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Abstract: The present paper deals with the approximate solution of one dimensional ground water recharge problem through porous 

media with linearpermeability. The phenomenon is formulated using Gauss Elimination Method. . This method is based on Lagrange 

multipliers for identification of optimal values of parameters in a functional. Using this method creates a sequence which tends to the 

exact solution of the problem. The Gauss Elimination Method (GEM) has been shown to solve effectively, easily and accurately a large 

class of linear problem with approximations converging rapidly to exact solutions. The solution of nonlinear partial differential 

equation by using finite element method, is in the term of ascending series and it is obtained by using Matlab and Mathematica. 
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1. Introduction 
 

The unsteady and unsaturated flow of water through soils is 

due to content changes as a function of time and the entire 

pore spaces are not completely filled with flowing liquid 

respectively. Such type of flows helps some workers like 

hydrologist, agriculturalists, many fields of science and 

engineering. The water infiltrations system and the 

underground disposal of seepage and waste water are 

encountered by these flows, which are described by 

nonlinear partial differential equation.  

 

The mathematical model conforms to the hydrological 

situation of one dimensional vertical ground water recharge 

by spreading [1]. Such flow is of great importance in water 

resource science, soil engineering and agricultural sciences. 

In this chapter, we have obtained a numerical solution of the 

problem by the finite element technique. 

 

2. Statement of the problem 
 

In the investigated mathematical model, we consider that the 

groundwater recharge takes place over a large basin of such 

geological location that the sides are limited by rigid 

boundaries and the bottom by a thick layer of water table. In 

this case, the flow is assumed vertically downwards through 

unsaturated porous media.  

 

It is assumed that the diffusivity coefficient is equivalent to 

its average value over the whole range of moisture content, 

and the permeability of the media is either linear or 

parabolic function of the moisture content. The theoretical 

formulation of the problem yields a nonlinear partial 

differential equation for the moisture content. 

 

 

 

 

3. Mathematical Formulation of the problem 
 

We derive a mathematical model of one dimensional ground 

water recharge through porous media. The equation of 

continuity for an unsaturated porous medium [4], is given by  

  .s M
t
 


 


………….. (1) 

Where  is moisture content on a dry weight basis,  s is the 

bulk density of the medium and M is the mass flux of 

moisture.  

 

From Darcy's law [1, 2, 3] the equation for the motion of 

water in a porous medium is, 

V= -k             ………….. (2) 

Where, V is the volume of the flux of moisture,  - the 

gradient of the whole moisture potential and k the coefficient 

of aqueous conductivity. Combining equations (1) and (2), 

we get  

  .( )s k
t
   


  


………….. (3) 

Where,  is the fluid density. Since, in the present case, we 

consider that the flow takes place only in the vertical 

direction, equation (3) reduces to, 

( )s k kg
t z z z

 
  

    
  

    
………….. (4) 

Where   the capillary pressure potential, g is the 

gravitational constant and  =  - gz [5-9] The positive 

direction of the z-axis is the same as that of the gravity.  

 

Considering  and  to be connected by a single valued 

function, we may write (4) as, 

s

k
D g

t z z z

  



    
  

    
………….. (5) 
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Where 

s

D k
 

 





 which is called diffusivity 

coefficient. 

Now we assume permeability is a linear function of the 

moisture content, that is k = ko, ko= 0.232, and replacing D 

by its average value Da .we get  
2

2a o

s

D k
t z z

   



  
 

  
………….. (6) 

Now consider the water table to be situated at a depth L, and 

take 
z

L
 , 

2

atD
T

L
 , o

o

s a

k

D





 we may write the 

boundary value problem as, 
2

2 o
T

  


 

  
 

  
………….. (7) 

Where  = Penetration depth (dimensionless) 

T = time (dimensionless) 

o = Flow parameter (cm
2
) 

 = Mass density of water (gm) 

s = Bulk density of the medium on dry weight basis (gmcm
-

3
) 

ko= Slope of the permeability vs moisture content plot 

(cmsec
-1

) 

Da= Average value of the diffusivity coefficient over the 

whole range of moisture content (cm
2
sec

-1
) 

