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Abstract: In this paper, different finite element models have been adopted to investigate the effectiveness of analysis procedures on the 

critical buckling loads of steel portal frame. In the linear approach where most analysis softwares adopt, the members imperfection are 

neglected, this can be leads to overestimate frame buckling strength. Therefore this paper aim to compare the critical loads obtained by 

the linear eigenvalue buckling analysis with corresponding value determined by the non-linear Riks method where the members 

imperfection are included. Different beam, column and loading nature has been considered in the finite element simulation. The results 

indicated that, the critical buckling loads obtained by the linear approach could give an overestimate buckling strength by 18% for the 

steel portal frame loaded with line load on its beam. A critical load reduction factor has been developed, for frames that are 

imperfection sensitive, with correlation coefficient of 0.907. 
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1. Introduction 
 

Structure stability is an important parameter in designing 

structures. In many instances, buckling is the primary 

consideration in the design of various structural 

configurations, where the buckling load could be remarkably 

lower than the load cause yielding in some members. Portal 

frame is an example of these structures. A portal frames 

similar to that shown in Figure 1 is usually adopted in single-

story buildings for industrial, warehousing or other purposes. 

  

 
Figure 1: Portal frame [1]. 

 

In most general engineering software, the buckling analysis is 

executed by linear Eigenvalue buckling analysis. This paper 

aims to compare the linear buckling load with the buckling 

load obtained from a more sophisticated nonlinear analysis. 

In this work, Abaqus software has been adopted to execute 

both linear and non-linear analysis, where the Eigenvalue 

buckling analysis is used as an example for the adopted 

analysis in routine design work to determine linear elastic 

buckling load while the Riks method is adopted for more 

sophisticated nonlinear buckling analysis, where the member 

imperfection can be included. 

  

2. Review of Literature 
 

2.1. Stability 

 

Structure stability should be well-understood to get more 

economical use of the material, where in almost all 

constructions, when demanding the use of higher strength 

members with the lighter weight that can be associated; the 

consideration of structure stability must play a crucial role in 

design. Increased strength and increased slenderness 

invariably lead to problems with instability [2]. 

 

2.2. Linear analysis 

 

The critical buckling load is the main criterion to measure 

any structure stability. The critical load is the load that 

corresponding to a condition in which a perturbation of the 

deformation status does not interrupt the equilibrium between 

internal and external forces [3].  

 

In the stiff structures, the estimation of critical buckling loads 

can be done by executing linear eigenvalue buckling analysis. 

Stiff structures are those structures carry their designed loads 

mainly by axial force or membrane force, rather than bending 

action. Their response involves very small deformation 

before buckling [4]. Although the responses of a structure are 

nonlinear before the collapse, an eigenvalue buckling 

analysis will provide a useful estimation of the collapse mode 

shapes [4]. 

 

The searching in the eigenvalue buckling problems is for the 

loads that make the stiffness matrix become singular [5]. So 

that the problem of  

 

 has a non-trivial solution, where  

 

  is the tangent stiffness matrix, when the loads are 

applied, 

 

 is a non-trivial displacement solutions. 
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The linear buckling analysis is widely used in almost all 

commercial software because the linear approaches are 

simple and fast to solve. The problems in the real world are 

only approximated to be linear; the more accurate results can 

be gain with nonlinear analysis, and that is the main interest 

of this research. 

 

2.3. Non-linear analysis 

 

In many instances, the system behavior showed a reasonable 

idealization after the linear analysis. However, in other cases, 

the results may present an unrealistic approximation of the 

response. Therefore, the analysis type (linear or nonlinear) 

depends on the main goal of the analysis and the system's 

response errors that may be accepted. In some cases, the only 

option is the nonlinear analysis for the designer as well as the 

analyst [6]. 

 

The nonlinear geometry problems sometimes involve 

buckling or collapse response, in which the load-

displacement response showed a negative stiffness, in that 

case and to stay in equilibrium the structure must release 

some strain energy. Often it is necessary to obtain nonlinear 

static equilibrium solutions for the unstable problems, where 

the load-displacement response shows the behavior sketched 

in Figure 2, that is, when the load and/or the displacement 

may decrease as the solution evolves. The modified Riks 

method is an algorithm that allows an effective solution of 

such cases [4]. 

