
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Navigating Legacy to Modern: Container

Orchestration Strategies, Pitfalls, and Best Practices

for Applications

Savitha Raghunathan

Email: saveetha13[at]gmail.com

Abstract: This white paper delves into the transformative journey from traditional legacy IT architectures to modern containerized

systems. It aims to provide a comprehensive guide on adopting container orchestration technologies, highlighting the various strategies,

pitfalls, and best practices. By examining the transition to containers and the evolution of orchestration tools, this whitepaper offers

insights for organizations to effectively navigate the complexities of modernizing their IT infrastructure for improved agility, efficiency,

and scalability.

Keywords: Cloud transformation, Virtual Machines, Containers, Containerization engine, Modernization

1. Introduction

In the rapidly evolving technological landscape,

organizations are facing increasing challenges with traditional

legacy architectures. These monolithic systems, typically

deployed on physical servers or virtual machines, struggle to

meet modern software development and delivery demands.

This paper begins by defining traditional IT architecture and

its inherent limitations, setting the stage for the necessity of

containerization as a means to address these challenges. It

then explores the beginning of container technologies and the

subsequent development of container orchestration tools,

essential for managing containerized applications at scale.

2. Traditional IT Architecture

Traditional IT architecture is characterized by monolithic

application design, where all functionalities are tightly

integrated into a single, indivisible unit. As depicted in Fig.1,

these monolithic applications are deployed on dedicated

physical servers or virtual machines [4]. This typical

approach led to several issues, including scalability

challenges, lengthy deployment cycles, and difficulty

updating features.

Figure 1: VM vs Container virtualization [1]

This section delves into the specifics of these challenges and

their impact on business agility and operational efficiency.

2.1 Core Challenges:

• Tight Integration: Monolithic application's components

are interdependent, complicating updates and risking

widespread impact from minor changes [5] [6].

• Deployment Complexity: Updates require redeploying the

entire application, a time - consuming and error - prone

process [5].

• Scalability Limitations: Allocating resources to the entire

application rather than specific areas, leading to

inefficiency and increased costs [5].

2.2 Business Impact:

• Reduced Agility: The bulky update process slows the

release cycle, slowing quick responses to market shifts or

customer demands [7].

• Operational Inefficiencies: Challenges in scaling and

maintaining monolithic applications increase operational

costs and divert resources from innovation.

Paper ID: SR24401231207 DOI: https://dx.doi.org/10.21275/SR24401231207 1983

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:saveetha13@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Technical Debt Accumulation: Inflexibility and outdated

technology stack increase maintenance difficulties and

costs, undermining competitive edge and innovation

capabilities [7].

The above limitations of traditional IT systems—ranging

from scalability issues to technological inflexibility—have

driven many organizations toward adopting containerization

and microservices architectures. These modern approaches

offer enhanced scalability, deployment flexibility, and the

ability to innovate rapidly, aligning IT infrastructure with the

demands of today's dynamic market environment.

3. Transition to Containerization

Figure 2: Couple of apps running on containers [2]

Containerization represents a transformation in how

applications are packaged, deployed, and managed compared

to legacy infrastructure. By packaging applications and their

dependencies as a single unit into containers, organizations

can achieve higher portability, scalability, and efficiency.

This section discusses the emergence of container

technologies, their advantages over traditional methods, and

their role in facilitating the transition to a modern IT

infrastructure.

3.1 Emergence of Container Technologies

Containers have drastically simplified and enhanced

application deployment. Containers encapsulates an

application's code, libraries, and dependencies in a portable

executable package. This encapsulation ensures that the

application runs consistently across different computing

environments, from a developer's laptop to a test environment

and ultimately to production, irrespective of the base

infrastructure.

3.1.1 Core features

• Isolation: Containers provide independent environments

for applications, preventing conflicts and ensuring

consistent performance across different settings [10].

• Portability: With all necessary components included,

containers ensure applications run reliably in various

environments, eliminating compatibility issues [8].

• Microservices Compatibility: Containers support

microservices by allowing individual services to be

encapsulated and managed independently, promoting

scalable and agile development [8].

