
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Survey for Traffic Engineering in Software Define

Networks

ZAHRAA ALAA BAQER
1
, Mohammed Najm Abdulla

2

1, 2Department of Computer Engineering, University of Technology, Baghdad, Iraq

Abstract: As a result of the development in applications of communication networks with emergence of software define networks

(SDN) decouples the control plane and data plane of the networks. therefore, the traffic engineering (TE)mechanisms is one of the most

important technologies to be within the application layer which optimizing traffic, improve network robustness, and avoid network

congestion. This papers reviews the TE methods for SDNs that exploited data networks depend on several criterial with respect to

continuous update of network configuration in term of achievable network throughput.

Keywords: software define networks (SDN), TE mechanisms, open flow (OF), SDN controller, Mininet, northbound interface(NBI),

southbound interface (SBI)

1. Introduction

Software define networks is an emerging technology and is a

shortcut to the next generation of infrastructure in network

engineering. SDN is a design that means to make systems

coordinated and adaptable. The objective of SDN is to

enhance arrange control by empowering undertakings and

specialist organizations to react rapidly to changing business

necessities. that distinguished by separation control plane

from forwarding data plane in network system[1], and

centralized visibility and network control also network

programmable by external applications as single, logical with

entity and the control plane comprises the controller , the

controller gives a high deliberation dimension of sending

components the board which missing in the present systems.

In this way, the controller is basic segment of the SDNs

design that added achievement or disappointment of SDN ,

the SDN controller are given in [2].the traditional network is

quite different from the SDN network as Figure [1] .SDN

architecture include three layers as shown in Figure [2], that

summarize the SDN architectures in network systems. The

control plan layer contains the controller to manage data

plane layer. The application layer connected to control plane

layer via northbound interface(NBI) or known controller

application interaction to interface between application layer

and SDN controller .The NBI empower regular system

administrations , for example security , TE , routing and

quality of services (QoS) while the forwarding data plan

layer connected to control plane layer via southbound

interface (SBI)(e.g., open-flow protocol)[3] . The open flow

is a protocol between SDN controller and switching devices

that defines an API (application program interface) between

forwarding layer and controller in SDN. The OF protocol[4]

is supported network devices that correspondence between

the control and data planes which access the forwarding data

layer to provide an external application of network devices .

A standout amongst the most generally utilized SDN

empowering agent is the Open-Stream convention. This can

be enables the SDN controller to deal with OF switches. The

OF switches contain flow tables, a group table, and OF

channel as Figure [3]. The flow tables and the group table are

utilized for parcel query and after that to forward the bundles.

The of channel is a reflection layer. It sets up a safe

connection between every one of the switches and the

controller by means of the convention. Table 1 records a

portion of the as of now SDN accessible switches. In this

paper, the idea of TE issues and mechanisms based on SDN

open flow techniques. The rest of the paper surveys some of

the TE techniques, and it is organized as follows: Section 2

describes an overview of TE in SDN and the assimilation

from them. Section 3 describes implementation and testing of

SDN. In Section 4, conclude the paper.

Figure 1: Distinction among the traditional and SDN

 Figure 2: Architecture of SDN

Paper ID: ART20193922 10.21275/ART20193922 1392

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Figure 3: The OF protocol of SDN

Table 1: Switches in SDN

2. Traffic engineering in SDN

The main goal of most applications is to engineer traffic with

the aim of reducing power consumption, maximizing

aggregate network utilization, providing optimized load

balancing, and other generic traffic optimization techniques.

In SDN-based systems the controller can powerfully change

the system state, for instance, in conventional systems the

connection cost for steering conventions, for example, IS-IS

are kept static for a significant lot. On the off chance that

clog occurs in the organize it might prompt poor conveyance

of information till the connection costs are changed or the

issue is settled. In any case, in SDN these qualities can be

changed all the more powerfully to adjust to the changes.

Progressively creative directing system can be actualized, or

the current directing conventions can be altered, with the goal

that they can change powerfully according to organize state

to improve asset use, stay away from disappointment what's

more, clog, and enhancement QoS. To summarize the traffic

engineering techniques in the SDN technology by the

research community as show in table 2. The conduct of the

transmitted data must be management to optimize the

performance of communication networks. The TE used in

past and current as ATM,IP,MPLS networks [5-7]that show

in figure[4] ,and management on important aspects such as

load balance , characteristics of traffic analysis and traffic

management for identify and remove errors from network

systems , checking network covering various aspects of

important network in SDN with data transmitting. When

SDN are effective for TE into existing network and using

algorithm to solving incremental introduce in SDN for TE,

that depend on used Fast Fully Polynomial Time

Approximation Schemes and deployment partial and improve

FPTAS[8].

