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Abstract: The existence, uniqueness and convergence properties of extrapolated cubic spline  

 

1. Introduction 
 

It has been observed that piecewise polynomials functions 

which satisfy a less stringent smoothness requirement than 

the maximum non trivial smoothness have also some 

interesting and useful properties (see Schumaker [9]). Spline 

interpolation is preferred over polynomial interpolation 

because the interpolation error can be made small even when 

using low degree polynomials for the spline. Spline 

interpolation avoids the problem of Runge’s phenomenon, 

which occurs when the interpolating uses high degree 

polynomials [2].An important development in this direction 

and Schumaker [5] (See also Dubey [3], [4], [5] Rana and 

Dubey [8], Malcolm [7], Demkos [2], and Dikshit and Rana 

[6]). It is mentioned that continuous cubic spline may be 

used as a limiting case of the discrete cubic spline. In fact 

the defining condition for discrete cubic spline involves in 

some sense a certain process of extrapolation. We use this 

approach here for defining extrapolated deficient cubic 

splines. The class of all piecewise polynomial functions si of 

degree 3 or less which satisfy the condition, 

 ,0)()( 1  jhxss iii  i = 1,2,.....n,   (1.1) 

 for h > 0 and j = 0, 1 defines the class ),,3( hPS  of 

extrapolated deficient cubic splines. To be more specific we 

denote the elements of ),,3( hPS  by 
hs . It may be 

mentioned that condition (1.1) is less stringent the 

corresponding condition used for defining discrete cubic 

splines. We shall study in the present paper existence, 

uniqueness and convergence property of extrapolated cubic 

spline with multiple knots which interpolate a given function 

at two points of a general choice of set of points interior to 

each mesh interval which includes some earlier results in 

this direction of particular choice. 

 We set for convenience 

 iii pxu )3/1(1    and 

 iii pxv )3/2(1    for i = 1,2,.....n 

where (1/3) and 2/3 are real numbers and pi is the length of 

mesh interval [xi-1, xi] for the mesh P of [0, 1] given by 

1........0: 10  nxxxP  and 

i
i

i
i

pppp min',max  .  

We propose to study the following: 

 

Problem 1.1. Given functional values )}({ iuf  and 

)}({ ivf , to find the condition on   and p which lead to a 

unique extrapolated deficient cubic splines satisfying the 

following interpolatory conditions : 

)()( ii

h ufus     (1.2) 

)()( ii

h vfvs     (1.3) 

for i = 1,2,......n 

 

2. Existence and Uniqueness 
 

In order to answer the problem 1.1, we set for convenience 

)()()()( 1 iiii vxuxxxxR   , 

)()()()( iiii vxuxxxxQ  , 

2

1 )()(),( iii uxxxuxR    

2)()(),( iii vxxxvxQ  . 

)(xRi  with the factor )( 1 ixx  replaced by 

)( ixx  define )(xQi ., we state the following equations 

which will be useful, 

)32()3()()3/1()( hphphphxR iiiii   

)32()3()3/1()( hphphhxQ iiii   

2)32())(9/4(),( hphpuhxR iiii   

and .)3()9/1(),( 2hphvhxQ iii   

We shall answer the problem 1.1 in the following. 

 

Theorem 2.1. Suppose that f is 1 periodic and p' is such 

that for hpih 3')(0   or (ii)  ip is a non increasing 

sequence with ,' hp  i=1,2,.....n holds then there exist a 

unique 1 periodic spline ),,3( hPSsh which satisfies the 

interpolatory condition (1.2) and (1.3)  

 

Proof of Theorem 2.1. It is clear that ),,3( hPSs h then 

we may write  

),(),()()()( vxQDuxRCxRBxAQxS iiii

h

i   (2.1) 

where A, B, C and D are constants to be determined. 

27/2)( 3

ii Dpuf      (2.2) 

and 27/)( 3

ii PCvf      (2.3) 

If we now set ),()( hNxs ii

h   i = 0,1,2,.....n and use (2.2) 

and (2.3), then we have from (2.1).  

/)()27/2()3/2()( 3

iii vfBPhN    (2.4) 

and ])([3)( 3

1 iii ufAPhN    (2.5) 
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Thus in view of (2.2) - (2.5) we see that for the interval 

],[ 1 ii xx 
, 

)()()([)9/1()()81/2( 1

3 hNxQhNxRxsp iiii

h

ii   

)]()3/2(),()3/1[()()],()3/1()()3/2[()( xRuxRvfvxQxQuf iiiiii  . (2.6) 

Now it follows from (2.6) and (1.1) with j=1 that 

]),()(),()[()(),( 3

11

3

11

3

1 iiiiiiiii phpLhpphpLhphNphpLh    

),3/1()(),()( 1

3

1 hFhNphpLhhN iiiii    (2.7) 

where  )())3/2()())3/1()(),3/1()3/1( 11111

3

  iiiiiii ufhpvfhphpphhF  

 

 )())3/1()())3/2()(3

1 iiiiii ufhpvfhphpph    

and 

))3/1())3/1(),( jhpjhpjhPL iii    

for all i = j = 1, -1. 

