
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Techniques for Managing Inconsistency to Scale

Services in Distributed Memory Systems

Gnana Teja

Abstract: Distributed memory systems are essential commodities in present - day computation since they facilitate intricate computations

in nodes that are often interconnected. However, as the masses of these systems increase, consistency management becomes increasingly

more complex because of factors such as delays in the network, node crashes, and concurrent changes to the data. The scalability of

various techniques of managing inconsistency in distributed memory systems is the concern of this paper. In the case of consistency

models, this paper focuses on the aspects of strong and weak and their advantages and disadvantages. The strong consistency guarantee

makes the data identical across multiple nodes, but this reduces the system's scalability and performance; hence, it is inefficient for

applications like real - time data processing. Weak consistency models, in contrast, are less strict and allow some temporary data

inconsistency, making them even more performant and scalable. However, they may need to provide more accurate data to consumers.

The paper also focuses on the kinds of data, single primary users and multiple users, and how these determine the consistency models.

Moreover, methods of consistency management of services evolving further are analyzed, as well as features and tendencies in the

implementation of consistency management, including the hybrid and adaptive models and their perspective for growing services in the

future. These models claim to balance how much of the actual data is captured. At the same time, it improves the system's response time,

making it imperative, especially for developers and businesses aspiring to tackle massive distributed systems. The paper concludes and

highlights that as distributed systems evolve to unprecedented complexity, scalability, and resilience of consistency will prove central to

confidence in system integrity. It lays down the sum and substance of the existing methods and prospects that will be useful for the study's

practitioner and theoretician.

Keywords: Distributed Memory Systems, Consistency Models, Scalability, Strong Consistency, Weak Consistency, Eventual, Consistency,

Concurrency, Network Latency, Data Replication, Hybrid Consistency Models

1. Introduction

Distributed memory systems constitute a significant element

of contemporary computing, allowing extensive calculations

to be performed on networks of nodes. These systems enable

the passing of data and computational requirements across

different nodes and thus enable the handling of massive data

and computations that, if done on a single machine, would be

extremely difficult. In the current world of big data, cloud

computing, and real - time analysis, distributed memory

systems have become standard building blocks in the

architecture of most modern essential applications ranging

from social networks to online banking and science

applications. However, since these systems are composed of

multiple nodes operating in parallel, complexity is created,

especially in node consistency.

Several issues present in distributed memory systems include

inconsistency issues that arise when many nodes change the

state of an object concurrently. These inconsistencies can

arise due to several issues. For example, there might be delays

in the network. A node might have failed or, in case of

simultaneous modifications to the stored data. An update of a

social network profile, to announce that the profile is updated

in all of the nodes of the system, the other users will be

viewing the updated information. However, if different nodes

are in some way contrary due to the network latency or other

concerns, users will see stale or wrong data. This challenge

intensifies as the system grows because the number of nodes

and users also rises, meaning that inconsistent information is

more probable.

Figure 1: Strategies for Achieving High Availability in

Distributed Systems

The rationale for which these disparities should be treated is

that they produce negative forms of amplification in terms of

the system's operation and the end - user interaction with it.

Such data can produce errors and confusion, and, in the bigger

picture, the user loses confidence in the system. For instance,

microtransactions in financial services may require the

records of transactions to be the same across multiple nodes;

any disparities can cause issues such as losing money or

getting entangled in legal problems. Thus, the measures

should be used while bearing in mind that there is always a

conflict between the consistency and performance of the

system. Finding this balance is not easy because, for example,

achieving a firm consistency usually implies that a significant

amount of resources has to be used, and they can cause delays,

which are not acceptable in cases where the systems have to

work in real - time.

2. Purpose of the Study

The purpose of this article is to discuss multiple approaches

to handling conflict situations in deploying distributed

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2000

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

memory systems, particularly on scalability services. This is

because as systems become large and complex, the coherence

issues become sensitive and need to be handled by specific

strategies and models. The intent here is to give a brief

overview of these methods and then understand how all these

can be approached so that enhancing the efficiency and

reliability of such systems can be achieved as the systems

grow.

One of the significant discussion areas in this section will be

analyzing various consistency models that can be

incorporated into distributed memory. Consistency models

state how data consistency is established at all the nodes in a

system and whether all nodes contain identical data, even in

the case of concurrent updates (Brooker, 2014). It is essential

for anybody designing, implementing, or administering

distributed systems because the chosen model will likely

significantly impact how well the system scales, how well

users accept it, and just how performable it is.

