker: A Broker agent acts as a “white pages” directory

to assist agent with collections of services.

 Proxy: A proxy agent allows web page Java applets to

communicate with DECAF agents that are not located on

the same server as the applet.

 Agent Management Agent (AMA): AMA allows MAS

designers to look at the entire running set of agents spread

out across the internet that share a single agent name

server. This allows designers to query the status of

individual agents and watch message passing traffic.

 Agent Name Server (ANS): The ANS is an essential

component for agent communication. It works in a fashion

similar to DNS server by resolving agent names to host

and port addresses.

4. The DECAF Functions

The DECAF agent architecture implements following five

basic functions[16]:

 Initialization: I(PF) = {TT}

where, the initialization function I takes a plan file PF as

input and produces a set of task templates TT as output. The

set of task templates is a definition of the capabilities of this

particular agent.

 Dispatching -D(M) = O

where, the dispatcher function D takes a KQML message M

as input and produces a new objective O as output. The

message M can be a new request or a response to an old

request

 Planning - P(O,{TT}) = TQ

where, the planning function P takes an objective O and a set

of task templates for that objective {TT} as input and

produces an instantiation of the appropriate task template,

known internally as a task queue object, TQ as output.

 Scheduling - S({TQ}) = {A}

where, the scheduling function S takes a set of task queue

objects TQ as input and produces an agenda A as output.

The agenda is a set of actions to perform. Simultaneously, S

notes when actions have been completed and more actions

can be enabled as a result.

 Execution - E({A}) = {IN}

where, the execution function E takes a set of enabled

actions A as input and produces a set of “intentions” {IN}

as output.

In summary, the set of actions to be executed by DECAF is

denoted by the equation, {IN}=E(S(P(D(M),I({PF}))))

In colloquial terms, an instantiation of the architecture takes

a plan file PF, and waits for a message, M. When the

message arrives, there are three possibilities:

 The message specifies a task that is not in the capabilities

of the plan file. In this case, the action taken is to reply the

sender with an error message.

 The message specifies the start of a new task not

previously requested. In this case, the architecture will

follow each of the steps above and produce a set of actions

to complete the task.

 The message is in response to a message sent to assist in

completion of an ongoing task. In this case, the

dispatching, planning and scheduling functions are skipped

and the content of message is reported to the awaiting task.

5. The DECAF Components

The basic operation of DECAF requires three components:

an agent name server (ANS), an agent program (plan file),

and the agent framework of DECAF itself. The purpose of

the ANS is similar to the most name servers such as DNS

(Domain Name Server) which is used to bind an agent

instance with a name or helps searching an agent instance

based on given name. The agent’s interactions with the ANS

are transparent to the user and occur automatically.

Currently DECAF uses the RETSINA [19] ANS protocol.

The plan file is the output of the Plan Editor and represents

the programming of the agent. One agent consists of a set of

capabilities and a collection of actions that are planned and

executed to achieve the objectives. The basic actions are

implemented in the form of a computer program in C, java,

etc. However, the expression of a plan for providing a

complete capability is achieved via program building blocks

that are not Java statements but are a sequence of actions

connected in a manner that will achieve the goal.

Actions are reusable in any sequence for the achievement of

many goals. Plan annotations can include alternative

subgoals. In the Plan-Editor, a capability is developed using

a HTN tree structure in which the root node expresses the

entry point of this capability “program” and the goal to be

achieved. Non-leaf nodes (other than the root) represent

intermediate goals or compound tasks that must be achieved

before the overall goal is complete. Leaf nodes represent

actions. Each task node (root, non-root and leaves) has a set

of zero or more inputs called provisions, and a set of zero or

more outcomes [8]. The provisions to a node may either be

forwarded from the provisions of a parent task, or come

from the outcomes of different actions. No action will start

until all of its provisions have been supplied by an outcome

being forwarded from another node (this may be an external

node representing some non-local task and the reception of a

KQML or FIPA message[17,18]). Provision arcs between

nodes represent the most common type of inter-task on the

plan specification. A node may have multiple outcomes and

is considered complete as soon as one outcome has been

provided. The outcomes represent a complete classification

or partition of the possible results. By connecting different

node outcomes to different downstream input provisions in

the Plan-Editor, conventional looping or conditional

selection can be created.

