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Abstract: Zero forcing and power domination are iterative processes on graphs where an initial set of vertices are observed The K-zero 

forcing number of a graph G is the minimum cardinality of a K- zero forcing set of G. In this paper we determine the K-zero forcing 

number of CSK- pyramid  networks denoted by ,for all positive values of k except for k = C − 1, C ≥ 2, for which we give an 

upper bound. The k−propagation radius of a graph G is the minimum number of propagation steps needed to monitor the graph G over 

all minimum k-PDS. We give a relationship between the k-forcing and the k-power domination numbers of a graph that bounds one in 

terms of the other 
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1. Introduction 
 

Zero forcing (also called graph infection) on a simple, 

undirected graph G is based on the color-change rule: if each 

vertex of G is colored either white or black, and vertex v is a 

black vertex with only one white neighbor w, then change 

the color of w to black. A minimum zero forcing set is a set 

of black vertices of minimum cardinality that can color the 

entire graph black using the color change rule. The 

propagation time of a zero forcing set B of graph G is the 

minimum number of steps that it takes to force all the 

vertices of G black, starting with the vertices in B black and 

performing independent forces simultaneously. The 

minimum and maximum propagation times of a graph are 

taken over all minimum zero forcing sets of the graph. It is 

shown that a connected graph of order at least two has more 

than one minimum zero forcing set realizing minimum 

propagation time. Graphs G having extreme minimum 

propagation times |G|−1, |G|−2, and 0are characterized,  

 
The minimum propagation time of a graph G. For example, 

it is easy to see that the 4-cycle has Z( )=2  and  pt( )=1. 

By deleting one edge of , it becomes a path , which 

has Z( )=1 and pt( )=2. 

 

Zero forcing was introduced as a process to obtain an upper 

bound for the maximum nullity of real symmetric matrices 

whose nonzero pattern of off-diagonal entries is described 

by a given graph [1]. The minimum rank problem was 

motivated by the inverse eigenvalue problem of a graph. 

Independently, zero forcing was introduced by mathematical 

physicists studying quantum systems [2]. Since its 

introduction, zero forcing has attracted the attention of a 

Mathematics, large number of researchers who find the 

concept useful to model processes in a broad range of 

disciplines. The need for a uniform framework for the 

analysis of the diverse processes where the notion of zero 

forcing appears led to the introduction of a generalization of 

zero forcing called k-forcing [3]. Amos et al. proposed k-

forcing in [3] as the following graph coloring game. Assume 

the vertices of a graph are colored in two colors, say white 

and blue. Iteratively apply the following color change rule: if 

u is a blue vertex with at most k white neighbors, then 

change the color of all the neighbors of u to blue. Once this 

rule does not change the color of any vertex, if all vertices 

are blue, the original set of blue vertices is a k-forcing set of 

G. The original zero forcing is 1-forcing under this 

definition. Because the problem of deciding whether a graph 

admits a 1-forcing set of a given maximum size is NP-

complete even if restricted to planar graphs the general 

problem of finding forcing sets cannot be solved 

algorithmically for large graphs without the development of 

further theoretical tools. 

 

Power domination was introduced by Haynes et al. in [4] 

when using graph models to study the monitoring process of 

electrical power networks. When a power network is 

modeled by a graph, a power dominating set provides the 

locations where monitoring devices (Phase Measurement 

Units, or PMUs for short) can be placed in order to monitor 

the power network. Finding optimal PMU placements is an 

important practical problem in electrical engineering due to 

the cost of PMUs and network size. Although power 

domination is substantially different from standard graph 

domination, the notion of k-power domination was proposed 

as a generalization of both power domination (k = 1) and 

standard graph domination (k = 0) [5]. Chang et al. defined 

k-power domination in [5] using sets of observed vertices. 