 

The response in the post-buckled is unstable in many cases; 

thus, the collapse loads will strongly depend on original 

geometric imperfections, and that known as imperfection 

sensitivity; in that scenario, the actual failure load could be 

remarkably lower than the buckling load estimated by the 

eigenvalue buckling analysis. However, the eigenvalue 

buckling analysis provide a non-conservative estimation of 

the structural load carrying capacity even if the pre-buckling 

responses are stiff and linear elastic, a nonlinear load-

displacement response analysis for the imperfect structures 

are generally recommended to follow the eigenvalue 

buckling analysis, that is mainly if the structures are 

imperfection sensitive [4]. 

 

In the Riks method the load magnitude is used as an 

additional unknown; where it solves simultaneously for both 

loads and displacements. Thus, another value must be add to 

measure the solution progress; Abaqus uses the arc length, 

( ), along with the static equilibrium path in load-

displacement space as shown in Figure 3. This approach 

provides solutions regardless of whether the response is 

stable or unstable. 

 

The Riks method also can be used to solve post-buckling 

problems, with both stable and unstable response. However, 

the exact post-buckling problems cannot be analyzed in a 

simple direct way due to a discontinuous response showed by 

the structure at the point of buckling, and to analyze a post-

buckling problem therefore and instead of bifurcation 

problem the response must be turned into a continuous 

response. This effect can be established by introducing some 

initial imperfection into the perfect geometry. Thus in the 

buckling mode, there is some response before reaching the 

critical load [4]. 

 

The geometric imperfection is based on eigenvalue buckling 

analyses, where it captures one of the buckling mode shapes. 

However, the lowest magnitude of the buckling modes is 

assumed to provide the most critical imperfections, therefore 

the lower modes usually are scaled and assigned to the 

perfect geometry. The imperfection magnitude should be 

realistically chosen. The manufacturing tolerances may be 

chosen to determine the imperfection size for example. The 

magnitude often is chosen as a percent of dimension for a 

relevant structure such as a beam cross-section or a shell 

thickness [4]. In this study and according to AISC 

recommendations for the maximum fabrication tolerance, a 

geometric imperfection of  is adopted [7]. 

 

 
Figure 2: Typical unstable static response [4] 

 

 
Figure 3: Arc length and arc length increment [4]. 

 

3. Finite element modeling 
 

The structure was simulated in a two-dimensional plane. 

Therefore, it has been enforced to buckle in the plane where 

the moment is about its major axes as shown in Figure 4 and 

figure 5. Due to existing of purlins and bracings shown in 

Figure 1, designers usually concern with sway and non-sway 

buckling modes that produce bending moments about major 

axes of rafters and columns [8]. 
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3.1. Element Type and size 

 

In this study, the plane frame element of Figure 6 has been 

adopted, this element can be assigned with designated cross 

section, and furthermore it can give the prospective deformed 

buckling mode shape.  

 

The mesh size has been adopted after performing multiple 

analysis (which has not been covered in this study). 

However, the chosen mesh size can give accurate results and 

sense the required member imperfection with best time 

consuming, a mesh size of 0.5 meter has been adopted for all 

case studies.  

 

 
Figure 4: A typical internal frame that considered in finite 

element simulation of this study [1]. 

 

 
Figure 5: Modeling of portal frame in Abaqus. 

 
Figure 6: Plane frame element adopted in the simulation of 

the beam and columns. 

3.1. Geometric properties 

 

The frame bay length and heights were changing as each 

individual case study indicted. However, the assigned column 

profile was HEB200, and the assigned beam profile was 

varied between IPE200, IPE220 and IPE270.  

 

 
Figure 7: Frame meshing 

 

3.2. Material property 

 

As stated earlier this paper aim to compare the buckling load 

obtained from linear and nonlinear analysis i.e. measuring the 

imperfection sensitivity for steel portal frame, therefore, the 

material behavior was assumed to be limited in the elastic 

zone with modulus of elasticity and passion ratio equal to 

200,000 MPa and 0.3 respectively. 