In the article, the author will present both strong and weak

consistency models, emphasizing simultaneously the positive

effects and negative consequences of their application. The

strong consistency models, for instance, guarantee that all the

nodes in the system are up to date on the change as soon as

there is an update. Although this ensures the maximum degree

of preciseness, it is time - consuming and could be costly,

which makes it less suitable for systems that interact with

large datasets in real time. Weak ones permit temporary while

making it less costly and more scalable inconsistencies in the

data seen by the nodes; this is why sometimes users may

notice inconsistent data at different nodes. Through the

discussion of these models and the techniques related to them,

readers of this article will be equipped with enough

information to enable them to make sound decisions

regarding the management of consistency in distributed

memory systems. Whether the aim is to optimize efficiency,

work with larger numbers of users, or employ the system in

larger circumstances, the information provided here will be

helpful for practitioners.

Understanding Consistency in Distributed Memory

Systems

What is Consistency?

Consistency in distributed memory systems deals with how

close the multiple nodes in the particular system are

synchronized in terms of the data they have at a particular

moment. For an enhanced distributed system, it must be

incorporated that every bit of data modified in one or any

portion of the system must be immediately accessible to all

the other parts so that all nodes are working with the same or

an updated version of the data. However, realizing this notion,

referred to as solid consistency, is usually not easy because of

the characteristics of distributed systems, which include

occasional delays in data transmission, some nodes may fail,

and some data being changed may be changed simultaneously

by different nodes. That is primarily true since consistency

ensures that distributed systems behave correctly, mainly

when several nodes are involved and perform operations

together. Lack of consistency could lead to distributed

systems providing the wrong or out - of - date information and

producing less than accurate results, which is detrimental to

the use (Bailis et al., 2014).

Figure 2: Consistency Model in Distributed System

Another common and vital cause of inconsistency in

distributed systems is the extra time taken by the network. In

case the update is made to data often, the change has to extend

throughout all nodes of the whole system. The propagation

period involves replication of the data to all the nodes, and at

this time, nodes could be holding different versions of the

same data, leading to inconsistency. Further, node failures can

worsen this issue, too, because the nodes are the main

components of the ad hoc network. The problem is that if a

node goes offline before it has received the last update, then

after it has restarted, it will return a stale answer. This can be

especially so in those contexts where scrubbing is

accompanied by a real - time requirement of data – integrity,

which is often the case, for example, in the financial field or

records in a hospital (Bazzi, 2002).

One of the other typical cases, when conflicts occur, is

concurrent data updates. In distributed systems, it is possible

to have two nodes trying to write simultaneously. However,

these multiple updates can work in parallel and sometimes

need to be more consistent, where there shall be different

versions of the data in different nodes. This problem is solved

by employing different consistency models, each providing

assurance on where, when, and how updates are made and

observable across the system (Brooker, 2014). For example,

sequential consistency guarantees that all nodes will see the

operations in the same order as they were performed, even if

this order may not reflect the order in which the operations

were executed (Lamport, 1979).

Types of Data in Distributed Systems

When it comes to distributed systems, it is important to know

the kinds of data in order to manage consistency. Data in

distributed systems can be classified primarily into single

primary user information and multiuser information. The first

of these classification types depends on the number of users

allowed to modify the data apart from updating it. In this

paper, the type of data significantly influences both the choice

of consistency model and the system's performance.

Single Primary User Data

Single primary user data is updated chiefly by one person or

process, even though others can use it. This data type is

relatively easier to maintain in a distributed system

architecture because the probability of concurrent update

transactions is lower. The probability of getting into a

inconsistent state is lesser. For instance, on a social media

platform, a user’s profile, which contains information about

the user, can only be edited by the user, although others can

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2001

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

see the profile. In such cases, consistency can be maintained

reasonably easily because if the user changes something in the

system, it must be reflected across several nodes.

Figure 3: Single - Primary Database Replication

The effect on performance in managing single primary user

data is positive, as it is easier to maintain consistency with

fewer resources. As long as only one user is making changes

at the moment, the system can make these changes fast and

have all nodes updated within the shortest time possible

without dealing with issues that arise when several users are

making changes simultaneously. Still, the difficulty appears

when the system has to scale and simultaneously serve a high

number of read requests along with providing access to the

most recent data version. This area calls for proper

formulation of caching and replication to enhance overall

consistency and performance.

Multiple User Data

The other type of multiuser data is the situation where a data

set is changed by multiple users or at the same time by other

processes. It is challenging in distributed systems because the

probability of having concurrent updates, which lead to

having updates happen simultaneously, is relatively higher.