Paper ID: SEP14149 DOI: 10.21275/SEP14149 1574

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Conclusion

The DECAF Agent architecture is a general purpose agent

development platform designed specifically to support

concurrency, distributed operations, high level programming

paradigms and high throughput. The architecture is highly

threaded to adapt itself to multi-processor architectures.

DECAF is based on the premise that execution of the actions

required to accomplish a task specified by an agent program

is similar to a traditional operating system executing a

sequence of user requests. It supports programming at the

multi-agent level via the use of several fairly standard

prebuilt middle-agents and generally useful agent classes

such as a web information extraction agent. The architecture

makes much use of modern multi-threading and

multiprocessor machines. It also provides support for

persistent and flexible actions through the ability to program

alternatives that are chosen dynamically at run-time, and

plans with data-flow control based on multiple outcomes and

input provisions allowing looping and other robustness-

enhancing processes.

7. References

[1] Brooks R A, “A Robust Layered Control System for a

Mobile Robot”, Journal of Robotics and Automation

IEEE, 1986.

[2] Decker K S, Pannu A, Sycara K and Williamson,

“Designing Behaviors for Information Agents”, In

Proceedings of the 1st Intl. Conf. on Autonomous

Agents, Marina del Rey, 1997a

[3] Decker K S and Sycara K, “Intelligent Adaptive

Information Agents”, in Journal of Intelligent

Information Systems, 1997.

[4] Decker, K S, Sycara K and Williamson M, “Middle-

Agents for the Internet”, in Proceedings of the Fifteenth

International Joint Conference on Artificial

Intelligence, Nagoya, Japan, 1997b.

[5] Horling B, Lesser V, Vincent R, Bazzan A and Xuan P,

“Diagnosis as an Integral Part of Multi-Agent

Adaptability”, Tech Report CS-TR-99-03, UMass. 1999

[6] Graham J R and Decker K S, “Towards a Distributed,

Environment-Centered Agent Framework”, in: N.

Jennings and Y. Lesp´erance (eds.): Intelligent Agents

VI— Proceedings of the Sixth International Workshop

on Agent Theories, Architectures,and Languages

(ATAL-99Lecture Notes in Artificial Intelligence,

Springer-Verlag, Berlin. 2000

[7] Graham J R, Decker K S and Michael M, “DECAF - A

Flexible Multi Agent System Architecture”, AAMAS-

2001.

[8] Williamson M, Decker K S and Sycara K, “Unified

Information and Control Flow in Hierarchical Task

Networks”, in Proceedings of the AAAI-96 workshop on

Theories of Planning, Action, and Control, 1996b

[9] Graham J R, “Real-time Scheduling in Multi-agent

Systems”, PhD. Thesis, University of Delaware, 2001.

[10] Grosz B and Kraus S, “Collaborative Plans for Group

Activities”, in Proceedings of the Thirteenth

International Joint Conference on A0rtificial

Intelligence, Chamb´ery, France. 1993

[11] Sycara K Decker K S, Pannu A, Williamson M and

Zeng D, “Distributed Intelligent Agents”, IEEE Expert

1996.

[12] Harvey T and Decker K, “Planning Ahead to provide

Scheduler Choice”, in Proc. Of Workshop on

Infrastructure for Scalable Multi-Agent Systems. 5th

International Conference on Autonomous Agents, 2001.

[13] Rao A and Georgeff M, “BDI Agents: From Theory to

Practice”, in Proceedings of the First International

Conference on Multi-Agent Systems, San Francisco,

1995.

[14] Wooldridge M and Jennings N, “Intelligent Agents:

Theory and Practice”, The Knowledge Engineering

Review, AAMAS, 1995.

[15] Cohen P R and Levesque H J, “Intention is Choice with

Commitment”, Artificial Intelligence-1990.

[16] Tim Finin, Yannis L and Mayfield J, DRAFT:KQML as

an agent communication language, Computer Science

Department University of Maryland Baltimore,USA.

[17] FIPA. The Foundation for Intelligent Physical Agents.

At http://www.fipa.org, 2001.

[18] Onn Shehory, “Architectural Properties of MultiAgent

Systems”, The Robotics Institute Carnegie Mellon

University Pittsburgh, Pennsylvania 15213, 1998

Paper ID: SEP14149 DOI: 10.21275/SEP14149 1575

http://www.fipa.org/