TE is a vita system application , which reference framework

in SDN [9] that presented on two parts : management and

measurement traffic in SDN .In measurement traffic based on

networks parameters, traffic analysis, generic measurement

and prediction that supported into management traffic to

improve network availability and performance , due to the

framework of management traffic in SDN include load

balance, QoS , energy saving scheduling and management to

hybrid IP-SDN [8].In energy saving for networks by using

some algorithms to improve the TE as use routing algorithm

which are based on SDN environment[10][11] .

QoS parameters to improve the performance of throughput

in SDN and using bandwidth reservation methods[12] for

user based and flow based in Figure[5] to evaluated the

performance in SDN to suitability according to fixed

parameters as in table 3 . Also concentrate on used new

methods to cluster [13] related in the multi-dimensional

traffic ,which can achieve better performance in TE

clustering ,providing good quality routing when some

overlap between clusters and flexibility on routing

configuration based on TE to get optimal routing .

Figure 4: SDN in past and future

Table 2: TE technique in SDN

Technique Description Routing Comments

B4[14]

 It uses a centralized TE, layered on top

of the routing protocols,

 To achieve fairness it allocates

 It uses hashed based ECMP to

balance the load among multiple

links.

 if TE service can be stopped so that

the packets are forwarded using

 short path forwarding mechanism.

Paper ID: ART20193922 10.21275/ART20193922 1393

Comprehensive#_ENREF_10

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

resources

 Using Min-Max fairness technique.

Hedera

[15]

 Detects the elephant-flows at the edge

switches,

 If threshold is met, i.e. 10% of

 Nic bandwidth, the flow is marked as

elephant flow

 Uses periodic pulling, every 5 s.

 Uses the global view of network

 And calculate the better paths,

 Which are non-conflicting, for the

 Elephant flows.

 It achieves 15.4 b/s throughput,

 Achieves better optimal bisection of

bandwidth of network, in

comparison

 To ECMP,

 Periodic pulling can cause high

 Resource utilization in switches.

Devo

Flow[16]

 Detects the elephant-flows at the edge

switches,

 If threshold is met, i.e. 1–10 mb,

 It marks the flow as elephant flow.

 It uses aggressive use of wild Carded

OF rules, and a Static multi-path

routing algorithm to forward the

traffic.

 It can improve throughput up to

 32% in CLOS network.

Mahout

[17]

 Detects the elephant-flows at end host

using a shim layer, the default

 Threshold is 100 k, and then the

 Flow is marked as elephant-flow,

 It uses in-band signaling to inform the

controller about the elephant flows.

 It computes the best path for

Elephant-flow; otherwise it forwards

 Other flows using ecmp,

 It calculates the path that is least

Congested by pulling the Elephant-

flow statistics and link utilization

from switches.

 It can detect elephant flow, if

 Threshold is 100 k, in 1.53 ms,

 It has 16% better bisection than

ECMP.

Micro

TE[18]

 Detect the elephant flows at end host,

 It calculates the mean of traffic matrix

between tor-tor, if the mean and traffic

is between d of each other, default is

20%, then it is predictable.

 Uses short term predictability to

route the traffic on multiple paths,

 The remaining streams are routed by

the EMCP scheme with heuristic

Threshold.

 If traffic is predictable it performs

 Close to optimal performance

otherwise

 It performs like ECMP.

Mice

Trap[19]

 It addresses the mice-flows,

 Uses end-host elephant-flow detection

 To distinguish between mice flows, and

elephant flows.

 It aggregates the mice-flows to

improve scalability,

 It route the mice-flows using a

Weighted multi.

 n/a.

Rethinking

Flow

Classification

in SDN[20]

 It is a tag-based classification,

 Source-edge switch tags the packets

based on the application classes.

 The tag is also an identifier for

matching & forwarding the packets.

 It is 3 ms faster than the of field

matching, • it requires introduction

of new api’s to the data plane.

Atlas[21]

 It classifies each application uniquely.

 It uses C5.0 machine learning tool to

classify the applications,

 It requires user to install agents on their

mobile devices to collect information to

train ML trainer.