Some examples of multiple - user data are documents created

and edited by multiple users at a given time, calendars, or any

system designed so that a number of users can set data

simultaneously. In these cases, the system needs to implement

techniques to ensure that all changes are correctly applied and

that the event ends in the correct state of the data across the

nodes (Vogels, 2009).

Figure 4: Multiple User Database Overview

In the case of managing multiple user data, keeping

consistency often necessitates more complex approaches,

such as reconciliation strategies or the utilization of

consistency models that enable eventual consistency

(Brooker, 2014). For instance, eventual consistency permits

inconsistency for a limited time but promises that every node

will become in sync with the others. This model is ideal when

the adoption requires consistency, and the system can wait a

long time before fixing the disparities in consistency and

propagating updates. However, this will negatively affect the

user interface, particularly in applications whose users

demand updates or feedback in real - time (Brewer, 2000).

Knowledge of the nature of data to be managed in a

distributed system seems crucial in choosing the right

consistency model and ensuring that the system can grow

horizontally and perform well. Single primary user data and

multiple user data also imply different problems, which

recalls the need to customize accommodating solutions for the

system.

Consistency Models in Distributed Systems

Distributed systems are very important in the current

computing environment since they help in large - scale

computing in distributed nodes. One of the main problems in

such systems is the problem of Consistency across distributed

data, which only worsens as services grow. Consistency

models are essential in guiding how data should act in

distributed settings. These models explain how much of the

system the users can access, how different parts of the system

can be affected or accessed independently, and how data will

be consistent across the system. This section will discuss the

several consistency models, their classification, and exemplar

use cases. However, we will only consider some appropriate

consistency models for a given model.

Overview of Consistency Models

Consistency models in distributed systems are broadly

classified into two categories. Two subcategories can be

further divided into Object Consistency, Strong Consistency,

and Weak Consistency. Strong Consistency promises that all

nodes in a system will have a similar new data set within any

update, and all the read operations will get the latest written

data. Thus, in the Weak Consistency model, it is permissible

to have differential views of nodes for a specific time

(Tanenbaum & Van Steen, 2007).

Figure 5: Introduction to Consistency Models

The suitable consistency model must be chosen carefully, as

it dramatically influences the system's characteristics and

perceived usability. The choice, therefore, depends on the

nature of the application and what relative preference between

Consistency, availability, or performance is desirable. For

example, if an application processes transactions that should

be available in real - time, such as a banking application, it

should have a firm consistency requirement for data. In

contrast, in systems where the 'eventual' Consistency is

acceptable, for example, in social networking, it is quite

preferable to utilize the weaker consistency models than the

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2002

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

strong ones to increase scalability and performance (Vogels,

2009).

3. Strong Consistency

Definition and Characteristics

Strong Consistency means that every read operation receives

the most up - to - date version of data that is even written in

every node of the system; this is also called linearizability.

Once a write operation has been performed, any read

operation, irrespective of which node is carried, will return

this new value. The high degree of Consistency impacts the

system with the highest level of data consistency and is thus

preferred for systems where correctness and currency of

information are paramount (Herlihy & Wing, 1990).

Challenges in Achieving Strong Consistency

Getting to very high levels of Consistency in a distributed

system is easy due to the latency and partitioning problems

inherent in the distributed system environment.

Synchronizing all the nodes to make them display up - to -

date information entails massive performance issues in most

large - scale systems. Waiting for acknowledgment from the

many nodes before a write operation is completed adds

latency that limits the possible performance while at the same

time having strong Consistency (Charron - Bost & Schiper,

2000).

Figure 6: Challenges in Achieving Consistency

Use Cases Where Strong Consistency is Necessar

High Consistency is required in cases where data accuracy is

a crucial factor, and the simultaneous existence of

inconsistent data is dangerous. Some examples are financial

systems where the disparity of a single account results in vast

loss and distributed databases that contain delicate

information such as personal health records (Brewer, 2000).

These systems always want a read operation to return the

result of the last transaction so that end users always work on

the most up - to - date information.

Weak Consistency

Definition and Types: Weak Consistency models allow

nodes to have different copies of the data for some time. This

approach is usually used in distributed systems where some

priority is given to performance and availability rather than

data integrity. These include Operation - Centric, Transaction

- Centric, and Application - Centric models, which provide

flexibility tailored to various requirements and conditions

(Tanenbaum & Van Steen, 2007).

