Performance and Emission Characteristics of Hongebiodiesel Fueled CI Engine by using Taguchi Method

Shreyas .V¹, Lohith .N²

¹M.Tech Student, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

²Assistant Professor, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India

Abstract: The process parameters optimization is the essential step in Taguchi approach, which utilizes orthogonal array for maximizing the effect of controllable parameters and for minimizing the effect of uncontrollable process parameters. This study presents optimal parameters that influences on the BP, BSFC, CO, HC, NOx using Taguchi method. The 3 level 4 factor design has been considered they are Torque, Injection pressure, Timing, Fuel. The L9 orthogonal array is employed and signal-noise ratio (S/N ratio). Larger is better type is employed for BP and smaller is better type has been employed for BSFC, CO, HC, NOx and analysis of variance, (ANOVA) are considered for identifying the best optimum conditions.

Keywords: BP, BSFC, CO, HC, NOx, Torque, Injection pressure, Fuel, Timing and ANOVA, Taguchi approach

1. Introduction

Performance parameters and the emission characteristics of the CI engine has been considered and here 3 level 4 factors design has been considered in the taguchi analysis. Taguchi analysis has made to know which factors influence more on the emission and the performance parameters. Anova is made to know about the error in the performance. Taguchi has used to make the calculations simpler for more parameters.

Taguchi Experiment: Design and Analysis

The simulation tests were carried out as per the standard L9 orthogonal array. The various factors taken for the calculation were Torque, Injection pressure, Fuel and Timings. Each factor was provided with three levels as displayed in Table 1.

 Table 1: Factors and level for Emission and Combustion characteristics

Factors	Level 1	Level 2	Level 3
Torque	6.5	13	19.5
Injection pressure	200	250	300
Fuel	0*	10**	20***
Timings	16 (RTD)	21 (STD)	26 (ADV)

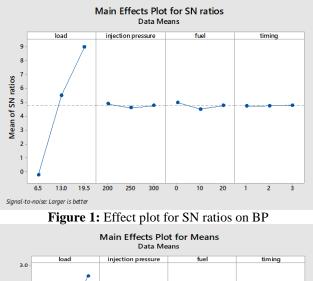
*= Neat diesel

**= 10% biodiesel

***= 20% biodiesel

 Table 2: Orthogonal array of Taguchi and Signal to noise

 ratio for BP


Torque	Injection pressure	Fuel	Timing	BP	SNRA1
6.5	200	0	16	0.978	-0.19322
6.5	250	10	21	0.908	-0.83828
6.5	300	20	26	0.978	-0.19322
13.0	200	10	26	1.871	5.44148
13.0	250	20	16	1.943	5.76946
13.0	300	0	21	1.924	5.68410
19.5	200	20	21	2.841	9.06942
19.5	250	0	26	2.839	9.06331
19.5	300	10	16	2.692	8.60150

The high S/N ratio gives the optimal quality and has low variance using the MINITAB software. Larger is better type has chosen and the similar response was used for signal to noise ratio. It shows that for higher torque value the SN ratio is higher i.e for higher torque the value of BP is higher.

The S/N ratio is analyzed by using the equation

$$s/N = -10 \log_{10}(\frac{1}{n}\sum 1/y^2)$$

Result and discussion for BP

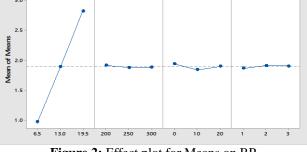


Figure 2: Effect plot for Means on BP

Volume 7 Issue 12, December 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Table 3: Response for BP

 Response Table for Signal to Noise Ratios

Larger is better							
Level	Torque	Injection	Fuel	Time			
		pressure					
1	0.3438	4.7726	1.9425	3.8656			
2	3.7370	3.6506	3.5413	2.7437			
3	7.0369	2.0069	4.9463	3.8207			
Delta	7.3807	2.7657	3.0038	1.1219			
Rank	1	3	2	4			
	Respo	onse Table for N	A eans				
Level	Torque	Injection	Fuel	Time			
		pressure					
1	0.9620	1.8967	1.3260	1.6403			
2	1.6047	1.6170	1.5930	1.5830			
3	2.2803	1.3333	1.9280	1.6237			
Delta	1.3183	.5633	0.6020	0.0573			
Rank	1	3	2	4			

Analysis of variance (ANOVA)

It can observed from the ANOVA analysis that the torque(71.74%), injection pressure(13.096%) and fuel(15.016%) have the influence on BP. The last column of table shows the percentage contribution of each parameter on the total variation representing their degree of impact on the result. The Torque (71.74%) and the fuel (15.016%) has the greatest influence on the BP while the injection pressure has the least influence on the BP.