3.1.2 Advantages Over Traditional Approaches:

• Scalability: Containers enable quick and efficient

application scaling in response to demand changes without

scaling the entire system.

• Deployment Speed: Container consistency accelerates

deployment, supported by CI/CD pipelines for faster,

automated rollout processes [9].

• Resource Efficiency: Containers use resources more

efficiently than traditional virtual machines by sharing the

host's kernel and avoiding full OS virtualization.

• DevOps Integration: Containerization enhances DevOps

practices by simplifying application lifecycle management

and fostering team collaboration through integrated

CI/CD workflows [9].

• These core features and benefits of containerization

signify a transformative approach to application

development and deployment, offering solutions to legacy

system limitations.

4. Container Orchestration: The Need and

Solutions

As containerization became increasingly popular for

deploying and managing applications, the complexity of

orchestrating containerized workloads across different

environments expanded. This complexity brought to light the

need for advanced management tools capable of automating

container lifecycle—leading to the development of container

orchestration platforms. Fig.3 depicts the high level view of a

container orchestration engine. Container orchestration

solutions like Kubernetes, Docker Swarm, Hashicorp Nomad,

etc are developed based on this design. These solutions are

designed to automate and simplify container operations

across host groups, such as deployment, scaling, networking,

and management.

Paper ID: SR24401231207 DOI: https://dx.doi.org/10.21275/SR24401231207 1984

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Container orchestrator - high level view [3]

4.1 Docker Swarm

Docker Swarm [11] seamlessly integrates with Docker,

presenting an easy solution for those already familiar with

Docker's ecosystem. Emphasizing ease of use, Docker Swarm

facilitates a straightforward setup process, significantly

reducing the learning curve for new adopters. Additionally,

its automatic load - balancing feature efficiently allocates

requests across containers, optimizing resource use and

enhancing response efficiency.

However, Docker Swarm is often viewed as less feature - rich

compared to its counterparts, particularly Kubernetes. Its

simplicity and ease of use come at the cost of advanced

features and scalability options, which makes Docker Swarm

ideal for smaller - scale projects or those prioritizing

simplicity over extensive configurability.

4.2 Kubernetes

Kubernetes [11] has emerged as the leading orchestration tool

due to its scalability, flexibility, and comprehensive feature

set. Capable of managing large clusters, Kubernetes supports

a wide array of containerized applications with features like

automated rollouts, service discovery, and secret

management, making it a robust solution for complex

deployments. Kubernetes' design to abstract the underlying

infrastructure allows for remarkable portability, enabling

applications to run seamlessly across different environments,

be it public cloud, private cloud, or on - premises setups. This

level of flexibility, however, introduces a steep learning curve

and complexity in setup and management, potentially making

it a huge barrier to entry for newcomers to container

orchestration.

4.3 Apache Mesos with Marathon

Apache Mesos/Marathon [11] is a solution for managing

resources across data centers and cloud environments. Mesos

offers granular control over resources like CPU and memory

across all cluster nodes, optimizing the utilization and

efficiency of the infrastructure. Marathon extends Mesos's

capabilities into container orchestration, supporting both

containerized and traditional applications at scale. This

combination excels in scalability and fault tolerance, handling

tens of thousands of nodes without compromising

performance. However, Mesos and Marathon's advanced

capabilities come with increased complexity in setup and

ongoing management.

5. Strategies for Migration

Migrating to a containerized environment is challenging and

demands careful planning and execution. Here, we explore

strategic approaches to transition from legacy systems to

modernized containerization solutions.

5.1 Assessment and Planning

The first step in any migration process is thoroughly assessing

the existing landscape [12]. It involves:

• Inventory of Applications: Cataloging all applications and

services to understand their architecture, dependencies,

and interactions.

• Priority Setting: Identifying which applications would

benefit most from containerization, such as those needing

frequent updates or those that can improve scalability.

• Resource Allocation: Estimating the resources (time,

budget, personnel) required for the migration project.

• A comprehensive plan should outline the migration

phases, set realistic timelines, and prepare for potential

challenges.

5.2 Incremental Migration

• A phased, incremental approach to migration reduces risk

and allows for adjustments based on lessons learned. It can

be approached in several ways:

• Pilot Program: Start with less complex, non - critical

applications as proof of concept to gain experience and

build confidence.

