
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Study of the Precision and Feasibility of Facial

Recognition using OpenCV with Java for a System

of Assistance Control

Rene Cuamatzi Briones
1
, Juan Ramos Ramos

3
, Rodrigo Tlapa González

3
 José Juan Hernández Mora

4

1, 2, 3, 4Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, Fco. I Madero s/n, Barrio de San José, 90300, Tlaxcala México

Abstract: Computer vision is a computational discipline which attempts to emulate human vision and has been done presently in

current systems and applications. Facial recognition is a biometric method that allows identifying different people by means of unique

features that the human eye is simply unable to perceive. Currently, most systems and applications require greater security, the

reliability of use and protection of data, which is why we opt for the use of technologies based on facial recognition as the case of

Google and Facebook, to name a few. This face detection technology is mainly based on visible images and despite being a discipline

with more than 30 years of study, still have certain problems at the implementation time, such as the light under which the images are

captured, the posture, face expressions and the quality with which the device captures the image, among others. However, there is a

wide variety of it tools that allow making improvements in the image and the detection of faces in an easier way; among the most used

are MatLab and Phyton that employ the use of open source libraries as OpenCV in the case of this study, has been opted for the use of

Java in conjunction with OpenCV, Because unlike MatLab, it does not represent economic cost and facilitates the integration of

computer vision algorithms with an assistance control system.

Keywords: Face Recognition, OpenCV, Java, Systems.

1. Introduction

The integration of computer systems with computer vision

Systems has been making present in recent years,

applications such as [3], [4], [6] help the automation and

streamlining of different processes. OpenCV (Open Source

Computer Vision Library) is a library that allows performing

this task, in addition to helping to alleviate the burden of

software development in the computer vision area. It offers a

wealth of image processing functions and algorithms that

focus on real-time image analysis.

These functions are designed to accelerate the process of

developing software for object identification, the

segmentation, Image recognition, facial recognition, gesture

recognition, among other activities [4].

However, it is not currently common to find computer vision

systems developed in the Java programming language

applied to real-world problem-solving. In comparison, it is

more recurrent to locate these applications developed under

the MatLab platform [3], or, the use of additional hardware

that allows the acceleration of the computing process [8],

which requires either obtaining a MATLAB license or

acquiring additional hardware, which also represents an

additional expense to the development of the system. This

gives rise to a wide field of opportunity in the application of

these technologies for the development of new solution

proposals in applications with artificial vision using Java that

unlike the above options offers a free license for the

development of desktop systems that allow the solution of

real-world problems.

Therefore, it is the subject of this study demonstrate the

feasibility of integrating facial recognition algorithms

Offered by OpenCV with an assistance control system

developed in Java, as shown in Figure 1.

The integration of the two systems is proposed. Initially there

is a system of assistance control of the personnel of

government management and on the other hand, a facial

recognition system is integrated by using the OpenCV library

and a webcam, resulting in the Assistance Control System

through Facial recognition (SCARF).

Figure 1: Systems integration methodology OpenCV / Java

2. Facial Recognition in OpenCV

It is important to keep in mind that facial or faces detection is

not the same as facial recognition, since detection only

focuses on locating a face object within an image, while

recognition makes use of the results of the detection and is

responsible for extracting the features that best describe the

image to predict future appearances of the face in different

images.

Through this research is aimed to implement a system that is

capable of detecting, processing and analyzing faces and its

integration with an application of assistance control

developed in Java, specifically for desktop applications.

Paper ID: ART20193871 10.21275/ART20193871 1214

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

OpenCV allows the development on desktop applications

from the 2.4.4 version so you have to be careful at the time of

your selection and installation of this library. This version

currently has three algorithms for face detection, known as

Eigenfaces, Fisherfaces y LBPH (Local Binary patterns

Histograms).

2.1 EigenFaces

Eigenfaces is a facial recognition algorithm based on the

principal component analysis (PCA), developed by the

Massachusetts Institute of Technology (MIT). This algorithm

is used for the features extraction of the face images and is

capable of producing an accuracy of 73% from 3 different

angles of the face [5].