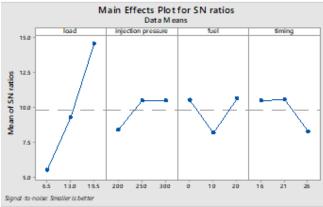
Analysis of Variance

Analysis of variance							
Source	DF	Adj SS	Adj MS	F-Value	P-Value	% Contribution	
Torque	2	2.60755	1.30377	499.66	0.02	71.74	
Injection pressure	2	0.47602	0.23801	91.22	0.011	13.096	
Fuel	2	0.54592	0.27296	104.61	0.009	15.016	
Error	2	0.00522	0.00261			0.1436	
Total	8	3.63471				100	

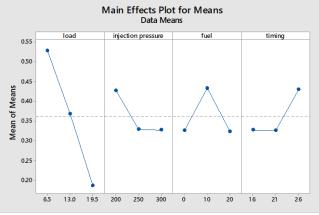
It can observed from the ANOVA analysis that the torque, injection pressure and fuel have the influence on B. The last column of table shows the percentage contribution of each parameter on the total variation representing their degree of impact on the result. The Torque and the injection pressure has the greatest influence on the BP while the fuel has the least influence on the BP.

 Table 4: Orthogonal array of Taguchi and Signal to noise

 ratio for BSFC


Torque	Injection pressure	Fuel	Timing	BSFC	SNRA1				
6.5	200	0	16	0.5265	5.5720				
6.5	250	10	21	0.5339	5.4508				
6.5	300	20	26	0.5261	5.5786				
13.0	200	10	26	0.5751	4.8051				
13.0	250	20	16	0.2649	11.5384				
13.0	300	0	21	0.2653	11.5253				
19.5	200	20	21	0.1812	14.8368				
19.5	250	0	26	0.1883	14.5030				
19.5	300	10	16	0.1912	14.3702				

The high S/N ratio gives the optimal quality and has low variance using the MINITAB software. Smaller is better type has chosen and the similar response was used for signal to noise ratio. It shows that for 13 torque value the SN ratio is smaller i.e for 13 torque the value of BSFC is lower.


The S/N ratio is analyzed by using the equation

$$s_{N} = -10 \log_{10}(\frac{1}{n}\sum 1/y^{2})$$

Result and discussion for BSFC

Effect plot for SN ratios on BSFC

Effect plot for means on BSFC

Response for DSFC									
Response Table for Signal to Noise Ratios									
	Smaller is better								
Level	Torque	Injection pressure	Fuel	Timing					
1	5.534	8.405	10.533	10.494					
2	9.290	10.497	8.209	10.604					
3	14.570	10.491	10.651	8.296					
Delta	9.036	2.093	2.443	2.309					
Rank	1	4	2	3					
		Response for Mean	s						
Level	Torque	Injection pressure	Fuel	Timing					
1	0.5288	0.4276	0.3267	0.3275					
2	0.3684	0.3290	0.4334	0.3268					
3	0.1869	0.3275	0.3241	0.4298					
Delta	0.3419	0.1001	0.1093	0.1030					
Rank	1	4	2	3					

Response for BSFC

Analysis of variance (ANOVA):

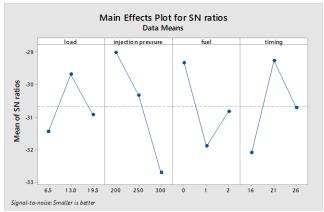
ANOVA is a statistically built, objective judgement-making tool for identifying any dis similarities in the average performance of groups of items that were verified. ANOVA aids in analyzing the importance of all-required factors and their interactions by matching the average square against an Estimate of the experimental errors at specific confidence levels. This analysis was conducted for a level of significance of 5% (that is the level of confidence of 95%). Table 4 displays the ANOVA

Volume 7 Issue 12, December 2018 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

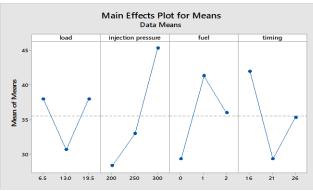
Results

	Analysis of Variance								
Source	ource DF Adj SS Adj MS F-Value P-Value % Contrib								
Torque	2	0.17560	0.08780	8.21	0.019	73.2399			
Error	6	0.06416	0.01067			26.76			
Total	8	0.23976				100			

It can observed from the ANOVA analysis that only torque (73.2999%) have the influence on BSFC and the other factors have negligible impact. The last column of table shows the percentage contribution of each parameter on the total variation representing their degree of impact on the result.