 It routes the flow based on

applications, and network

requirements.

 It has about 94% accuracy,

 Requires extension to of.

MSDN-

TE[22]

 It gathers network state information and

considers the actual path’s load to

forward the flows on multiple paths.

 It dynamically selects the best

 Shortest path among the available

paths.

 It has better performance over other

 Forwarding mechanisms such as

 Shortest path first,

 It reduced download time by 48%.

Figure 5: Performance for bandwidth reservation methods

Paper ID: ART20193922 10.21275/ART20193922 1394

Hedera:#_ENREF_15
DevoFlow:#_ENREF_16
Mahout:#_ENREF_17
MicroTE:#_ENREF_18
MiceTrap:#_ENREF_19
Rethinking#_ENREF_20
Application-awareness#_ENREF_21
MSDNTE:#_ENREF_22

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 3: Parameters for user based bandwidth reservation

2.1 Implementation of TE

TE App isn't an inside RYU App; it is a remote Python App

that use the REST API of the RYU controller. RYU

controller is high quality controller for production

environments. As information, it needs an arrangement

document in Json design that portrays the traffic relations,

while the topology and the limit of the connections are

recovered utilizing the REST API of the Topology module

and of the OFCTL module, which give separately the

topology and the speed of the ports. It is created by three

sections: recovery of the information, heuristic calculation,

and establishment of the guidelines. The last advance is

accomplished utilizing the API rest "flowentry/include" of

the OFCTL module, which permits to push governs in the OF

switches as show in Figure [6].

Figure 6: Implementation of TE

2.2 TE algorithm

In the OSHI(Open Source Hybrid IP/SDN) systems, the TE

has been tended to from a specific perspective: we have

understood a heuristic ready to settle with an estimate the

stream task issue[23][24]. the heuristic arrangement is

fundamental on the grounds that the correct arrangement is

computationally unpredictable. Through the stream task, we

can characterize an ideal parcel of the traffic on autonomous

numerous ways. This strategy, adjusting the heap on the

connections, can lessen the postponement experienced on the

joins, subsequently staying away from situations where a few

connections are more over-burden than the other. The stream

task issue moves the streams in the system (the courses

utilized by the streams are the variable of the issue) with the

point of decrease the worldwide intersection time of the

system T, which can be communicated as the entirety of the

deferral experienced on the connections of the system on

account of the consequences of Jackson. Specific conditions

must be expected such Poisson landings, freedom among

entries and takeoffs, and so forth (for further subtleties

see[25]). In these conditions, each connection can be

demonstrated as M/M/1 line, and we can figure effectively

the reaction time of the line. Accepting a M/M/1 line, if the

heap on the connection approaches the limit of the

connection, the normal reaction time goes to limitlessness, so

the stream task moves the traffic in the organize designating

the heap on the other accessible connections and keeping

away from the over-burden in the basic connections.

The heuristic is characterized by three stage:

1) Introduction stage;

2) Compelled Shortest Path First (CSPF) stage, where a first

assignment of the streams is figured it out;

3) Heuristic re-task stage, where we understand the re-

assignments of the streams all together to limit the

intersection time of the system; Amid the instatement

stage, the calculation recovers the information essential

for its legitimate execution, at that point the second stage

begins.

3. Implementation and testing of SDN

As referenced in past segment, numerous switches and

controllers are accessible for actualizing a product

characterized organize. However, there is likewise routes for

testing thoughts in SDN, for example, simulators, emulators

and test-beds.

3.1 SDN Controllers

SDN controllers or network operating system (NOS) can be

classified on centralized or distributed architecture as show

in table 4[26][27][28][29][30][31][32][33] and Controllers can

be ordered dependent on a few qualities as depicted in figure [7].

Figure 7: Classification of SDN controller

Paper ID: ART20193922 10.21275/ART20193922 1395

Maestro:#_ENREF_29

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 4: Classification of SDN-Controllers platforms

3.2 Simulators and emulators

In this section available network simulators and emulators for

SDNs such as Mininet, NS-3 and EstiNet technologies are

described and compared as show in table 5.

 Mininet is a system emulator which makes a system of

virtual hosts, switches, controllers, and connections.