2.2 Fisherfaces

Unlike eigenfaces, this algorithm takes into account how light

is reflected in the face and facial expressions. The accuracy

and performance of this algorithm depend largely on input

data, so, if it is trained only by images with good lighting and

tries to recognize faces in poorly lit scenes, there is a great

possibility that the method finds the wrong components.

2.3 LBPH (Local Binary Patterns Histograms)

Binary local patterns (LBP) are a simple but highly efficient

texture operator that labels the pixels of an image by the

neighborhood threshold of each pixel and considers the result

to be a binary number. LBP offers very good results in terms

of the speed and performance of discrimination, as well as in

different lighting conditions [6]. Thus, the main idea of the

LBP is not to look at the whole image as a high-dimensional

vector, but to describe only the local characteristics of an

object and summarize the local structure in an image. The

result of this process can now be divided into N number of

local regions of the type (grid x * Grid y), allowing the

possibility of generating a histogram of each one of them.

These histograms are known as LBPH.

3. Implementation

3.1 General Description

The diagram in Figure 2 shows the process performed by the

Facial recognition system and the connection that allows

communication with the assistance control system.

Initially, there is the facial recognition system which consists

of three different modules. The first one allows the collection

of samples (pre-processed photographs); these images

correspond only to the face (region of interest) of the

personnel from which the management of their assistance is

required. It is important to mention that each and every image

is labeled and stored in a folder with the name "faces" within

the local System folder with a unique ID, that in the case of

this study corresponds to the control number of each

employee who in turn, that label, is stored in a database

related to the information of the workers. Once all the desired

samples have been collected (n number of employees), the

training module can be used.

The training module performs the processing of the image

and its features extraction, from the Faces folder that is

created in the Sample collection module. Working with the

OpenCV library requires the use of the format that the library

itself requires. So the objective of this module is to get a file

with the extension. YML, which is an efficient data

serialization document and can be read by any plain text

editor developed to create, open, and edit plain text files.

This file has the name of FEATURES.YML and contains the

socialization of the features vectors of each image in relation

to the ID that is stored, both in the database and on the label

of each of the images stored in the "Faces" folder.

Figure 2: General diagram of the facial recognition system.

The third module belongs to the recognition and validation of

the face. That is, on the one hand, the procedure is made to

recognize a face in the video captured by the webcam, and on

the other is verified that the features of this coincide with

those of some of the vectors stored in the file

FEATURES.YML, However, it is very likely that the facial

features, face position, and stage lighting obtained during the

training process are completely different from those of

recognition, so it is sought to find the most approximate

vector and not an exact one initially captured.

3.2 Detection Process OpenCV /Java

OpenCV initializes the webcam in video recorder mode,

although it is not the objective to perform the recognition of

faces on video, it is required that the camera is active for a

long period since its application will be for a set of people

who make its registration In and out consecutively in your

working stay and there can be no place to stop the execution

of the camera. An event will then capture the images in real

time. In the case of this study, 20 captures of the face

identified in the video are obtained from four different

profiles per person. It is important to remark that the

captured images only take the region of interest (ROI), in this

case, it is of interest only the face, so it is used the use of an

algorithm for facial detection.

Paper ID: ART20193871 10.21275/ART20193871 1215

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

OpenCV contains pre-trained classifiers for face, eyes,

smiles, among others. These classifiers are hosted in XML

files within the OpenCV installation folder. To work on them

in the Java environment, first, it is necessary to load the

required XML classifiers since in this study it is intended the

facial detection so it makes use of the file

"Haarcascade_frontalface. XML ".

3.3 Image Capture

Initially, the webcam has an HD resolution of 1280 X 720

pixels, which is equivalent to a matrix of 921.600 pixels for

each of the photos. If you consider the 20 images required for

each person's profile training, you would have to analyze

18,432,000 pixels for each 1 of 4 face profiles per person,

creating an excessive and unnecessary load of processing for

the computer.

As a solution, OpenCV has as a basis the use of the algorithm

of Paul Viola and Michael J. Jones, where they introduce the

concept of the integral image, described in [7]. Thus, no

matter how large the image to be processed, the calculations

are reduced for each of them, giving rise to an extremely fast

facial detector that allows the promise to achieve practical

and reliable applications. Once the ROI is detected, it must

be tagged and stored. However, in order to have better

computational performance, the images are processed before

their storage. It begins by resizing them to a smaller scale

(125 x 150 pixels) and they pass from the space of RGB

color to grayscale, in addition to being improved by the

equalization of their histogram.