 

Now for definiteness, we choose a set of appropriate 

boundary conditions are 

(0, ) , (1, ) 0oT T


 



 


  …….. (8) 

( ,0) 0    ………….. (9) 

Where, initially we consider the moisture content throughout 

the region to be zero, at the layer z = 0 it is o , and at the 

water table (z =L) it is assumed to remain 100% throughout 

the process of investigation. Note that the effect of capillary 

action at the stationary groundwater level, being very small, 

is neglected. The following values of the various parameters 

have been considered in the analysis:  = b = 2.035, o = 0.5, 

h =1/15 and k = 0.002223 for 225 time levels. 

 

4. Mathematical Solution 
 

We obtain the numerical solution of the equation (7) by 

finite element method. In the present problem the region of 

interest is the x – axis from =0 to =1. Suppose the region 

is divided into a set of n equal subinterval called element as 

discussed in 1.3.2. The elements are numbered as 1, 2, 3, … 

…, N, typical element being the e
th

 element of length he 

from node e to node e+1.  

 

Now, the variational formulation of given partial differential 

equation (7) requires the functional 

2

1
( ) 2

2
R

J d
T

  
   

 

    
    

     
 is minimum 

………….. (10) 

We assume that the functional J() can be written as the sum 

of N elemental functional as, J(
(e)

) as,  

 ( ) ( )

1 1

( )
N N

e e

e e

J J J J 
 

     

Where  
( )

2
( ) ( ) ( )

( ) ( ) ( ) ( )1
2

2 e

e e e
e e e e

R

J J d
T

  
   

 

    
     

     
 ………….. (11) 

and
( ) ( ) ( )

1 2,e e eR       is the domain of the typical 

element (e). The function 
(e)

 is defined over the element (e) 

and zero elsewhere. We take the approximate solution using 

Linear Lagrange interpolation method as, 
2

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( )
T Te e e e e e

j j

j

N N N     


  
 

………….. (12) 

Where N
(e) 

= [N1 N2] and 
(e)

 = [ 12]
T
 .  

 

For line segment elements, shape functions are 

1
1

2 1

N
 

 





and 2

2

2 1

N
 

 





………….. (13) 

Since 
( ) ( ) ( ) ( ) ( )( )

T Te e e e eN N     ,    

( ) ( ) ( )
( ) ( )

T

T
e e e

e eN N
 

  

  
 

  
    

and hence 

2
( ) ( ) ( )

( ) ( )

T

T
e e e

e eN N
 

  

   
 

   
.   

Therefore the equation (11) can be written as, 

 

   
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2
2

T T

T T

e

e e e e
e e e e e e e e

R

N N N
J J N N N d

T


     

  

       
                  

  

        ………….. (14) 

The conditions for extremizing the equation (14) with 

respect to 
( )e  give the element equations for a typical 

element (e) as, 
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 
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
2 0

T T

T

e

e e e e e
e e e e e

e

R

J N N N
N N N d

T


   

   

        
                   


 

 
In matrix form, we may write the element equation as 

( )
( ) ( ) ( ) ( ) ( ) 0

e
e e e e eA B C

T


 


  


………….. (15) 

 

where , A
(e)

, B
(e)

 and C
(e)

 are called element matrix for the 

typical element (e) defined as,  

 
( )
2

( )
1

( ) ( ) ( )

e

T

e

e e eA N N d





    ,    

( )
2

( )
1

( )
( ) ( )

e T

e

e
e eN

B N d








 
    
   ,    

( )
2

( )
1

( ) ( )
( )

e T

e

e e
e N N

C d






 

  
     
  

Now, for the evaluation of these integrals, we use Gauss 

Legendre Quadrature Method. So we transform co-ordinate 

system  to a local coordinate system in z such that for  = 

1 , we get z = -1 and for  = 2  , we get z = 1. Therefore the 

shape function becomes, 1

1
( ) (1 )

2
N z z   and  

2

1
( ) (1 )

2
N z z  and Jacobian matrix is  

1

2
J h . Now, 

by applying Gauss Legendre Quadrature method to the 

above integrals, we get the element matrix for the typical 

element (e) as, 

 
1

( ) ( ) ( ) ( )