Mininet has run standard Linux arrange programming, and

its switches bolster OF for profoundly adaptable custom

steering and SDN[34]. Mininet is utilized generally in view

of: quick to begin a straightforward system, supporting

custom topologies and bundle sending, running genuine

projects accessible on Linux, running on PCs, servers,

virtual machines, having sharing and recreating capacity,

simple to utilize, being in open source and dynamic

advancement state. Conversely with these focal points,

Mininet has a few weaknesses as well: having inability of

exchanging tremendous measure of information in one

single framework, non-accessible supporting discretionary

OF controllers, supporting only one stage (Linux portion),

doing NAT out of box, having sharing host document

framework and PID space and virtual time idea

nonappearance[35][36].

 NS-3 is a discrete occasion arrange test system which is

suited for specialists and teachers. The NS-3 library is part

crosswise over numerous modules composed under the

modules tab. One of these modules is OF comparable to

SDN. NS-3 has OF Switch Net Device protest acts as a

switch and is OF perfect. This question executes a stream

table for every single got bundle and furthermore an

association with controller simply like SDN architecture.

This test system has these favorable circumstances:

including new conventions, deficiency of separation among

genuine system and reproduced organize, having

reconciliation and adaptable without redoing the center of

test system. NS-3 hindrances are: loss of accessible

models, nonappearance of visual interface for making

topology and obvious capacity in trial level[37][38].

 EstiNet 8.0[39][40] test system and emulator underpins a

large number OF switches. That compatible with Linux

open source network application in SDN. EstiNet network

simulation and emulation for SDN in virtual network

platform. However, this can also use with several OF

controller as RYU, NOX, and POX. Therefore, EstiNet OF

supported the performance of SDN controller in real

application programs. In the copying method of EstiNet,

controllers can keep running up on an outer machine that is

unique in relation to the machine which mimics switches.

Additionally, in this mode usage of the controller as a

devoted equipment gadget utilizing an Ethernet link is

conceivable, coming about remote controlling. Alternate

advantages of utilizing this test system/emulator are:

exactness, briskness, redundancy and versatility.

Table 5: Classification of SDN-simulators/emulators

3.3 Debuggers

As referenced before SDN controller is programmable and

this element expands the likelihood of incidentally blunders.

For the most part, discovering bugs is hard and tedious in this

way debuggers have turned out to be one of the imperative

segments OF on SDN. Debuggers are instruments that are

utilized to test and analyze program and empower software

engineers to interface with program while it is executing on

PC. OF debuggers enable us to follow bundle stream conduct

to check whether the system is working not surprisingly[41].

The fundamental data for troubleshooting is assembled from

stream table, diverse traffic measurements and controller

messages. Some extraordinary instruments were utilized for

investigating reason and checking traffic among controller

and switches utilizing Wireshark combination, which was

expressed as the best methodology[42][43][44][45].

4. Conclusion

In this paper, we presented a survey for one of the most

prominent methods in the application layer which is traffic

engineering (TE) technology in SDN architecture .This can

optimize the performance of networks and resource

utilization, we show how to adaptable the performance of

transmitted data in SDN environment .Therefore which can

be achieved with TE mechanisms and discuss that related

technologies from four aspects including traffic analysis,

fault tolerance, flow management and topology update in

current SDN. This structure can robotize the system

arrangement to accomplish high QoS for the ideal

applications.

References

[1] P. A. Morreale and J. M. Anderson, Software defined

networking: Design and deployment: CRC Press, 2014.

[2] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab,

"SDN controllers: a comparative study," in

Electrotechnical Conference (MELECON), 2016 18th

Mediterranean, 2016, pp. 1-6.

[3] A. Lara, A. Kolasani, and B. Ramamurthy, "Network

innovation using openflow: A survey," IEEE

Paper ID: ART20193922 10.21275/ART20193922 1396

Network#_ENREF_41
Where#_ENREF_42
Veriflow:#_ENREF_43
FlowChecker:#_ENREF_44
Maturing#_ENREF_45

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

communications surveys & tutorials, vol. 16, pp. 493-

512, 2014.

[4] OpenFlow Protocol.

http://www.openflow.org/wp/learnmore/

[5] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou,

"A roadmap for traffic engineering in SDN-OpenFlow

networks," Computer Networks, vol. 71, pp. 1-30, 2014.

[6] B. Fortz, J. Rexford, and M. Thorup, "Traffic

engineering with traditional IP routing protocols," IEEE

communications Magazine, vol. 40, pp. 118-124, 2002.

[7] A. Sánchez-Monge and K. G. Szarkowicz, MPLS in the

SDN Era: O'Reilly Media, 2015.