 

3.3. Modeling of initial imperfection 

 

Initial local and overall geometric imperfections can be 

predicted from finite element models by conducting an 

eigenvalue buckling analysis to obtain the worst cases of 

local and overall buckling modes. These local and overall 

buckling modes can be then factored by measured 

magnitudes in the tests. Superposition can be used to predict 

final combined local and overall buckling modes. The 

resulting combined buckling modes can be then added to the 

initial coordinates of the structural member. The final 

coordinates can be used in any subsequent nonlinear analysis. 

In this study and according to AISC recommendations for the 

maximum fabrication tolerance, the nonlinear Riks analysis 

was performed after assigning a geometric imperfection of 

 form the buckling mode shape obtained from the 

linear eigenvalue buckling analysis. The first cases were 

simulated with imperfection based on sidesway uninhibited 

buckling mode shape as shown Figure 8, and the second 

cases were then simulated with imperfection based on 

sidesway inhibited buckling mode shape as shown in Figure 

9. 
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Figure 8: Sidesway uninhibited buckling mode shape. 

 

 
Figure 9: Sidesway inhibited buckling mode shape. 

 

3.4. Loading and Boundary conditions 

 

The columns bases were constrained against movement in all 

directions i.e. hinged supports has been assigned for all 

cases. After that and to measure the frame sensitivity to 

imperfection with deferent load nature, two kinds of load 

where applied, the first type was a concentrated loads applied 

at columns top as shown in Figure 10 and the second type 

was a line load applied at the beam as shown in Figure 11. 

 

 
Figure 10: Applying concentrated loads at columns. 

 

 
Figure 11: Applying uniformly distributed load at the beam. 

 

 

4. Model Validation 
 

The proposed finite element model was validated by 

comparing its critical buckling load with the load obtained by 

the traditional analytical approach. 

 

In the finite element model, the buckling loads for the two 

buckling mode shape (sidesway inhibited and sidesway 

uninhibited) were obtained by applying concentrated loads at 

columns top. However, in the traditional approach, the 

buckling loads were obtained from Euler equation, as shown 

in equation (1) below after deriving the effective length 

factor (k) for the two buckling mode shape from equation (2) 

for sidesway inhibited and equation (3) for sidesway 

uninhibited [9]. 

 

 

……………………………………………(1) 

 

 

 

….……...........(2) 

 

……………….(3) 

 

Where 

 

…………………………….(4) 

 

 

Equation (4) has been solved for different values of 𝐺𝐴 and 

𝐺𝐵 using the goal seek Excel formula. The subscripts A and 

B refer to the joints at the ends of the considered column. 

Where the hinge support can be interpreted as a very flexible 

beam, therefore the ratio approaches to a very high value, a 

value of 10 is usually adopted [10]. 

 

Figure 12 and Figure 13 presents the results comparison 

between the two approaches, were the proposed finite 

element model showed a good agreement with the traditional 

approach. 

 

 
Figure 12: Validation results for sidesway uninhibited frame. 
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Figure 13: Validation results for sidesway inhibited frame. 

 

5. Case studies 
 

As stated earlier different load nature were applied at the 

steel portal frame i.e. concentrated load applied at columns 

top and uniformly distributed load applied at the beam. 

Deferent column to beam stiffness has been considered, the 

imperfection sensitivity for each case has been determined 

based on the ratio of buckling load obtained by the 

eigenvalue buckling analysis to the buckling load obtained by 

the non-linear Riks method analysis. The analysis results for 

each case are presented as follow. 

 

5.1. Sidesway uninhibited frame loaded with line load 

 

In this case, three types of frames has been simulated as 

follow; 

 

 Frame 1: consist of HEB200 columns and IPE200 beam. 

 Frame 2: consist of HEB200 columns and IPE270 beam. 

 Frame 3: consist of HEB200 columns and IPE220 beam. 
 

The results indicated that; as the slenderness ratio increased 

the frames will be more sensitive to imperfection as shown in 

Figure 14, where the critical load obtained by the nonlinear 

Riks method could be less by 18% than the critical load 

obtained by the linear Eigenvalue approach, summary of 

analysis results are presented in Table 1. 

Figure 14: Ratio of Pcr Eigen / Pcr Riks for different column 

slenderness ratio in sidesway uninhibited frame. 

