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Abstract: Malaria is a public problem for health in the Eastern Province of Rwanda. This study was carried out to develop a 

forecasting model of malaria infections with respect to climatic variables for the period 2008 to 2016 in Eastern Province in order to 

strengthen the prevention of the country and measures control. The monthly data on malaria infections in this region from January 

2008 to December 2016 was obtained from Rwanda Biomedical Center whereas climatic data was obtained from Rwanda Meteorological 

Agency. The linear generalized models and SARIMA time series models were used in data analysis. These two models have been used in 

fitting monthly malaria infections as a function of monthly mean temperature, relative humidity and mean rainfall. SARIMA time series 

models provided a best fit for malaria infections as indicated by residual plots. Pearson’ correlation test indicated a positive association 

between relative humidity and mean rainfall to malaria infections. High malaria infections were observed in July. This study is an 

important an important tool for policy makers and implementers in order to put in place effectively and efficiently malaria measure 

controls, because it provides a useful information for forecasting malaria infections and developing a warning system for the future. 
 

Keywords: Autoregressive processes, Malaria infections, Moving Average processes, Time series 
 

1. Introduction  
 

Malaria is a significant public health problem in Rwanda. 

Approximately 90% of Rwandans are at risk of malaria. 

Malaria is the leading cause of morbidity and mortality 

and it is responsible for up to 50% of all outpatient visits. 

In 2006, it was responsible for 37% of outpatient 

consultations and 41% of hospital deaths, with 42% which 

are children under five years [1]. 

Malaria transmission can be tested with non-climatic or 

climatic variables. Their impact on malaria transmissions 

still remains controversial in different regions. The aim of 

this this study is about modeling malaria infections in 

Eastern Province of Rwanda with respect to climatic 

variables. 

 

Rwanda has two district malaria epidemiological strata: in 

one part of the country (Central and Eastern regions), 

malaria is characterized by seasonal peaks of transmission 

and in the other part of the country (Western region); 

malaria transmission is quasi stable around the whole year. 

 

Malaria is still being one of the leading health problems 

not only in Rwanda, but also in other developing world. 

Rwanda took the world vision of eliminating malaria 

where the implementation was planned to be reached in 

2025. Key malaria control measures to the country have 

been implemented progressively; specifically, distribution 

of insecticide bednets, utilization of artemisinin-based 

combination therapy to treat uncomplicated malaria, 

indoor residual spraying of insecticides and provision of 

intermitted preventive therapy for pregnant women and for 

children under five years. Unfortunately, based on malaria 

statistical data of a few years ago, this free malaria target 

plan has not been achieved. 

 

Despite impressive increases in malaria intervention 

coverage, there was still an increase in malaria infections 

each year from 2013, contrary to the years before. Figures 

from Rwanda Biomedical Centre show that the morbidity 

rate in the country is 9% while the mortality rate is 4%. 

 

The relationship between climatic variables and malaria 

transmission has been reported in many countries [2]. The 

impact of environment, weather or climatic changes, are 

the basic factors on undercurrents of malaria infections 

and attention in recent years has attracted considerably, but 

hesitations around future trends of malaria continue. 

 

A poor or ineffective forecasting model building can lead 

to a weak or incomplete plan and bad management of 

malaria, therefore based on past experience from other 

researchers, an updated forecasting model would help in a 

good implementation of future periods about the disease. 

Conversely, the relationship between climatic variables 

and malaria infections in Eastern Province has not been 

studied.  

 

In this study, association of malaria infections and climatic 

factors was modeled using linear regression and time 

series models respectively. This is essential for the 

expansion of malaria cautionary structure, and permit 

operative malaria regulator measures in Eastern Province 

and it will be prolonged to the whole country. 

 

2. Methodology 
 

2.1. Study area 

 

The study was directed to all hospitals from the Eastern 

Province of Rwanda which is a supreme dominated area of 

malaria. The Eastern Province is the largest (9, 813 

km
2
around37.26% of the country), the most populated (2, 

600, 812) and the least dense (275 people per km
2
) of 

Rwanda’s five province. This Province was created in 

January 2006 as a government program for 

decentralization that held for the country’s local 

administrative structures. It has seven districts where we 

can in each find at least one referral hospital. Agriculture 

is the most dominating activity of the population in this 

province. The study area is located at a long plane altitude 

of 216 meters above the sea level and has a climate with 
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variation between winter and long summer seasons with a 

high temperature and low precipitation in the country 

along the whole year. 