Operation - Centric Consistency Models: Two primary

versions of Operation - Centric Consistency models are

known. Although these models are similar to other CCMs,

they are different because they concentrate on the order and

visibility of operations rather than on the state of data. These

models are utilized to ensure that users are given a seamless

experience regardless of the fact that there are simultaneous

updates. Some of the Operation - Centric models include

Sequential Consistency, Causal Consistency, and Eventual

Consistency.

Figure 7: Centric Consistency Model

Sequential Consistency: In Modified or Sequential

Consistency, all nodes observe operations in the same order,

although this order is not necessarily the same for real - time

orders. Since this model is more accessible to implement than

the robust consistency model, it is preferable. It is beneficial

in those systems where the order of operations is more

important than the time to complete them (Lamport, 1979).

For instance, in distributed game middle - ware systems, all

players at the different sites must see them in the same

sequence as they happened, although the time differences

could be significant.

Causal Consistency: Causal Consistency states that all nodes

observe operations with a particular causal relation in the

same order. However, those operations that are not

necessarily dependent on each other can be viewed in

different sequences with different nodes. This model is

especially desirable in cooperative environments where the

temporal order of the users' actions must be retained with a

view to consequent Consistency (Hutto & Ahmad, 1990). For

instance, in a collaborative editing tool, it is essential to be

sure that the updates made are done causally consistently to

avoid spoiling the document's integrity.

Monotonic Reads and Writes: Monotonic Reads guarantee

that each time the same process reads an object, it only gets a

time value that is not less than the time value of the prior read.

Monotonic writers make a provision to control subsequent

writes made by a particular process in the correct sequence.

These properties are crucial in in - use scenarios such as

online calendars and inventory management, where the order

of operations impacts the interaction as well as the efficiency

and stability of the systems (2016).

Read Your Writes and Writes Follow Reads: The Read,

Your Writes model ensures that the client who succeeds in a

write and immediately follows it with a read operation

receives the latest value of the variable. The Writes Follow

Reads model guarantees that before a client writes into the

shared space, he first reads from it, or, at the least, he writes

what was read by another client at an earlier time. These

models are essential in all the applications where the

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2003

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

consumer is in a position where he or she expects

instantaneous comments on his or her actions, such as social

media and web applications (Ladin et al., 1992).

Figure 8: Read - your - write consistency

Eventual Consistency: Eventual Consistency is even weaker

than Hybrid Consistency as it only provides solutions that

guarantee that all the nodes will eventually be updated if no

new updates are made. This model permits transient

divergence of the copies but guarantees that these divergences

will eventually fade away (Vogels, 2009). Despite some

weaknesses, eventual Consistency enjoys high popularity

among distributed systems that call for availability, including

content delivery networks and extensive web services. It is

used to ensure that systems run and continue to function even

if the network is split, with the expectation that data will be

refreshed across all the nodes at some later time (Vogels,

2009).

Transaction - Centric Consistency Models

Transaction - centric consistency models aim to achieve

Consistency within the context of transactions, which are

sequences of operations intended to be executed in a single

and abrupt manner. These models offer varying levels of

assurance on the sight and scheduling of activity within

transactions over many systems.

ACID (Atomicity, Consistency, Isolation, Durability):

Acid properties are central to transactions and reliability in a

distributed system. Atomicity ensures that all changes made

as part of a given transaction are fully processed or none are

made. The principle of Consistency means that transactions

take the system from one legal state to another. Isolation

ensures that two transactions do not conflict with each other.

In contrast, Durability means that once a transaction has been

completed, the results are permanent even when the system

has crashed (Gray & Reuter, 1993). ACID transactions are

helpful in systems that insist on a high level of Consistency,

such as financial applications and distributed databases.

Figure 9: ACID (Atomicity Consistency Isolation

Durability) Model of database

BASE (Basically Available, Soft state, Eventual

consistency): The BASE is a model for distributed systems

with an ACID opposite: B for breakpoint, A for availability,

S for soft state, and E for eventual consistency. As with most

BASE systems, these are often "Basically Available, "

implying that the system was intended to continue running

even when there is a partial failure. Some of them are in a

"Soft state, "which can sometimes show a state of the system

that is different from the current one. Last, they provide

"Eventual consistency, " which means the system will

eventually be consistent (Pritchett, 2008). BASE is

particularly well suited for massive - scale distributed systems

in which high availability and tolerance to faults are valued

higher than strict Consistency, which is why it is extensively

used in distributed caches and CDN - like systems.

Figure 10: ACID VS BASE

Application - Centric Consistency Models

Application - centric consistency Models give different

guarantees that are entirely adjustable to suit the application's

desired goal. These models aim to achieve performance,

availability, or application usage parameters with trusted

strong Consistency and high availability.