11

( )
T

r
e e e e

i i

i

A N N Jdz A z W


   

1 ( )
( ) ( ) ( )

11

1
( )

Te r
e e e

i i

i

N
B N Jdz B z W

J z




 
     

  

1 ( ) ( )
( ) ( )

11

1 1
( )

Te e r
e e

i i

i

N N
C Jdz C z W

J z J z 

  
     

  

Where Zi and Wi are corresponding gauss points and gauss 

weights with respect to r which can be obtained from the 

table 1.1. We consider degree of polynomial p =2 for A
(e)

 

then r = 2 and p = 1 for B
(e)

 and C
(e)

 then r =1. Therefore the 

element matrix for the typical element (e) becomes, 

 
( )

( )
2 1

1 26

e
e h

A
 

  
 

,   
( )

1 1

1 12

eB
  

  
 

,  

( )

( )

1 11

1 1

e

e
C

h

 
  

 
………….. (16) 

Now we express the element equations (15) in terms of the 

global nodal values i for each element. Since the equation 

(15) is derived for an arbitrary typical element, it holds for 

any element from the finite element mesh. Since the 

elements are connected at nodes 2 and 3, 3 and 4, …….., N-

1 and N and  is continuous, 2 of e
th

 element should be the 

same as 1 of (e + 1)
th

 element for e = 1, 2, ………, N and 

sum of these two vanishes if there is no external point source 

applied otherwise it is considered as value of the magnitude. 

The inter-element continuity of primary variable can be 

imposed by simply renaming the variables of all elements 

connected to common node. Now we consider a uniform 

mesh of N elements, then the assembled equation is obtained 

by equation (15) and (16) as 

0A B C
T


 


  


………….. (17) 

where the assembled matrix becomes, 

2 1 0 0 ... 0 0

1 (2 2) 1 0 ... 0 0

0 1 (2 2) 0 ... 0 0

... ... ... ... ... ... ...
6

... ... ... ... ... ... ...

0 0 0 0 ... (2 2) 1

0 0 0 0 ... 1 2

h
A

 
 


 
 
 

  
 
 

 
 
 

 

1 1 0 0 ... 0 0

1 (1 1) 1 0 ... 0 0

0 1 (1 1) 0 ... 0 0

... ... ... ... ... ... ...
2

... ... ... ... ... ... ...

0 0 0 0 ... (1 1) 1

0 0 0 0 ... 1 1

B


 
 

 
 
 

  
  

 
 

 
 
 

 

1 1 0 0 ... 0 0

1 (1 1) 1 0 ... 0 0

0 1 (1 1) 0 ... 0 0
1

... ... ... ... ... ... ...

... ... ... ... ... ... ...

0 0 0 0 ... (1 1) 1

0 0 0 0 ... 1 1

C
h

 
 
  
 
  
 

  
 
 

  
  

 

 = [12   …   …  N+1]  ………….. (18) 

 

Now we introduced  a family of approximations which 

approximates weighted average of a dependent variable of 

two consecutive time steps by linear interpolation of the 

values of the variable at the two time steps as, 
1 (1 )n n

j j j      ………….. (19) 
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The time derivatives j are replaced by forward finite 

difference formula such as,  
1n n

j j

j
k

 


 
 ………….. (20) 

Hence the equation (2.2.1.8) can be written as, 

   ( 1) ( )( ) (1 ) ( )n nA k B C A k B C        
 

………….. (21) 

where=1/2 and n = 0,1,2,…. …. 

Using the assembled matrices (18), the global equation (21) 

takes the form,  

 ( 1) ( ) ( )' ' ''n n nM F F     ………….. (22) 

where N+1 is total number of global nodes, global stiffness 

matrix and global generalized force vector F” are defined as, 
' '

11 12

' ' '

21 22 23

' '

32 33

' '

, 1

' '

1, 1, 1

0 ... ... 0 0

0 ... 0 0

0 ... ... 0 0

' ... ... ... ... ... ... ...

... ... ... ... ... ... ...