 

In order to prove theorem 1.2, it is sufficient to show that the 

system of equation (2.7) for i=1,2,....,n has a unique set of 

solutions. Clearly the coefficients of )(1 hN i  is non-

negative. Further in view of the condition (ii) of theorem 2.1 

as ,1/1  ii pp  we observe that the coefficients of 

)(hN i is non-positive and the absolute value of the 

coefficient of )(1 hN i is 

))3/2())3/1(),(|),(| 3

1

3

1 hphPhphPLhPhPLh iiiiii    

 

Thus, the excess of the positive value of the coefficient of 

)(hN i over the sum of the positive value of the coefficients 

of )(1 hN i  and )(1 hN i  in (2.7) is less than 

 )3()()( 2

11

2

1 hpphpppphhb iiiiiii    which 

is clearly positive under the condition (i) or (ii) of Theorem 

2.1. We thus conclude that the coefficient matrix of the 

system of equation (2.7) is diagonally dominant and hence 

invertible. This, completes the proof of Theorem 2.1. 

 

3. Error Bounds 
 

In this section of the present paper, we should estimate the 

bounds for the error function ,fse h  where 
hs is the 

interpolaotry spline of Theorem 2.1. For convenience we 

assume in this section of this paper, that the mesh points are 

equidistant, so that 

,ppi   i = 0, 1,.....n. 

We now introduce function 
)(rt which is the same as 

)()( rhs . At the mesh points the function ,)(rt r=1,2,..... is 

defined by 

 i

rh

ii

r xsxt )()( )()(  , i = 0,1,....n. (3.1) 

It is of course clear that since ]1,0[Csh   

Using the foregoing notation of ),()( xt r
 we shall prove the 

following. 

 

Theorem 3.1. Suppose that f" exist in [0,1] then for 

interpolatory spline 
hs of theorem 2.1 we have 

)"()3/1,())}3/2{(||)()(|| 2)()( pfwhKpxft rrr   

for r=0,1,2,...... (3.2) 

where )3/1,(hK is a positive function of h and 1/3 

 

Proof of Theorem 3.1. It may be observed that the system 

of equations (2.7) may be written as 

)()()( hFhNhA  ,    (3.3) 

where A(h) is the coefficient matrix having non zero element 

in each row. 

N(h)= (Ni(h)) and F(h) denotes the single column matrix 

)).,3/1(( hFi  In view of the diagonal dominant property of 

A(h) (See Ahlberg, Nilson and Walsle [1]). It may be seen 

that 

)(||)(|| 1 hahA 
   (3.4) 

where 
14 )}(2{)(  hpphha  

We rewrite the equation (3.3) to obtain  

iiii fhAhFfhNhA )(),3/1())(()(       (3.5) 

 

We first proceed to estimate the right hand side of (3.5). 

Applying the Taylor's theorem appropriately we observe that 

the 
thi  row of the right hand side of appearing in (3.5) is 

(3/2)

 

)}())27/2()(")3/1)(9/4{)[( 11

5

  i

n

i fhpfhphpph   

)}]("))27/4()(")3/2()9/1{)( ii fhpfhphp    

)]("))(3/2())3/1()(")3/2())3/1[( 1

5

 ii fhphpzfhphpph   

 

where iii z,, and ],[ 1 iii xx  for all i. Now using 

(3.4) and adjusting suitably the terms of right hand side of 

(3.5), we have 

),()3/1,(||))((|| 1

2 pfwlKpfhN n

ii       (3.6) 

 

where  

)1()3/1(/)3/4)3/5(9/4()3/1,( 2 dhddlK i   

with hpd / . Observing that 

hpxQxR iiii  )(2)( ""
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phvxQ ii )3/1(),("   and 

puxR ii )3/14(),("  , we have from (2.6) 

 )(")()()27/2( "2

ii

h

i xfxsp  , 

)()])(())((2[)3/2( 11 fGfhNfhN iiiii  
 (3.7) 

where iiii fufuffG )3/4()()3/10()()3/98)(   

 )(")27/2()3/2( 2

1 ii xfpf   . 

By an appropriate application of Taylor's theorem, we have 

)(")27/5()()27/16[()( 2

ii

n

i ffpfG    

)](")9/2()(")3/1( ii xff    

where ],[,, 1 iiiii xx   for all i. Again adjusting 

suitably the terms of ),( fGi
we get  

),"()27/34(||)(|| 2 pfwpfGi  . (3.8) 

 

Then using (3.6) and (3.8), we have from (3.7) 

),"()3/1,(||))(")((|| 2

" pfwhKxfs i

h

i   

where  9)3/1,(9)3/1,( 12  lKhK  

 "h

is  is piecewise linear, so that for ].,[ 1 ii xx   (3.9) 

)()"( xsp h

i  

       )()( 1

"

1

"

  ii

h

iii

h

i xxxsxxxs  (3.10) 

and hence, 

     )()()()()()()"( 1

"

11

""

i

h

ii

h

ii

h

i xsxsxxxfsp  

   ""

1

"

11

"

1 )()()()()()( ii

h

iiii

h

ii fxsxxfxsxx  
 

))(()()(()( "

1

"

1 xffxxxffxx n

ii

n

ii   . 