 Tailoring Consistency for Specific Applications:

Application - centric models accept that various applications

possess and should have different consistency needs. For

instance, it is okay in a social media app if updates are

delivered a couple of seconds late; in a banking app, it could

be better. For this reason, developers should propose

consistency models according to the needs of the developed

application so that high performance, good usability, and data

Consistency can be provided (Bailis et al., 2013).

 Conflict - Free Replicated Data Types (CRDTs): Conflict

- free replicated Data Types (CRDTs) are concepts that entail

structures that can be updated simultaneously to avoid

consistency conflicts while maintaining an aspect of the

eventual consistency design. CRDTs are designed so that

replication and synchronization are performed in a fault -

tolerant manner, conflicts are resolved automatically per

specific rules, and all data replicas reach some common state

(Shapiro et al., 2011). Due to the nature of concurrent data

updates in collaborative CPUs and distributed schemes,

CRDTs play an optimal role.

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2004

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 11: Conflict - free Replicated Data Types

Challenges and Trade - offs in Consistency Management

Resource Consumption vs. Performance

The search for high levels of consistency in distributed

systems increases resource consumption and thus incurs

consequences on general performance. High consistencies

ensure that all nodes within a system implement the same data

state right after an update; this feature is essential for

organizations that depend on data consistency, such as in

finance and healthcare through database systems (Charron -

Bost & Schiper, 2000). However, this level of consistency

requires a lot of computational and networking powers, which

are costly to supply. Each update requires an identical copy

on all nodes and results in what can be a significant

consumption of resources, chiefly within large installations.

This synchronization requires ordering and acknowledging of

operations, and since the algorithms used, these are likely to

cause high latency and low throughput (Tanenbaum & Van

Steen, 2007). For instance, the Paxos algorithm, well - known

as a solution for the consensus problem in the distributed

environment, requires high resource consumption mainly

when applied to an environment with many nodes and updates

(Lamport, 2001).

However, there are weaker consistency models like eventual

consistencies, which are much more resource - favorable

because they allow inconsistencies between the nodes for a

certain period. According to Vogels (2009), these models

emphasize availability and partition tolerance; hence, they

can be helpful where high scalability and response time are

desired. For example, Amazon's Dynamo DB uses an

eventually consistent model for faster handling of queries for

data across different servers. In contrast, the consistency

associated with this model is less of a priority for large e -

commerce websites (DeCandia et al., 2007). On the other

hand, they may sometimes get old news, which is quite

unbeneficial in a condition where updated information is

needed.

User Experience Considerations

It is tricky to consider accurate user requirements at one

moment and provide them with constant results. However, it

is needed in applications with high performance and data

accuracy. Although they guarantee data correctness, strong

consistency models introduce more latencies, and users are

affected by it. For instance, in real - time applications such as

online games or stock trading, small latencies of data

synchronization may be displeasing among users (Herlihy &

Wing, 1990). Hence, the middle ground is pursued by

developers – they use the so - called hybrid consistency

models that provide for solid consistency during the most

critical operations and simultaneously allow, for instance,

eventual consistency in the case of the less critical tasks.

A successful implementation of this concept can be observed

in efforts to construct Google's Spanner. This global database

product delivers strong consistency by employing a

synchronization method in combination with atomic clocks

(Corbett et al., 2013). Specifically, Spanner's architecture is

designed to maintain low latency and high throughput. At the

same time, Spanner puts much effort into controlling the

consistency required for all operations so as not to affect the

users negatively. Another example is LinkedIn's Voldemort

distributed key - value storage system, where dev and elopers

can set tunable consistency models depending on application

demands (Sumbaly et al., 2012). Such flexibility allows

LinkedIn to adhere to a versatile user experience while

maintaining the data unvarying where necessary.

Impact of Network Delays and Failures

Failure of some of the network components and delay issues

will significantly affect the synchrony of the distributed

systems. Events such as network partitions that render nodes

incapable of communicating, which results in different data

updates, are some of the causes or instances in which

inconsistent data states can be realized. The strong

consistency models, for instance, the ones utilized in the Raft

consensus algorithm, help to solve this problem by ensuring

no commitment is made whereby there is no agreement by the

majority, hence preventing conflicts during the network

partition (Ongaro & Ousterhout, 2014). However, this

approach can cause significant lags in high - latency systems

or networks with many failures, as the algorithm has to wait

for slow or failed nodes to come through or get ejected.