Orthogonal array of Taguchi and Signal to noise ratio for CO:

Torque	Injection pressure	Fuel	Timing	CO	SNRA1
6.5	200	0	16	31	-29.8272
6.5	250	1	21	35	-30.8814
6.5	300	2	26	48	-33.6248
13.0	200	1	26	29	-29.2480
13.0	250	2	16	35	-30.8814
13.0	300	0	21	28	-28.9432
19.5	200	2	21	25	-27.9588
19.5	250	0	26	29	-29.2480
19.5	300	1	16	60	-35.5630


The high S/N ratio gives the optimal quality and has low variance using the MINITAB software. Smaller is better type has chosen and the similar response was used for signal to noise ratio. It shows that for higher torque value the SN ratio is smaller i.e for higher torque the value of CO is lower.

The S/N ratio is analyzed by using the equation

$$s'_N = -10 \log_{10}(\frac{1}{n}\sum_{n} 1/y^2)$$

Effect plot for SN ratios on CO

Effect plot for means on CO

sponse i										
	Response Table for Signal to Noise Ratio									
	Smaller is Better									
Level	Torque	Injection pressure	Fuel	Timing						
1	-31.44	-29.01	-29.34	-32.09						
2	-29.69	-30.34	-31.90	-29.26						
3	-30.92	-32.71	-30.82	-30.71						
Delta	1.75	3.70	2.56	2.83						
Rank	4	1	3	2						
	R	esponse Table For Mea	ins							
Level	Torque	Injection Pressure	Fuel	Timing						
1	38.00	28.33	29.33	42.00						
2	30.67	33.00	41.33	29.33						
3	38.00	45.33	36.00	35.33						
Delta	7.33	17.00	12.00	12.67						
Rank	4	1	3	2						

Analysis of Variance (ANOVA)

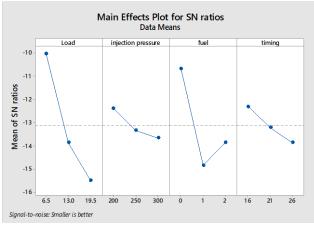
ANOVA is a statistically built, objective judgement-making tool for identifying any dis similarities in the average performance of groups of items that were verified. ANOVA aids in analyzing the importance of all-required factors and their interactions by matching the average square against an Estimate of the experimental errors at specific confidence levels. This analysis was conducted for a level of significance of 5% (that is the level of confidence of 95%). Table 4 displays the ANOVA

Results

	Analysis Of Variance								
C	DE	Adj SS	11: MC	F-	P-	%			
Source	DF	Auj 55	Auj MS	Value	Value	Contribution			
Injection Pressure	2	462.9	231.44		0.166	45.02			
Error	6	565.3	94.22			54.979			
Total	8	1028.2				100			

It can be observed from the ANOVA analysis that only the injection pressure (45.02%) have the influence on CO. The last column of table shows the percentage contribution of each parameter on the total variation representing their degree of impact on the result. The injection pressure has the greatest influence on the CO.

Volume 7 Issue 12, December 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY


atio for HC										
Torque	Injection pressure	Fuel	Timing	HC	SNRA1					
6.5	200	0	16	2	-6.0206					
6.5	250	1	21	4	-12.0412					
6.5	300	2	26	4	-12.0412					
13.0	200	1	26	6	-15.5630					
13.0	250	2	16	5	-13.9794					
13.0	300	0	21	4	-12.0412					
19.5	200	2	21	6	-15.5630					
19.5	250	0	26	5	-13.9794					
19.5	300	1	16	7	-16.9020					

Orthogonal array (L9) of Taguchi and signal to noise ratio for HC

The high S/N ratio gives the optimal quality and has low variance using the MINITAB software. Smaller is better type has chosen and the similar response was used for signal to noise ratio. It shows that for higher torque value the SN ratio is higher i.e for higher torque the value of HC is lower.

The S/N ratio is analyzed by using the equation

 $s/N = -10 \log_{10}(\frac{1}{n}\sum 1/y^2)$

Effect plot for SN ratios on HC

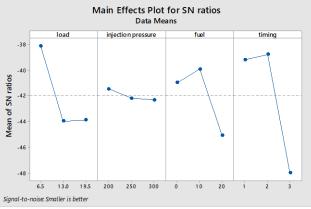
Effect plot for means on HC

	Response for HC							
R	Response Table For Signal to Noise Ratio							
	Smaller is better							
Level	Torque Injection Fuel Timing							
		Pressure						
1	-10.03	-12.38	-10.68	-12.30				
2	-13.86	-13.33	-14.84	-13.22				
3	-15.48	-13.66	-13.86	-13.56				
Delta	5.45	1.28	4.15	1.56				
Rank	1	4	2	3				

Response Table for Means						
Level	Torque	Injection	Fuel	Timing		
		pressure				
1	3.333	4.667	3.667	4.667		
2	5.000	4.667	5.667	4.667		
3	6.000	5.000	5.000	5.000		
Delta	2.667	0.333	2.000	0.333		
Rank	1	4	2	3		

Analysis Of Variance (ANOVA)