 

Table 1: Results of Sway frames loaded with line load 
# Case 

name 
  Eigenvalue  Eigen/Riks 

1 

Frame 1 

1.8989 44.47 2760.3 2760 1 

2 2.0027 70.35 1736.6 1737 1 

3 2.483 116.29 1214.6 1178 1.031 

4 2.3606 138.20 902.41 850 1.061 

5 2.2696 159.45 699.55 656.5 1.065 

6 2.1996 180.29 559.54 500 1.119 

1 

Frame 2 

2.4055 42.25 8521 8521 1 

2 2.259 52.90 6116 6116 1 

3 2.09 73.41 3457.9 3458 1 

4 1.9958 93.48 2203.9 2150 1.025 

5 1.9359 113.34 1525 1450 1.052 

6 1.8942 133.08 1117 1040 1.074 

7 1.8638 152.76 854.25 793 1.077 

8 1.8408 172.43 674.08 625 1.079 

9 1.8224 192.05 545.47 495 1.102 

 

Table 2 continue: 
# Case 

name 
  Eigenvalue  Eigen/Riks 

1 

Frame 3 

2.2592 52.90 3126 3126 1 

2 2.0903 73.43 2004 2000 1.002 

3 1.9958 93.48 1387 1350 1.027 

4 1.9359 113.34 1019 950 1.073 

5 1.8942 133.08 782.48 725 1.079 

6 1.8639 152.77 620.45 555 1.118 

7 1.8409 172.44 504.51 450 1.1211 

8 1.8226 192.07 418.56 354 1.182 

 

Relation between critical loads obtained from linear analysis 

to corresponding value determined by the nonlinear Riks 

analysis are presented in Figure 15 for all sidesway 

uninhibited frames. Based on 2
nd

 order polynomial trendline, 

the results have been related as indicated in equation (5) 

below with a correlation coefficient, 𝑅2
, of 0.907, 

 

                    

……(5) 
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Figure 15: A scatter plot of Pcr Eigen / Pcr Riks ratio for different 

column slenderness ratio in sidesway uninhibited frame. 

 

5.2. Sidesway inhibited Frame loaded with line load. 

 

In this case, two types of frames has been simulated as 

follow; 

 

 Frame 1: consist of HEB200 columns and IPE200 beam. 

 Frame 2: consist of HEB200 columns and IPE270 beam. 

 

The results indicated that; when the portal frame is sidesway 

inhibited, it will not be longer sensitive to imperfection, 

where the failure load specified by the nonlinear approach 

was caused by bending rather than buckling. As the 

slenderness ratio increased the frame bending stiffness 

decrease and that will cause the failure, therefore a large gap 

arise between the buckling load and failure load indicated by 

the Riks method as shown in Figure 16.  

 

The failure mode shape and summary of the analysis results 

are presented in Figure 17 and Table 2 respectively. 

 

 
Figure 16: Ratio of Pcr Eigen / Pcr Riks for different column 

slenderness ratio in sidesway inhibited frame. 

 

 
Figure 17: Failure mode indicated by the nonlinear Riks 

method. 

 

Table 3: Results of non-sway frame loaded with line load. 

# Case 

name 
  Eigenvalue  Eigen/Riks 

1 

Frame 

1 

0.858 20.10 15398 3550 4.337 

2 0.88723 31.16 17601 5150 3.418 

3 0.94227 44.13 12793 6411 1.995 

4 0.93395 54.68 8883 6550 1.356 

5 0.92611 65.06 6449.7 5920 1.089 

6 0.91871 75.30 4887.6 5175 0.944 

1 

Frame 

2 

0.93725 16.46 23964 5550 4.318 

2 0.92513 21.66 27699 7100 3.901 

3 0.90386 31.75 22456 9300 2.415 

4 0.88582 41.49 15021 10215 1.470 

5 0.87035 50.95 10449 8950 1.167 

6 0.85696 60.20 7657 8313 0.921 

7 0.84527 69.28 5855.5 8330 0.703 

 

5.3. Frame loaded with concentrated loads at columns 

top. 