0 0 0 0 ...

0 0 0 0 ...

NN N N

N N N N

m m

m m m

m m

M

m m

m m



  

 
 
 
 
 

  
 
 
 
 
 

 

Where, 
'

11

1

3 2 2

h
m k




 
   

 
,

'

12

1

6 2

h
m k

h




 
   

 
,

'

21

1

6 2

h
m k

h




 
   

 
 

'

22

2 2

3

h
m k

h


 
   

 
,

'

23

1

6 2

h
m k

h




 
   

 
,

'

32

1

6 2

h
m k

h




 
   

 
 

'

33

2 2

3

h
m k

h


 
   

 
,

' 2 2

3
NN

h
m k

h


 
   

 
,

'

, 1

1

6 2
N N

h
m k

h




 
   

 
 

'

1,

1

6 2
N N

h
m k

h




 
   

 
,

'

1, 1

1

3 2
N N

h
m k

h


 

 
   

 
 

 

' '

11 12

' ' '

21 22 23

' '

32 33

( )

' '

, 1

' '

1, 1, 1

0 ... ... 0 0

0 ... 0 0

0 ... ... 0 0

' ... ... ... ... ... ... ...

... ... ... ... ... ... ...

0 0 0 0 ...

0 0 0 0 ...

n

NN N N

N N N N

f f

f f f

f f

F

f f

f f





  

 
 
 
 
 

  
 
 
 
 
 

 

Where, 
'

11

1
(1 )

3 2

h
f k

h




 
    

 
,

'

21

1
(1 )

6 2

h
f k

h




 
    

 
,

'

12

1
(1 )

6 2

h
f k

h




 
    

 
 

'

22

2 2
(1 )

3

h
f k

h


 
    

 
,

'

23

1
(1 )

6 2

h
f k

h




 
    

 
,

'

32

1
(1 )

6 2

h
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Hence we get N+1 algebraic equation in N+1 unknown 

which can be solved by Gauss elimination method. At the 

beginning of the iteration (i.e. n=0), we assume the solution 


(0) 

from initial condition (9) which requires to have 
(0) (0) (0)

1 2 1.... .... 0N        . A Matlab Code is 

prepared for 15 elements model and resulting equation (23) 

for N = 15 is solved by Gauss elimination method. The 

numerical value are shown in the following table and plotted 

in figure given below. Curves indicating the behavior of 

moisture content corresponding to various time period have 

been shown in the figure. 

 

Table: Moisture content at different time 

 

 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 

0 0.5000 0.5000 0.5000 0.5000 0.5000 

0.0666 0.4736 0.4985 0.5067 0.5095 0.5104 

0.1332 0.4454 0.4974 0.5147 0.5205 0.5224 

0.1998 0.4173 0.4976 0.5242 0.5332 0.5362 

0.2664 0.3914 0.4998 0.5359 0.5480 0.5520 

0.3330 0.3704 0.5052 0.5502 0.5652 0.5703 

0.3996 0.3569 0.5149 0.5677 0.5854 0.5913 

0.4662 0.3538 0.5301 0.5892 0.6090 0.6156 

0.5328 0.3640 0.5521 0.6153 0.6365 0.6436 

0.5994 0.3902 0.5822 0.6469 0.6686 0.6758 

0.6660 0.4351 0.6218 0.6848 0.7059 0.7130 

0.7326 0.5010 0.6720 0.7298 0.7492 0.7557 

0.7992 0.5895 0.7340 0.7829 0.7993 0.8048 

0.8658 0.7019 0.8087 0.8449 0.8571 0.8611 

0.9324 0.8388 0.8972 0.9170 0.9236 0.9258 

0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Figure 
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5. Conclusion 
 

In above graph, X-axis represents the values of ξ and Y-axis 

represents moisture content (θ) of unsaturated porous media 

in large basin of length one. We consider that the sides of 

basin are limited by rigid boundaries and bottom at a thick 

layer of water table so that water flows only in positive 

direction. It is interpreted from the graph that as time 

increases, the moisture content also increases but the rate at 

which moisture content rises at each point in basin slows 

down with increase in time. 
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