Given a graph G and a set of vertices S, initially all vertices 

in S and their neighbors are observed; all other vertices are 

unobserved. Iteratively apply the following propagation rule: 

if there exists an observed vertex u that has k or fewer 

unobserved neighbors, then all the neighbors of u are 

observed. Once this rule does not produce any additional 

Paper ID: ART20192768 DOI: 10.21275/ART20192768 915 

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 

Volume 7 Issue 11, November 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

observed vertices, if all vertices of G are observed, S is a k-

power dominating set of G. Many problems outside graph 

theory can be formulated in terms of minimum k-power 

dominating sets [5] so methods to obtain them are highly 

desired. An algorithmic approach has been attempted, but 

the problem of deciding if a graphs admits a k-power 

dominating set of a given maximum size is NP-complete [5].  

 

Although k-forcing and k-power domination have been 

studied independently, an in-depth analysis of k-power 

domination leads to the study of k-forcing. Indeed, after the 

initial step in which a set observes itself and its neighbors, 

the observation process in k power domination proceeds 

exactly as the color changing process in k-forcing. The aim 

of this paper is to establish a precise connection between k-

forcing and k-power domination to facilitate the transference 

of results, proofs, and methods between them, and ultimately 

to advance research on both problems.      

 

Throughout this paper we work on k-forcing and k-power 

domination concurrently, using results in one process as 

stepping stones for results in the other one. In Section 2 we 

present the definitions and notation that we use in the rest of 

the paper. In Section 3 we give some core results and 

remarks that we use in the sections that follow. In Section 4 

we examine the effect of a a relationship between the k-zero 

forcing that  CSKP-networks. 

 

Preliminaries 

A graph is an ordered pair G = (V, E) where V = V (G) is a 

finite nonempty set of vertices and E = E(G) is a set of 

unordered pairs of distinct vertices called edges (i.e., in this 

work graphs are simple and undirected). The order of G is 

|G|:= |V (G)|. Two vertices u and v are adjacent or neighbors 

in G if {u, v} ∈ E(G). The (open) neighborhood of a vertex v 

is the set (v) = {u ∈ V: {u, v} ∈ E}, and the closed 

neighborhood of v is the set [v] = (v) ∪ {v}. Similarly 

,for any set of vertices S, (S) = (v) and [S] = 

[v]. The degree of a vertex v is (v) := |N(v)|.The 

maximum and minimum degree of G are ∆(G) := max{ ( 

(v) : v ∈ V }and δ(G) := min{ ((v) :v ∈ V }, 

respectively; a graph G is regular if δ(G) = ∆(G). We will 

omit the subscript G when the graph G is clear from the 

context. 

 

A path joining u, v ∈ V is a sequence of vertices u = 

= v such that {  , } ∈ E for each i = 0, . . ., 

r − 1. A graph G is connected if there is a path joining every 

pair of different vertices. If a graph is not connected, each 

maximal connected sub graph is a component of G. In this 

paper, c(G) denotes the number of components of G and , . 

. . , denote the components of G. Most of the results in 

this work are given for connected graphs, since if a graph is 

not connected, we can apply the results to each component. 

If X is a set of vertices of G, the subgraph induced by X (in 

G) is denoted as G[X]; it has vertex set X and edge set {{u, 

v} ∈ E : u, v ∈ X}. The graph G − X is defined as G[V \ X]. 

The contraction of X in G is the graph G/X obtained by 

adding a vertex to G− X with NG/X( ) = NG[X] \ X. 

Note that G/X does not require G[X] to be connected 

whereas the standard use of graph contraction does.   

2. Basic Rules 
 

The following Basic Rules follow directly from the 

definitions of k-power domination and k-forcing, and 

provide the initial connection between both concepts.  

 

Rule 1: In any graph G, if T is a k-forcing set of G then T is 

also a k-power dominating set. The converse is not 

necessarily true, but S is a k-power dominating set if and 

only if N[S] is a k-forcing set. As a consequence,  
≤ (G) ≤  (∆(G)+1).  