• Horizontal vs. Vertical: Decide whether to migrate

services one at a time (horizontally) or to move an entire

stack or segment of the business (vertically).

• Parallel Operation: Run containerized services parallel to

legacy systems to ensure functionality and performance

before complete cutover.

Paper ID: SR24401231207 DOI: https://dx.doi.org/10.21275/SR24401231207 1985

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• This strategy minimizes disruption to operations and

allows for gradual adjustment of processes and team skills.

5.3 Leveraging Microservices

• Adopting a microservices architecture can greatly enhance

the benefits of containerization by breaking down

applications into smaller, independent services [13]. It

involves:

• Decoupling Services: Identify natural boundaries within

applications to separate into services that can be

developed, deployed, and scaled independently.

• Domain - Driven Design: Organize microservices around

business capabilities to ensure they are self - contained and

aligned with business functions.

• Managing Inter - service Communication: Implement

patterns for inter - service communication, such as APIs

or messaging queues, to maintain loose coupling.

Microservices facilitate scalability and flexibility and

encourage more agile development practices.

6. Pitfalls to Avoid

The migration journey has pitfalls that can delay progress and

impact success. This section addresses the common

challenges organizations face, such as underestimating the

complexity of the transition, neglecting security

considerations, and overlooking the importance of monitoring

and logging. By identifying these pitfalls, organizations can

better prepare for and navigate the complexities of migration.

6.1 Underestimating Complexity

• Cultural and Organizational Change: Acknowledge that

migration affects not just technology but also people and

processes [14]. Preparing the organization for change is as

important as the technical aspects.

• Technical Debt: Addressing legacy issues and technical

debt before migration can reduce complications and

ensure a cleaner transition.

6.2 Neglecting Security Considerations

• Container Security [15]: Implementing robust security

practices for container management, including securing

the container runtime environment and using trusted

container images.

• Network Security [15]: Ensuring network security policies

are updated to accommodate the dynamic nature of

containerized environments.

6.3 Overlooking Monitoring and Logging

• Visibility: Adopting tools and practices that offer deep

visibility into containerized environments is essential for

troubleshooting and performance tuning.

• Centralized Logging: Implementing a centralized logging

solution to aggregate logs from all containers, facilitating

easier analysis and monitoring.

7. Best Practices

Organizations must adhere to a set of best practices to ensure

a smooth and effective transition. These include

comprehensive team training, adopting continuous

integration and deployment (CI/CD) pipelines, and

implementing DevOps principles to foster collaboration and

efficiency. This section provides actionable recommendations

for organizations to follow, ensuring a successful transition to

a modern containerized environment.

7.1 Comprehensive Training

● Skills Development: Investing in training and

development programs for teams to acquire necessary

skills in container management, orchestration tools, and

microservices architecture [14].

● Knowledge Sharing: Encouraging knowledge sharing and

collaboration across teams to disseminate learnings and

best practices.

7.2 Embrace CI/CD

● Automation: Leveraging CI/CD pipelines for automated

testing, building, and deployment processes. This ensures

a consistent and error - free deployment process, which is

crucial for managing containerized applications [16].

● DevOps Culture: Fostering a DevOps culture where

development and operations teams collaborate closely,

enabling faster iterations and more resilient systems [16].

7.3 Implement DevOps Principles

● Collaboration and Communication: Enhancing

collaboration between teams to break down silos and

improve efficiency.

● Continuous Improvement: Adopting a continuous

improvement mindset to enhance processes, tools, and

skills iteratively.

By following these strategies, avoiding common pitfalls, and

adhering to best practices, organizations can navigate the

complexities of migrating to a containerized environment,

setting the stage for future innovation and growth.

8. Conclusion

The transition from traditional IT architectures to container

platforms marks a critical evolution for organizations aiming

to remain competitive in the digital era. Organizations can

successfully navigate this transition by understanding the

types of container orchestration solutions available, adopting

strategic migration approaches, avoiding common pitfalls,

and adhering to best practices. Container orchestration,

despite its complexities, offers substantial benefits in terms of

scalability, efficiency, and agility, signifying a significant

advancement in the way software is deployed and managed.