[8] S. Agarwal, M. Kodialam, and T. Lakshman, "Traffic

engineering in software defined networks," in

INFOCOM, 2013 Proceedings IEEE, 2013, pp. 2211-

2219.

[9] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, et al.,

"Traffic engineering in software-defined networking:

Measurement and management," IEEE Access, vol. 4,

pp. 3246-3256, 2016.

[10] B. N. S. Dr. Mohammed Najm Abdulla1,

"Comprehensive Study on Software Defined Network

for Energy Conservation," International Journal of

Advanced Research in Computer and Communication

Engineering, 2016.

[11] M. N. A. A. S. B. N. Shaker, "Energy Saving Based

Routing Algorithms in SDN Environment," vol. 6, 2017.

[12] A. H. Moravejosharieh, M. J. Watts, and Y. Song,

"Bandwidth Reservation Approach to Improve Quality

of Service in Software-Defined Networking: A

Performance Analysis," in 2018 15th International Joint

Conference on Computer Science and Software

Engineering (JCSSE), 2018, pp. 1-6.

[13] D. Sanvito, I. Filippini, A. Capone, S. Paris, and J.

Leguay, "Adaptive Robust Traffic Engineering in

Software Defined Networks," arXiv preprint

arXiv:1712.05651, 2017.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A.

Singh, et al., "B4: Experience with a globally-deployed

software defined WAN," in ACM SIGCOMM Computer

Communication Review, 2013, pp. 3-14.

[15] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,

and A. Vahdat, “Hedera: Dynamic Flow Scheduling for

Data Center Networks”, in Proc. 7th USENIX Symp. on

Netw. Syst. Design & Implemen. NSDI’10, San Jose,

CA, USA, 2010, vol. 10, pp. 19–19.

[16] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, and S. Banerjee, “DevoFlow: scaling flow

management for highperformance networks”, ACM

SIGCOMM Comp. Commun. Rev., vol. 41, no. 4, pp.

254–265, 2011.

[17] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout:

Low-overhead datacenter traffic management using end-

host-based elephant detection”, in Proc. 30th IEEE Int.

Conf. Comp. Commun. IEEE INFO-COM 2011,

Shanghai, China, 2011, pp. 1629–163.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang,

“MicroTE: Fine grained traffic engineering for data

centers”, in Proc. 7th Conf. on Emerg. Networking

Experim. & Technol. Co-NEXT’11, Tokyo, Japan,

2011, p. 8.

[19] R. Trestian, G.-M. Muntean, and K. Katrinis,

“MiceTrap: Scalable traffic engineering of datacenter

mice flows using OpenFlow”, in IFIP/IEEE Int. Symp.

on Integr. Netw. Managem. IM 2013, Ghent, Belgium,

2013, pp. 904–907.

[20] H. Farhadi and A. Nakao, “Rethinking flow

classification in SDN”, in Proc. IEEE Int. Conf. on

Cloud Engin. IC2E 2014, Boston, MA, USA, 2014, pp.

598–603.

[21] Z. A. Qazi et al., “Application-awareness in SDN”,

ACM SIGCOMM Comp. Commun. Rev., vol. 43, no. 4,

pp. 487–488, 2013.

[22] K. T. Dinh, S. Kukliński, W. Kujawa, and M. Ulaski,

“MSDNTE: Multipath Based Traffic Engineering for

SDN”, in Intelligent Information and Database Systems.

Asian Conference on Intelligent Information and

Database Systems, N. T. Nguyen, B. Trawiński, and R.

Kosala, Eds. Springer, 2016, pp. 630–639.

[23] L. Fratta, M. Gerla, L. Kleinrock, The flow deviation

method: an approach to store-and-forward

communication network design, Network, 3(2):97-133,

1973, John Wiley & Sons

[24] M. Gerla, L. Kleinrock, On the topological design of

distributed computer networks, IEEE Transactions on

Communications, 25(1):48-60, 1977

[25] Jackson network -

http://en.wikipedia.org/wiki/Jackson_network

[26] NOX ,available online:

http://www.noxrepo.org/nox/about-nox/, last

visit:18.10.2014.

[27] POX , available online:

http://www.noxrepo.org/pox/about-pox/, last

visit:18.10.2014

[28] Beacon , available online:

https://openflow.stanford.edu/display/Beacon/Home, last

visit:18.10.2014.

[29] E. Ng, "Maestro: A System for Scalable OpenFlow

Control," available online:

www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf, last

visit:18.10.2014.