Figure 12: The impact of network delay

To counter these, different approaches, such as replication

and data partitioning, are used to improve the system's

availability and cushion the effect of delays occasioned by an

extended network. For example, Dynamo – the data store for

Amazon web service –uses partitioning of data and

replication of data in order to keep data available all the time,

and thus, in case of a network split, the system can continue

to perform with low latency using the eventual mode of

consistency (DeCandia et al., 2007). Another approach is

quorum - based techniques, where only some nodes have to

approve each update before the modification is complete. This

approach decreases the effect of network stability and reduces

the time needed to reach consistency (Chandra et al., 2007).

However, these methods are only suitable where consistency

and availability have been traded off, for example, where the

network is partitioned most of the time.

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2005

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Strategies to Mitigate Network Challenges

To minimize the effect of network delays and failures on

consistency, the following approaches can be taken. One such

technique is consensus algorithms, which are meant to work

while the network is partitioned while at the same time

guaranteeing that, in the long run, all nodes will be consistent.

The CAP theorem states that distributed systems can only

guarantee two properties: Consistency, Availability, and

Partition Tolerance (Brewer, 2000). Dynamo and Cassandra,

for instance, use the CP model where availability and partition

tolerance are valued more than consistency while using

eventual consistency to allow convergence of data in different

time phases (Lakshman & Malik, 2010). These systems

employ this and other methods – such as anti - entropy and

read - repair – to slowly bring all the nodes in sync so that all

replicas are identical.

The other consistencies use adaptive consistencies, where the

consistency models modify their consistency behavior

depending on the existing network conditions. For instance,

the TAO system of Facebook adapts the degree of consistency

of the data in its storage to the degree of the network latency

observed from the system: it uses strong consistency for

operations that require it and uses eventual consistency for all

other operations (Bronson et al., 2013). This allows the

system to be highly available and offer high performance

while ensuring strong consistency when the network is good.

Likewise, Google's F1 system on replication uses a

hierarchical replication model in which the data is replicated

across regions with varying consistency level needs. Hence,

the system achieved consistency, availability, and

performance depending on the application type (Shute et al.,

2012).

Achieving consistency in the distributed system means

addressing various trade - offs related to resource

consumption, system performance, or end users’ satisfaction

with the result. Strong coherence is effective in providing

accurate data. It has the demerit of high latency and higher

use of resources. Though weaker consistency models are

resource - effective, the use of these models may lead to loss

of data integrity, especially in systems with high availability

requirements. Through the use of adaptive methods and

different consistency models, the developers can work on

systems that meet all these demands, hence catering to both

the efficiency of the systems and the usage by the clients

despite network - based challenges.

4. Future Trends and Developments

Emerging Technologies in Consistency Management

Due to evolving technologies, the semantics of consistency in

distributed memory systems are expected to undergo

revolutionary changes. Distributed memory systems are

nowadays paramount in computing extensively in networks

of nodes. It is believed that as such systems develop

constantly, such aspects as distributed memory and changes

in consistency models will be of great importance.

One of the most exciting developments is the system's

incorporation of distributed memory. Traditional systems

have, therefore, required that all nodes operate in a

coordinated manner, and this has proved to be quite resource

- demanding and slow, especially where the governing

framework is extensive. Newer work, however, concentrates

on improving the effectiveness of these systems through

various schemas, such as in - memory computing and

hardware accelerations (Herlihy & Wing, 1990). Pacemaker

technologies lower latency and enhance the speed of calamity,

bringing into focus synchronization nodes so that the mass

following technique is a more scalable proposition for

managing distributed data.

The most significant advancement is creating a new

generation of hybrid consistency models. Early notions of

consistency models can be distinguished into strong and weak

categories with disadvantages of worse performance and data

consistency. However, current models are gradually

differentiated from the previously described ones and include

options that open a much more comprehensive range of

possibilities to select the necessary functionality for specific

requirements for the application (Tanenbaum & Van Steen,

2007). For instance, models that integrate some of the features

of the strong consistency properties with the properties of the

eventual consistency models are being evolved to achieve the

best of both worlds: consistency means correct value and

system response times. These 'twice gentle' young man

models may be expected to become more widespread because

they provide an adaptable way of standardizing engagement

that can be applied selectively.

Potential Shifts in Consistency Models

Self - organizing systems become more effective when

distributed computers continue to expand, and traditional

consistency management models may need to be revised. One

of the earliest and still most influential principles in

distributed systems is the CAP theorem, which claims that the

system can provide only two of the three properties:

Consistency, Availability, and Partition Tolerance (Brewer,

2000). However, newer research and technologies have

advocated these, proving that a better balance can be realized

at better performance consistency without compromising

availability.