In the same way, each image requires a label or ID that

allows its later identification since the objective of the system

is the management of the personnel through his face. Thus, it

takes advantage of the unique control number with which

they count in the registry of the assistance control system to

be used like that label of each image and stored in the folder

"faces" described above.

3.4 Features

Subsequently, the LBPH is used to form features vectors that

best describe each image. This is done using the images

contained in the "Faces" folder. For each of them, their local

binary patterns are obtained and placed in a new matrix (see

fig. 3.1). To perform this procedure is used the "Circular

LBP", which allows modifying two key parameters in the

generation of LBP´s. Figure 3.1 shows a graphical

representation of these factors. The first is the neighbors that

correspond to the set of pixels that are taken into account as

part of a neighborhood, these can be 4 or 8. The second is a

variable radius that corresponds to the distance of the central

pixel of a matrix with respect to the coordinates of the pixels

that formed part of the vicinity. The variation of the selection

of this neighborhood allows capturing finer details in the

images. However, it should be taken into account that a

larger neighborhood or radius requires a greater number of

calculations, and thus has a higher demand for processing.

Because the algorithms must offer a real-time response, this

must be relatively fast. That is why in the case of this work

has chosen to use a neighborhood of 8 pixels and a radius

equal to 1, avoiding an additional calculation to calculate the

coordinates of the pixels corresponding to a radius greater

than or equal to 2.

Figure 3: Circular LBP

Figure 3.1: LBP process

Once obtained all the LBP of the resulting image is divided

into 64 grids, 8 corresponding to the X-axis and 8 to the Y.

As with the neighborhood and the radius, a too high value of

grids provides better descriptors but raises processing time.

Finally, the resulting regions are represented by histograms

and those same are concatenated to obtain a single vector.

Assuming that each histogram represents values from 0 to

255 (possible values of a grayscale image) the final vector

will contain 16.384 values. That is to say, 64 histograms

concatenated with 256 values in each one of them.

3.4.1 Storage of Features

At the end of the construction of the vector of characteristics,

this must be stored in a specific format. OpenCV uses the

management of YML files so the vectors of each image will

be saved and serialized with their corresponding

identification number. i.e., for each processed image a new

vector is added to the file features.YML and parallel a vector

with the identifier of each image, in order to maintain the

relationship of both parties and quick access to any vector

regardless of their position within the file. Another important

point is the time required for the execution of this task since

this is relative to the number of people who want to register

and the number of samples obtained in the first phase.

because the number of workers is considerably high, this

function has been isolated from the main tasks of the system,

such as the execution of the webcam, and it is recommended

that their execution be at the end of the entry or exit log of

the workers (period in which not required to use the camera).

3.5 Facial Detection

The third and last module integrated to the system

corresponds to the detection itself, and it has as purpose to be

incorporated into the system to carry control of the entries

and exits of the registered personnel. This algorithm is very

similar to the one described above with the exception that the

Paper ID: ART20193871 10.21275/ART20193871 1216

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 12, December 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

vector obtained during this stage is not stored, but it is

compared with those existing in the file "features.YML"

calculating their Euclidean distance. The vector with which

the shortest distance is obtained is considered to be the best

candidate or the most related. As mentioned in 3.4.1, each

vector is related to a unique ID that labels each image and is

this identifier that interests, since that value is stored and

related to the records of each employee in the system

database.

4. Results

Tests have been developed for the same group of personnel.

However, there is a variation of 50% of the number of

samples per person and are taken from 4 different profiles.

This in order to predict the time required for the operation of

the system with a certain number of records.

Table 1: Performed times
Images

collection

Profiles

samples

Persons Train

process time

Load

data time

Recognition

time

2400 4 X 20 30 47.36 secs 22.98

secs

[0.97 - 1.69]

secs

1200 4 X 10 30 28.38 secs 11.09

secs

[.72 – 1.21]

secs

It can be observed that the training time for the 2400 samples

is less than twice the time occupied to train 1200. On the

other hand, before making use of the system, this like another

system, you must load the necessary data during the booting

of the same one. Just at that time where it has been

determined to release the execution of the method that is

responsible for loading the data in the YML. Thus, as shown

in the same table 1, there is a delay during the system boot

time with respect to the size of the image collection,

however, it is compensated for the time required for the

recognition process, oscillating between 1 and 2 seconds.