[30] Floodlight OpenFlow Controller - Project Floodlight,

available online:

http://www.projectfloodlight.org/floodlight/, last

visit:18.10.2014.

[31] Announcing release of Floodlight with OF 1.3 support,

available online: http://sdnhub.org/releases/floodlight-

plus-openflow13-support/, last visit:18.10.2014.

[32] Ryu 3.9 documentation, available online:

http://ryu.readthedocs.org/en/latest/getting_started.html#

what-s-ryu, last visit:18.10.2014.

[33] Opendaylight. available online:

http://www.opendaylight.org/, last visit:18.10.2014.

[34] Mininet: An Instant Virtual Network on your Laptop (or

other PC), available online: http://mininet.org/, last

visit:18.10.2014.

[35] Introduction to Mininet - mininet/ mininet wiki –

GitHub, available online:

https://github.com/mininet/mininet/wiki/Introduction-to-

Mininet, last visit:18.10.2014.

[36] M. Q. M. N. A. TariqV, "S.D.N IMPLEMENTATION

USING MININET," International Journal Of Core

Engineering & Management, vol. 4, August-2017.

Paper ID: ART20193922 10.21275/ART20193922 1397

http://www.openflow.org/wp/learnmore/
http://en.wikipedia.org/wiki/Jackson_network
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf
http://www.projectfloodlight.org/floodlight/
http://sdnhub.org/releases/floodlight-plus-openflow13-support/
http://sdnhub.org/releases/floodlight-plus-openflow13-support/
http://ryu.readthedocs.org/en/latest/getting_started.html#what-s-ryu
http://ryu.readthedocs.org/en/latest/getting_started.html#what-s-ryu
http://www.opendaylight.org/
http://mininet.org/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[37] ns-3, available online: http://www.nsnam.org/, last

visit:18.10.2014.

[38] ns-3: ns-3 Documentation, available online:

http://www.nsnam.org/docs/release/3.19/doxygen/index.

html, last visit:18.10.2014.

[39] EstiNet Technologies, available online:

http://www.estinet.com/products.php, last

visit:18.10.2014.

[40] S.-Y. Wang, C.-L. Chou, and C.-M. Yang, "EstiNet

openflow network simulator and emulator," IEEE

Communications Magazine, vol. 51, pp. 110-117, 2013.

[41] F. Hu, "Network Innovation through OpenFlow and

SDN: Principles and Design", CRC Press, (2014).

http://dx.doi.org/10.1201/b16521.

[42] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and

N. McKeown, "Where Is The Debugger for My

Software-Defined Network?", Proceedings of the first

workshop on Hot topics in software defined networks,

(2012), pp:55-60, available online:

http://dx.doi.org/10.1145/2342441.2342453, last

visit:17.10.2014.

[43] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey,

"Veriflow: Verifying Network-wide Invariants in Real

Time", ACM SIGCOMM Computer Communication

Review, vol.42, (2012), pp:467-472, available

online:http://dx.doi.org/10.1145/2342441.2342452, last

visit:17.10.2014.

[44] E. Al-Shaer and S. Al-Haj, "FlowChecker: Configuration

Analysis and Verification of Federated OpenFlow

Infrastructures", Proceedings of the 3rd ACM workshop

on Assurable and usable security configuration, (2010),

pp:37-44, available online:

http://dx.doi.org/10.1145/1866898.1866905, last

visit:17.10.2014.

[45] M. Kobayashi, S. Seetharaman, G. Parulkar, G.

Appenzeller, J. Little, J. van Reijendam, et al.,

"Maturing of OpenFlow and Software-Defined

Networking Through Deployments", Computer

Networks, (2013), pp:151–175, available online:

http://dx.doi.org/10.1016/j.bjp.2013.10.011, last

visit:17.10.2014.

Paper ID: ART20193922 10.21275/ART20193922 1398

http://www.nsnam.org/
http://www.nsnam.org/docs/release/3.19/doxygen/index.html
http://www.nsnam.org/docs/release/3.19/doxygen/index.html
http://www.estinet.com/products.php
http://dx.doi.org/10.1201/b16521
http://dx.doi.org/10.1145/2342441.2342453
http://dx.doi.org/10.1145/2342441.2342452
http://dx.doi.org/10.1145/1866898.1866905
http://dx.doi.org/10.1016/j.bjp.2013.10.011