Figure 13: The CAP Theorem in DBMS

 The most significant transformation of consistency models

observed at the current stage is moving toward adaptive

consistency models. These models fluctuate concerning the

guarantees of consistency dependent on the state of the system

under which the models are being used and the nature of the

task in question in recommending them, as per Pritchett

(2008). For example, suppose the network utilization is low,

or the system deals with transactions not deemed sensitive to

timing details. In that case, the system may be run with a level

of consistency slightly lower than the final one, which would

be desirable. On the other hand, when critical operations are

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2006

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

being carried out, or the signal strength is good, the system

might require higher data consistency. This ability is one of

the properties that will be characteristic of future distributed

systems and will help to deal with the tradeoff between

convergence to the consistent state, availability of the system,

and its throughput.

Predictions for Scaling Services in the Future

The beauty and the challenge in the growing realm of

consistency models and distributed memory systems lie in

their impact on the scalability of the services. The degree of

scalability of consistency is fundamental in distributed

systems in the modern world. As systems get more prominent,

the problems with version control across many nodes become

significantly different. However, solutions in the technologies

and models presented above outline new opportunities for

production systems.

Figure 14: Preparing For Scalability and Future Growth

One major prediction is that higher scalability of distributed

systems will be reached with the growth of hybrid and

adaptive consistency models. These models enable systems to

manage the execution to control correspond to current

conditions - this is always critical when managing vast

volumes of data and transactions that are the norm in today's

large environment (Gray & Reuter, 1993). This enhances

efficiency but also reduces the cost of resource use in

establishing the consistency required in delivering services,

increasing the possibility of expanding services to cater to the

demands of future uses.

Implications for Developers and Businesses

Going deeper into the analyses of the changes in consistency

management, it is possible to note that it has inevitable

consequences for developers and businesses. The tendency

towards more freedoms and of the emerging Consistency

Models consequently calls for a new conceptualization in

system development. Such models will need to be

incorporated into the applications by the developers in a way

that will address their application needs, and the tradeoff

between the performance and consistency of the models will

have to be made to satisfy the end user (Shapiro et al., 2011).

It may imply that certain basic assumptions regarding design

must be readdressed, and new paradigms and toolsets must be

employed to support these new models.

From the business needs perspective, the effectiveness and

control of service scale and service quality homogeneity

across multiple distributed systems are vital factors for

enterprises to be competitive in the digital economy. The need

to develop sound and scalable distributed systems will

augment because more business transactions are online, and

real - time data is becoming increasingly popular. Those

organizations that can maximize the potential of the newest

technologies of consistency management will be at a vantage

point to offer dependable and excellent value - added services

to their clients and thus have an edge in the marketplace

(Bailis et al., 2013).

5. Conclusion

Handling data inconsistency in distributed memory systems is

an essential feature of modern computing systems, which, in

one way or another, affects the system's performance,

scalability, and usability. Logically distributed systems are

broadly classified as strongly and weakly consistent, and

many of them are challenging as distributed systems scale up

in size and complexity. This paper has discussed various

techniques and models that are expected to solve these

problems with the understanding that to meet the two aspects

of the systems – consistency and performance – some balance

has to be achieved. Linearizability, for example, ensures data

consistency at the highest level without considering the

consequences of high resource utilization and possible

performance limitations. These models are essential for use

where data precision and update time are critical, for example,

in compound currency environments and other distributed

data archives containing necessary information. Weak

consistency models, like eventual consistency, provide a

cheaper model for resource use but may have periods of

inconsistency. Hence, they should be used in the areas where

consistency is not highly desired but rather the availability

and performance of the system.

New and unforeseen consistency models, which combine

traditional consistency models and can, therefore, be referred

to as hybrid and adaptive consistency models, should be seen

as future trends in the given domain. These models allow one

to have variants of consistency comparable to different effects

of client needs and the condition of a system to achieve an

optimal balance between performance and reliability. Such

adaptability proves beneficial in large - scale distributed

systems in which the maintenance of consistency against the

provision of performance determines remarkable scalability.

As distributed systems advance, it remains challenging to

observe that the proper management of inconsistency cannot

be underestimated. Consistency models should be chosen and

applied according to the specifics of the applications, which

will allow the developers to ensure that the systems can be

easily scaled and provide the necessary level of consistency.

All businesses must exploit these sophisticated consistency

management mechanisms to sustain their competitiveness in

the prevailing digital and data - intensive environment. As

such, more advancements in future research on consistency

must be made to address the challenges of growing distributed

systems. Further analysis of new models, technologies, and

strategies will be crucial for forming the subsequent

generation's novel, high - level, efficient distributed systems.