 

In this case, only one types of frames has been simulated, 

frame consist of HEB200 columns and IPE200 beam, due to 

noticing of a non-imperfection sensitive behavior as shown in 

Figure 18 and Figure 19 for sidesway inhibited and sidesway 

uninhibited respectively, where the critical load obtained by 

the linear Eigenvalue approach not exceeded 5% than the 

critical load obtained by nonlinear Riks method with a 

slenderness ratio, , reach up to 129, for sidesway 

inhibited frame, and 7% with a slenderness ratio, reach up to 

223, for sidesway uninhibited frame. It should be noticed that 

the assigned geometric imperfection was not exceeded 

 as AISC recommendations for the maximum 

fabrication tolerance. Summary of analysis results are 

presented in Table 3. 
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Figure 18: Ratio of Pcr Eigen / Pcr Riks for different column 

slenderness ratio in sidesway inhibited frame. 

 
Figure 19: Ratio of Pcr Eigen / Pcr Riks for different columns 

slenderness ratio in sidesway uninhibited frame 

 

Table 4: Results of sway and non-sway frame loaded with 

concentrated loads. 

# Case name   Eigenvalue  Eigen/Riks 

1 

Sidesway 

inhibited 

0.957 44.81 6979 6876.7 1.014876 

2 0.961 44.99 6926 6825 1.014725 

3 0.951 55.686 4553 4472.8 1.017953 

4 0.946 66.446 3211 3143 1.021683 

5 0.941 77.096 2391 2335 1.024111 

6 0.936 87.642 1854 1796.6 1.031699 

7 0.917 128.89 859.8 821.7 1.046306 

1 Sidesway 

uninhibited 

2.802 131.237 428.5 406.7 1.0536 

2 2.924 136.952 371.95 350 1.0627 

# Case name   Eigenvalue  Eigen/Riks 

3 

Sidesway 

uninhibited 

2.657 155.573 324.83 310 1.0478 

4 2.545 178.808 256.8 243 1.0568 

5 2.455 201.232 209.27 201 1.0411 

6 2.382 223.141 174.425 168 1.0382 

 
 

6. Summary and Conclusions 
 

This study pointed out how the analysis method could affect 

the buckling loads in sidesway inhibited and sidesway 

uninhibited steel portal frame, two analysis procedures with 

two load natures has been presented, linear eigenvalue 

buckling analysis and the nonlinear Riks analysis, where the 

maximum allowable members imperfection are included, has 

been performed. The frames were loaded with line load at its 

beams in some cases and loaded with concentrated loads at 

its columns in the other ones. 

 

From different case studies the following conclusions have 

been drawn: 

 

1. The critical loads obtained by the Eigenvalue buckling 

analysis could give an overestimate stiffness to the 

sidesway uninhibited steel portal frame loaded in its beam 

with uniformly distributed load, where the critical load 

obtained by the nonlinear Riks method could be less by 

18% than the linear Eigenvalue buckling analysis. 

2. When the portal frame is sidesway inhibited, and loaded in 

its beam with uniformly distributed load, it will not be 

longer sensitive to imperfection, where the failure load 

specified by the nonlinear approach was caused by bending 

rather than buckling. It has been noticed that as the 

slenderness ratio increased the frame bending stiffness 

decrease, which will cause the failure. 

3. When the portal frame columns are loaded with 

concentrated loads, the frame didn’t showed a sensitivity to 

geometric  imperfection, where the ratio of critical load 

obtained by linear to nonlinear approaches give a range 

(1.48 – 4.6) % in the sidesway inhibited and (3.8 – 6.3)% 

for sidesway uninhabited. 

4. An equation with correlation coefficient, 𝑅2
, equal to 

0.907, that relate critical loads obtained from the linear 

eigenvalue buckling analysis with those obtained from the 

non-linear Riks method has been developed for portal 

frame loaded in its beam with uniformly distributed load.  

5. For commercial software that offer only Eigenvalue 

buckling analysis to determinate buckling loads, the critical 

buckling loads obtained for steel portal frame can be 

reliable unless the frame was sidesway uninhibited and 

loaded with uniformly distributed load at its beam, as it 

showed sensitivity to geometric imperfection. 

 

7. Recommendations 
 

For future studies the following points are recommended 

 

1. Investigate the imperfection sensitivity for portal frame 

where the bending is about column minor axes. 

2. Investigate the imperfection sensitivity for other structural 

systems. 
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