In conclusion, the results show that it is reliable for the

development of computer systems with artificial vision using

Java in conjunction with the OpenCV library. Because you

can get good results with respect to the runtime.

5. Future Works

This development is the basis for the construction of

subsequent Java applications in integration with computer

vision, providing solutions to real-world problems and

meeting the needs of the governmental and business spheres.

Cloud connectivity and system migration to a mobile

platform is undoubtedly the primary pointers to future

deployments. The use of the language in which it was

developed (Java), and the achievement in the adaptation of

mobile operating systems, promise an evolution pertinent to

the present research work.

References

[1] H. Lee, F. Peng, X. Lee, H. Dai, and Y. Zhu, "Research

on face detection under different lighting," 2018 IEEE

International Conference on Applied System Invention

(ICASI), Chiba, 2018, pp. 1145-1148.

[2] Y. Derhalli, M. Nufal, and T. AlSharabati, "Face

detection using boosting and histogram normalization,"

2015 9th Jordanian International Electrical and

Electronics Engineering Conference (JIEEEC), Amman,

2015, pp. 1-6.

[3] Khushi, "Smart Control of Traffic Light System using

Image Processing," 2017 International Conference on

Current Trends in Computer, Electrical, Electronics and

Communication (CTCEEC), Mysore, India, 2017, pp.

99-103.

[4] Z. Chaczko, L. A. Yeoh and V. Mahadevan, "A

Preliminary Investigation on Computer Vision for

Telemedicine Systems Using OpenCV," 2010 Second

International Conference on Machine Learning and

Computing, Bangalore, 2010, pp. 42-46.

[5] E. B. Putranto, P. A. Situmorang, and A. S. Girsang,

"Face recognition using eigenface with naive Bayes,"

2016 11th International Conference on Knowledge,

Information and Creativity Support Systems (KICSS),

Yogyakarta, 2016, pp. 1-4.

[6] R. Samet and M. Tanriverdi, "Face Recognition-Based

Mobile Automatic Classroom Attendance Management

System," 2017 International Conference on Cyberworlds

(CW), Chester, 2017, pp. 253-256.

[7] P. Viola and M. Jones, "Rapid object detection using a

boosted cascade of simple features," Proceedings of the

2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, Kauai, HI,

USA, 2001, pp. I-I.

[8] L. Schaffer, Z. Kincses and S. Pletl, "FPGA-based low-

cost real-time face recognition," 2017 IEEE 15th

International Symposium on Intelligent Systems and

Informatics (SISY), Subotica, 2017, pp. 000035-000038.

Author Profile

Rene Cuamatzi Briones has a degree in Computer

Engineering from the Universidad Autónoma de

Tlaxcala, from 2017. He is currently studying the

masters in computer systems in software engineering

from the Instituto Tecnológico de Apizaco.

Juan Ramos Ramos has a degree in Computer Science

from the Instituto Tecnológico de Apizaco, from 1993.

He is also a Master in Computer Science and

Telecommunications from the Instituto de Estudios

Universitarios, A.C.; he works as a full-time professor at the

Instituto Tecnológico de Apizaco in the area of Systems and

Computing, teaching at the undergraduate and postgraduate level,

in the areas of programming and software engineering.

Rodrigo Tlapa Gonzalez has a degree in Computer Engineering

from the Universidad Autónoma de Tlaxcala, from 2015. He is

currently studying the masters in computer systems in software

engineering from the Instituto Tecnológico de Apizaco.

José Juan Hernández Mora has a degree in Computer

engineer from the Universidad Autónoma de Tlaxcala,

from 1994. Master in Computer science at the National

Center for Research and Technological Development

of the TecNM, 2003. Research professor at the

Tecnológico de Apizaco del TecNM. Teacher of the Master of

computer systems of the Instituto Tecnológico de Apizaco.

Paper ID: ART20193871 10.21275/ART20193871 1217