References

[1] Bailis, P., Fekete, A., Hellerstein, J. M., Ghodsi, A., &

Stoica, I. (2014). Scalable atomic visibility with RAMP

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2007

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

transactions. ACM Transactions on Database Systems

(TODS), 39 (4), 1 - 41.

[2] Bazzi, R. A. (2002). Consistency conditions for multi -

object distributed operations. Distributed Computing,

15 (1), 1 - 15.

[3] Brooker, M. (2014). Cap and pacelc: Thinking more

clearly about consistency. Blog, July, 16.

[4] Brewer, E. (2000). Towards robust distributed systems.

Proceedings of the 19th Annual ACM Symposium on

Principles of Distributed Computing, 7 - 10.

[5] Bronson, N., Amsden, Z., Cabrera, G., Chakka, P.,

Dimov, S., Ding, H.,. . . & Malik, T. (2013). TAO:

Facebook's distributed data store for the social graph.

USENIX Annual Technical Conference.

[6] Chandra, T. D., Griesemer, R., & Redstone, J. (2007).

Paxos made live: an engineering perspective. ACM

Symposium on Principles of Distributed Computing.

[7] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C.,

Furman, J., & Woodford, D. (2013). Spanner: Google’s

globally distributed database. ACM Transactions on

Computer Systems (TOCS), 31 (3), 1 - 22.

[8] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,

G., Lakshman, A., Pilchin, A.,. . . & Vogels, W. (2007).

Dynamo: Amazon’s highly available key - value store.

ACM SIGOPS Operating Systems Review, 41 (6), 205

- 220.

[9] Gotsman, A., Yang, H., Ferreira, C., & Najafzadeh, M.

(2016). Transactional consistency and automaticity in

replicated databases. Proceedings of the 2016 ACM

SIGMOD International Conference on Management of

Data.

[10] Gray, J., & Reuter, A. (1993). Transaction Processing:

Concepts and Techniques. Morgan Kaufmann.

[11] Herlihy, M. P., & Wing, J. M. (1990). Linearizability:

A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems

(TOPLAS), 12 (3), 463 - 492.

[12] Hutto, P. W., & Ahamad, M. (1990). Slow memory:

Weakening consistency to enhance concurrency in

distributed shared memories. Proceedings of the 10th

International Conference on Distributed Computing

Systems.

[13] Ladin, R., Liskov, B., Shrira, L., & Ghemawat, S.

(1992). Providing high availability using lazy

replication. ACM Transactions on Computer Systems

(TOCS), 10 (4), 360 - 391.

[14] Lakshman, A., & Malik, P. (2010). Cassandra: a

decentralized structured storage system. ACM SIGOPS

Operating Systems Review, 44 (2), 35 - 40.

[15] Lamport, L. (2001). Paxos made simple. ACM SIGACT

News, 32 (4), 18 - 25.

[16] Ongaro, D., & Ousterhout, J. (2014). In search of an

understandable consensus algorithm. USENIX Annual

Technical Conference.

[17] Pritchett, D. (2008). BASE: An ACID alternative.

Queue, 6 (3), 48 - 55.

[18] Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M.

(2011). Conflict - free replicated data types.

Proceedings of the 13th International Symposium on

Stabilization, Safety, and Security of Distributed

Systems (SSS).

[19] Shute, J., Vingralek, R., Samwel, B., Handy, B., Rollins,

E., Oancea, M.,. . . & Bittman, R. (2012). F1: A

distributed SQL database that scales. Proceedings of the

VLDB Endowment, 6 (11), 1068 - 1079.

[20] Stonebraker, M. (2010). SQL databases v. NoSQL

databases. Communications of the ACM, 53 (4), 10 - 11.

[21] Sumbaly, R., Kreps, J., & Shah, S. (2012). The big data

ecosystem at LinkedIn. ACM SIGMOD Record, 40 (2),

52 - 58.

[22] Tanenbaum, A. S., & van Steen, M. (2007). Distributed

Systems: Principles and Paradigms (2nd Ed.). Prentice

Hall.

[23] Vogels, W. (2009). Eventually consistent.

Communications of the ACM, 52 (1), 40 - 44.

[24] Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., &

Alonso, G. (2000). Understanding replication in

databases and distributed systems. Proceedings of the

20th International Conference on Distributed

Computing Systems (ICDCS).

Paper ID: SR24826122221 DOI: https://dx.doi.org/10.21275/SR24826122221 2008

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