 

2.2. Data description 

 

Data on monthly Malaria infections (Fig.1) from January 

2008 to December 2016 were gotten from Rwanda 

Biomedical Center, climatic data (Fig. 2;3;4) were 

obtained from Rwanda Meteorological Agency, the well-

known nearest neighbor and cross validation method was 

used to fill the missing data(~5%). 

 

2.3. Data collection 

 

Secondary data on blood examinations (tested on malaria 

and / or non-malaria cases) was collected from the 

laboratory archives of hospitals in Eastern Province 

region. This was carried out in two stages, specifically data 

on malaria infections and data on climatic factors. The 

complete number of monthly malaria infections slide 

positives between January 2008 and December 2016 was 

taken from the inventory of RBC. The data thus obtained 

comprises of slide positive rates (SPR) values as recorded 

by Eastern hospitals. The data for climatic factors (mean 

temperature, relative humidity and mean rainfall) for the 

equivalent months was taken from Rwanda Meteorological 

Agency. Ethical clearance was not sought since these data 

were collected from official registers. 

 

2.4. Statistical analysis 

 

The forecasting approaches included statistical modeling; 

mathematical modeling and machine-learning methods 

(STATA software) were used for fitting the best 

appropriate model for the time series data. The stationarity 

of the data was tested by autocorrelation function (ACF) 

and partial auto-correlation function (PACF). The Ljung-

Box test was used to check whether the model is properly 

specified. To address the confounding factors, forecasts of 

monthly malaria infections was done together with 

climatic predictors using the best fitting model. 

 

2.5. Study design 

 

Box-Jenkins is a relatively accurate technique and 

powerful forecasting tool. Table 1 shows a step by step 

process required for identifying the appropriate model, 

estimating parameters and checking that the model is 

adequate.  

 

3. Results 
 

The number of monthly laboratory confirmed cases for 

malaria infections showed a decreasing tendency from 

2008 to 2012 (Table 2). But it increased during the years 

2013 to 2016. Investigation of the monthly malaria 

infections, the mean precipitation, mean temperature and 

relative humidity from 2008 to 2016 demonstrates no 

strong tendency and recommends a seasonal dependency 

in the series.  

 

Table 3.1: Schematic Representation of the Box-Jenkins 

for time series modeling 

 
 

In our case, monthly data on malaria infections and 

climatic factors are of interest. By observation, Figure 1 

show that, malaria infections series is not stationary 

because, it exhibits a long term pattern and the mean is not 

zero. The wildest fluctuations in Figure 5 occur around 

January, 2013 where abruptly rose and dropped before 

settling towards more quasi usual levels. In addition, when 

we fit a first order autoregressive model for the raw data of 

malaria infections, we see that the coefficient of 

AR 1 , ϕ1 = 0.73 which is less than one. 

 

 

Table 3.2: Monthly malaria infections and climatic data 
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Malaria data 1297 2182 2829 2403 2526 2968 2686 1848 1902 1820 1441 2347 

Temperature 24.6 25.5 25.8 26.2 25.9 26.6 27.1 27.3 27.8 26.3 25.2 25.8 

Rainfall 18.3 19.2 11.3 25.4 30.6 27.7 14 10.1 8.2 21.3 29.8 27.5 

2
0

0
9
 Malaria data 2952 2455 3573 2057 5049 5372 4794 3580 3390 2826 4164 5755 

Temperature 27.1 26.9 26.5 25.9 25.7 26.2 26 26.5 26.7 26.4 26.6 25.4 

Rainfall 15.2 3.2 7.4 22 35.8 44.5 26 24.6 20 18 15.4 12.9 

2
0

1
0
 Malaria data 3830 4112 4604 6297 11786 10575 4280 1214 883 990 988 1377 

Temperature 26.2 27.1 26.3 26.1 25.7 24.7 25.4 26.4 26.2 26.5 25.8 26.4 

Rainfall 14.7 23.2 12 9.9 8.5 5.5 5.3 3.8 2.8 8.1 8.1 6.9 
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2
0

1
1
 Malaria data 689 565 705 694 2157 4799 2272 1037 416 400 880 1367 

Temperature 27 26.4 26 26.3 25.4 25 25.3 25.4 25.5 25.4 26.3 24.8 

Rainfall 17.6 19.7 22.2 15.3 6.5 1.4 2.6 0.8 5.3 6.7 9 9.2 

2
0

1
2
 Malaria data 1300 1038 579 659 1178 3821 3652 1752 1554 3455 37451 12061 

Temperature 25.8 26.6 25.9 25.6 26.4 23.6 26.2 25.9 26.6 25.8 26.7 26.5 

Rainfall 17 10.1 15.4 17 14.3 4.5 3.2 13.9 48.5 58.8 110.5 70.5 

2
0

1
3
 Malaria data 11039 10386 7740 7992 12961 15908 5212 2685 3236 6861 12518 13799 