 

Thus,     ||)()()(||)()(|| 1

"

1

"""

 i

h

i

h

i

h

i xssxfs  

   ),"(||))"((|| " pfwxfs i

h

i  . (3.11) 

Next, we see that 

,)()(2 1

"

1

" hpxQxR iiii    

phuxR ii )3/1(),( 1

"  and pvxQ ii )3/14()( 1

"   

 

So in view of (2.6), we have 

 )()(2

3/2)()()(27/2(

1

1

"2

hNhN

xSp

ii

i

h

i








 

)()3/8()()3/10( ii vfuf   

and    )()(2)3/2()()81/2( 1

"2 hNhNixsp ii

h

i   

)()3/10()()3/8( ii vfuf  . 

Thus, 

 )())"()(()27/2( 11

"2

 i

h

i

h

i xssp  

    )(])()()3/2( 22 fVfhNfhN iiiii    (3.12) 

where  

   )()()3/8()()()3/10()( 11   iiiii ufvfufvffV  

 ii ff  2)3/1( . 

 

Again using the Taylor's theorem appropriately, we see that, 

),(.)9/82(||)(|| "2 pfwpfVi   (3.13) 

and therefore, using (3.6) and (3.13), we have from (3.12) 

),()3/1,(||)()()((|| "

31

"

1 pfwhKxss ii

h

i    (3.14) 

where  9/85,(18)3/1,( 13 hKhK  . 

Thus, combining (3.9), (3.11) and (3.14), we get 

),,()3/1,()0,(1(||)())((|| "

32

" pfwhKhKxfs th

i 

 

(3.15) 

which proves the result of Theorem 3.1 for r=2, 

with )3/1,()3/1,(1)3/1,( 32 hKhKhK  . 

 

Next, we observe that in view of the interpolatory condition 

(1.2) and (1.3), there exist a point ),( iii vut  s.t. 

.0)()')'(  i

h

i tfs  

Thus, for any  ii xxx ,1  

 

x

Q
i

i

dqqftxft ))("(max||)()'(|| )2()1(
 

||)()"(|| )2(* qftp  , (3.16) 

which along with (3.15) gives the result of Theorem 3.1 for 

r=1. 

Since 0)()( )0(  iuft  

we finally get 

||)()(|| )0( xft    
x

ui i

dqft 2

)1( )()'(max  

.||)()'(||)3/2( )1( qftp   (3.17) 

This completes the proof of Theorem 3.1. 

 

4. Difference between Two Extrapolated 

Splines 
 

Considering two values vu, of h, we propose to compare in 

this section two extrapolated cubic splines in the classes 

S ),,3( uP  and S ),,3( vP  which are the interpolant of 

Theorem 2.1. 

 

In this section, we shall prove the following : 

 

Theorem 4.1. Suppose 
hs is 1 periodic spline of Theorem 

2.1 interpolating to the periodic function f. Then, for 

0,  vuh , 

||)(||),,3/1(||2||)()(|| 1 uAvuKuvxss vu   (4.1) 

where ),,3/1( vuK is a positive function which depends on 

u and v. 

 

Proof of Theorem 4.1. For any function g, we define, the 

operation vu , by )()(, vguggvu   and for 

convenience, we write   for vu , . 

 

Thus, we see that (2.6) imples 
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1

3 )()()()()9/2(  iiii

v

i

u

i NAxQNxRxssp  . 

(4.2) 

 

Rewrite the equation (3.3) for h=u and h=v, respectively, we 

assume at the following equality. 

AvNFNuA  )()(  . (4.3) 

 

Further, in view of (3.4), we have  
1})(2{||)(||  ny pupuuA . (4.4) 

 

Next we observe that the matrix 
A  has at the most three 

non-zero elements. Thus, substractly the matrix A(u) from 

A(v), we see that 

.||2|||| 5puvA   (4.5) 

 

Also, we observe that 

||)(||.||)(||)}}(|| 1 vFvAvN  . (4.6) 

 

Further, we have 

),()2(6)(3(|||||||| 3222 pfwpuvuvuvppuvF 

 

(4.7) 

 

Thus, combining (4.3) - (4.7), we have  

||)(||),,3/1(|||||||| 1 uAvuKuvN  , (4.8) 

 

where ),,3/1( vuK is a operator function which depends 

on u and v. 

Finally, in view of (4.2) and observing that  
3)2/3(|)(|max pxRi

i
 , (4.9) 

This is, complete the proof of theorem 4.1. 

 

5. Results and Discussion 
 

The existence, uniqueness and convergence properties of 

extrapolated cubic spline We have take different 

interpolatory and boundary conditions to construct cubic 

polynomial and find error bounds for cubic spline. 
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