 

Rule 2: (Monitored vertices). Let G be a graph, S ⊆ V (G) 

and k ≥ 0. The sets (  ≥0 of vertices monitored by 

S at step i are defined as follows: 

 (S) =  [S], and 

 (S) = U{  [v]: v∈ (S) such 

that   ≤ k}.          

 

The second part represents the propagation rule. Since  

(S) is always a union of neighbourhoods, (S) ⊆  

(S).  If (S) =  (S).for some , then (S) = 

(S) for any j ≥ . We thus define (S) = (S) 

When the graph G is clear from the context, we will simplify 

the notations to (S) and  (S). 

 

Rule 3: A k−power dominating set of G (k−PDS) is a set S 

⊆ V (G) such that (S) = V (G). The k−power 

domination number, , of G is the least cardinality of a 

k−power dominating set of G. A set is a k-PDS in G 

of cardinality . Generalized power domination 

reduces to the usual power domination when k = 1 and to the 

domination when k = 0.  

 

Rule 4: In a graph G, S (V (G)) is a k-power dominating set 

of G if and only if N[S] \ S is a k-forcing set of G – S 

 

Observation 1.  Let T be a k-forcing set of a graph G. Let A 

⊆ T. 

1) If A is k-forcing set of T in G, then A is a k-forcing set of 

G; 

2) If A is k-power dominating set of T in G, then A is a k-

power dominating set of G. 

 

Observation 2.Let S be a k-power dominating set of a graph 

G .Let A ⊆ S. 

1) If A is k-forcing set of N[S] in G, then A is a k-forcing 

set of G; 

2) If A is k-power dominating set of N[S] in G, then A is a 

k-power dominating set of G. 

 

If A is k-power dominating set of N[S] in G, then A is a k-

power dominating set of G. 

 

Observation 3. Let G be a graph that has an edge. 

Then  ≤ γP (G), and this bound is tight. 
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3. k- zero forcing number of CSK- pyramid 

network 
 

Theorem 3.1 ,   (CS)  

For C 3 and k [c-1] , c-k then 

c-k. 

 

Proof    CS –pyramid network denoted by consist of 

a set of vertices,  we know that 

v )={(r, , , …… ));r [L], [c ,for 

i [r]}U{(0,(1))}. 

 

Let S = {(1,(i)): k ≤ i ≤ C − 1}. (The vertices in S are 

coloured in black for K=1,C=5). 

 

Here S  is  K-PDS OF  such that s   S  has atleast 

one neighbor not in N[S/{s}]  .We first show that 

≤  -   .Recall that  is a 

zeroforcing set of CS-Pyramid   For each s S,choose a   

  such that       N[S/{s}]    .Then 

N[S]/{ , …….. } is also a zero forcing set since  s will 

force   in step one  so, ≤ -   ≤C-

K. we get the result. 

 

Theorem 3.2 

For C 3 and k [c-2]  , c-k then c-

k. 

 

Proof    

We know that S be a minimum k-PDS of  of 

c-k [theorem 11] therefore N[S]  is a zero 

forcing set    Here     atleast one force 

must be performed at each time step , v N[S]  and v∉N[S] 

/S , suppose  v∉N[S]/S ,atmost  v∉N[S]/S forces can be 

performed ,at any one time step  ,It’s clearly graphs    

therefore  c-k.  

 

Theorem 3.3  

For C 3 and k [c-2] , c-k then c-

k. 

 

Proof 

Clearly, c-k   Let C 3 For k=c-1,any vertex in 

level 1 forms a K-PDS  of  ,For k [C-2]  the result 

from theorem 3.1 and 3.2   we get  the result. 
 

4. Conclusion  
 

In this paper, we have determined the k−power domination 

number and zero forcing of CSK Pyramid networks, 

CSKP(C,L) , for all positive values of k except for k = C−1, 

C ≥ 2, for which we give an upper bound. k−propagation 

radius of CSKP(C,L) in some cases. The k−power 

domination number of other pyramid networks such as grid 

pyramids, torus pyramids , k−propagation radius of 

CSKP(C,L) in some cases  can be studied in future. 
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