This white paper serves as a comprehensive guide for

organizations embarking on this transformative journey.

References

[1] P. Sharma, L. Chaufournier, P. Shenoy, and T. Y. C,

“Containers and virtual machines at scale: A

comparative study, ” in Middleware ’16: Proceedings

of the 17th International Middleware Conference,

Paper ID: SR24401231207 DOI: https://dx.doi.org/10.21275/SR24401231207 1986

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Association for Computing Machinery, 2016, pp.1–13.

doi: https: //doi. org/10.1145/298 8336.2988337.

[2] N. Wardle, “An Exploration of VMs, Containers, K8s

& Microservices, ” Oct.22, 2018. https: //blogs. ultima.

com/an - exploration - of - vms - containers - k8s -

microservicess

[3] J. MSV, “Kubernetes: An Overview, ” The New Stack,

Nov.07, 2016. https: //thenewstack. io/kubernetes - an

- overview/

[4] P. Rubens, “What are containers and why do you need

them?, ” www.cio. com, Jun.27, 2017. https:

//www.cio. com/article/247005/what - are - containers

- and - why - do - you - need - them. html

[5] G. Georgovassilis, “Climbing the monolith, ”

George’s Techblog, May 20, 2018. https: //blog.

georgovassilis. com/2018/05/20/climbing - the -

monolith/

[6] J. Lumetta, “Should You Start With A Monolith or

Microservices? | Nordic APIs |, ” Nordic APIs, Jan.25,

2018. https: //nordicapis. com/should - you - start -

with - a - monolith - or - microservices/

[7] J. Nordström, “Architecting for speed: How agile

innovators accelerate growth through microservices, ”

LinkedIn, Sep.02, 2016. https: //www.linkedin.

com/pulse/architecting - speed - how - agile -

innovators - accelerate - growth - nordstr%C3%B6m/

[8] M. Pare, “Docker and Kubernetes: What is the Value

of Containerization?, ” CloudOps, Jul.28, 2017. https:

//www.cloudops. com/blog/docker - and - kubernetes -

what - is - the - value - of - containerization/

[9] G. Haff, “5 advantages of containers for writing

applications | The Enterprisers Project, ” The

Enterprisers Project, Sep.06, 2017. https:

//enterprisersproject. com/article/2017/8/5 -

advantages - containers - writing - applications

[10] P. Iorio, “Container Based Architectures I/III:

Technical Advantages, ” Medium, Jul.13, 2017. https:

//pablo - iorio. medium. com/container - based -

architecture - i - iii - technical - advantages -

7176195456c5

[11] J. MSV, “From Containers to Container Orchestration,

” The New Stack, May 11, 2016. https: //thenewstack.

io/containers - container - orchestration/

[12] S. Orban, “6 Strategies for Migrating Applications to

the Cloud | Amazon Web Services, ” Amazon Web

Services, Nov.01, 2016. https: //aws. amazon.

com/blogs/enterprise - strategy/6 - strategies - for -

migrating - applications - to - the - cloud/

[13] Z. Dehghani, “How to Break a Monolith into

Microservices, ” Thoughtworks, 2018. https:

//martinfowler. com/articles/break - monolith - into -

microservices. html

[14] S. Kuenzli, “Success Strikes Back: Containerizing

Legacy Applications, ” Qualimente, Dec.30, 2016.

https: //www.qualimente.

com/2016/12/30/containerizing - legacy - applications/

[15] G. Kosaka, “You Can’t Secure What You Can’t See -

Docker Network Security, ” LinkedIn, Nov.28, 2016.

https: //www.linkedin. com/pulse/you - cant - secure -

what - see - docker - network - security - glen - kosaka/

[16] R. Scott, “7 Features That Make Kubernetes Ideal for

CI/CD, ” The New Stack, Jun.28, 2018. https:

//thenewstack. io/7 - features - that - make - kubernetes

- ideal - for - ci - cd/

Paper ID: SR24401231207 DOI: https://dx.doi.org/10.21275/SR24401231207 1987

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/298%20%208336.2988337
https://thenewstack.io/kubernetes-
https://pablo-/
https://pablo-/