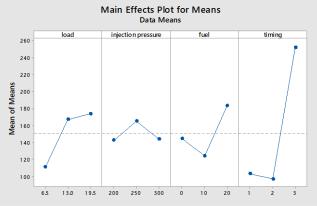
ANOVA is a statistically built, objective judgement-making tool for identifying any dis similarities in the average performance of groups of items that were verified. ANOVA aids in analyzing the importance of all-required factors and their interactions by matching the average square against an Estimate of the experimental errors at specific confidence levels. This analysis was conducted for a level of significance of 5% (that is the level of confidence of 95%). Table 4 displays the ANOVA


Results

Analysis Of Variance						
Source	DF	Seq SS	Seq MS	F-Value	P-Value	% Contribution
Torque	2	10.8889	5.444	49.00	0.002	62.025
Fuel	2	6.222	3.111	28.00	0.004	35.44
Error	4	0.4444	0.111			2.596
Total	8	17.5556				100

It can observed from the ANOVA analysis that the torque (62.025%) has the more influence on HC. The last column of table shows the percentage contribution of each parameter on the total variation representing their degree of impact on the result. The torque(62.025%) and Fuel (35.44%) has the greatest influence on the HC and other factors have negligible influence on HC.

Orthogonal array (L9) of Taguchi and signal to noise
ratio for NOx


Torque	Injection pressure	Fuel	Timing	NOX	SNRA1			
6.5	200	0	1	49	-33.8039			
6.5	250	10	2	45	-33.0643			
6.5	300	20	3	239	-47.5680			
13.0	200	10	3	234	-47.3843			
13.0	250	20	1	167	-44.4543			
13.0	300	0	2	101	-40.0864			
19.5	200	20	2	145	-43.2274			
19.5	250	0	3	284	-49.0664			
19.5	300	10	1	93	-39.3697			

Effect plot for SN ratios on NOx

Volume 7 Issue 12, December 2018 <u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Effect plot for means on NOx

The high S/N ratio gives the optimal quality and has low variance using the MINITAB software. Smaller is better type has chosen and the similar response was used for signal to noise ratio. It shows that for lower torque value the SN ratio is higher i.e for lower torque the value of NOx is lower.

The S/N ratio is analyzed by using the equation

$$s/N = -10 \log_{10}(\frac{1}{n}\sum 1/y^2)$$

Response for NOx

P = = = = = =							
	Response Table for Signal to Noise Ratios						
	Smaller is better						
Level	Torque	Injection pressure	Fuel	Timing			
1	-38.15	-41.47	-40.99	-39.21			
2	-43.98	-42.19	-39.94	-38.79			
3	-43.89	-42.34	-45.08	-48.01			
Delta	5.83	0.87	5.14	9.21			
Rank	2	4	3	1			
Response Table for Means							
Level	Torque	Fuel	Timing				
1	111.00 142.67		144.67	103.00			
2	167.33	167.33 165.33		97.00			
3	174.00	144.33	183.67	252.33			
Delta	63.00	22.67	59.67	155.33			
Rank	2	4	3	1			

Analysis of Variance (ANOVA)

ANOVA is a statistically built, objective judgement-making tool for identifying any dis similarities in the average performance of groups of items that were verified. ANOVA aids in analyzing the importance of all-required factors and their interactions by matching the average square against an Estimate of the experimental errors at specific confidence levels. This analysis was conducted for a level of significance of 5% (that is the level of confidence of 95%). Table 4 displays the ANOVA

Results

	Analysis of Variance							
Source	DF	Adj SS	Adj MS	F-Value	P-Value	% Contribution		
Torque	1	5953	5953	1.72	0.237	9.90		
Timing	1	33451	33451	9.69	0.021	55.6422		
Error	6	20713	3452			34.958		
Total	8	60118				100		

It can observed from the ANOVA analysis that the timing (55.6422%) has the more influence on NOx. The last column of table shows the percentage contribution of each parameter on the total variation representing their degree of impact on the result. The torque (9.90%) and Timing (55.6422%) has the greatest influence on the NOx and other factors have negligible influence on NOx.

2. Conclusion

The present paper experimental investigation on the performance parameters by Taguchi method:

- It is observed that the Torque influences more on the BP compared to the other parameters. The contribution of torque on the BP is 71.74% in compared with the other parameters by ANOVA.
- It is observed that the Torque influences more on the BSFC compared to the other parameters. The contribution of torque on the BSFC is 73.24% in reference with the other parameters by ANOVA.
- In CO the influence of the Injection pressure is more in compared with the other parameters. Injection pressure contributes 45% on CO compared to other parameters by ANOVA.
- The influence of torque is more on the HC compared to other parameters. The Torque influences 62% compared to other parameters by ANOVA.
- Timing influences more on the NOx compared with the other parameters. Timing has the influence of 63% on the NOx by using ANOVA.