Temperature 24.9 26.2 25.5 25.2 25.8 24.9 26.7 27.2 26.9 26.2 25.2 25.3 

Rainfall 166.5 158 81 92 150.1 143.3 102 125.7 130.2 83.6 114 80.1 

2
0

1
4
 Malaria data 18487 11985 8873 10428 16054 20450 8351 6012 11281 23160 38167 45114 

Temperature 25.3 25.7 24.7 24.2 25.5 26.9 28.7 27.6 27.2 27.5 25.7 26.5 

Rainfall 80.1 128.8 61.9 130.7 34 16.7 15 14.3 58.5 209.6 98.6 149.1 

2
0

1
5
 Malaria data 36053 19066 12878 14652 17070 26265 20294 6200 7383 7273 7354 8740 

Temperature 25.7 26.2 25.8 25.3 25.9 27.6 27.5 27.5 26.7 27.3 27.2 26.8 

Rainfall 38 48.2 87.2 45.5 42.5 52.3 43.6 40.9 42.4 41.9 166.8 124.3 

2
0

1
6
 Malaria data 25963 22465 13488 10324 10345 14987 15670 3024 4750 5765 5211 6066 

Temperature 24.8 25.1 25.6 25.7 26.6 27.4 27.9 27.2 26.9 27 26.8 26.5 

Rainfall 151.2 122 77.3 34.3 28.7 21.3 7.8 5.3 27.6 30.7 54.9 59.1 

 

Source: Rwanda Biomedical Center and Rwanda Meteorological Agency 

3.1. Impact of Climatic Factors on Malaria 

Infections 

 

Malaria infections and relative humidity or mean rainfall 

all have positive correlations, as one might expect. Their 

correlation with mean temperature is negative: the warmer 

the air, the less malaria infections (or vice versa). At lag 0, 

figure 6 shows that there is no correlation between malaria 

infections and mean temperature; figure 7 shows that there 

is a positive direct correlation between mean rainfall and 

malaria infections and figure 8 shows that there is again 

an immediate correlation between mean rainfall and 

malaria infections reaching their maximum point at lag 

1(one month before). This means that an increase in 

humidity or in rainfall causes an abrupt upsurge in malaria 

infections. 

 

 Together, these three drivers (climatic factors) now 

explain 72.7% of the variance in monthly malaria 

infections where relative humidity and mean rainfall have 

by far the strongest effect, in a positive direction. Once we 

control either relative humidity or mean rainfall, the 

coefficient on mean temperature becomes positive as well. 

 

𝐦𝐢𝐭 = −𝟒𝟎𝟑𝟐𝟎.𝟎𝟐 + 𝟗𝟗𝟔. 𝟕𝟔𝐦𝐭𝐭−𝟏 + 𝟗𝟗. 𝟕𝟕𝐫𝐡𝐭−𝟏 +
𝟐𝟒𝟐. 𝟑𝟖𝐦𝐫𝐭−𝟏(3.1)

 

 
Figure 3.1: Malaria Infections against Time 

 

 
Figure 3.2: Mean temperature against time 

 

 

 
Figure 3.3: Relative Humidity against Time 

 

 
Figure 3.4: Mean Rainfall against Time 
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Figure 3.5: Malaria Infection Residuals plot 

 

 
Figure 3.6: cross correlation of Malaria infections and 

Mean Temperature 

 

 
Figure 3.7: cross correlation of Malaria Infections and 

Relative Humidity 

 

 
Figure 3.8: Cross Correlation of Malaria Infections 

against Mean Rainfall 

 

Test for stationarity of malaria infections 

 

The dfgls reports tests of the nonstationary null hypothesis, 

that malaria infections series represents a random walk, or 

has a unit root for lags from 1 to 12 months. MAIC 

recommend 5 lags. The DF-GLS statistic for 5 lags is –

2.185, not greater than the 10% critical value of –2.661, 

not greater than the 5% critical value of –2.946 and not 

greater than the 1% critical value of –3.570. If the test 

statistic does not exceed the 5% critical value in absolute 

terms, we cannot reject non-stationarity. In each case here 

we fail to reject the null hypothesis and conclude that 

malaria infections series has a unit root.  

 

In addition, Box-Pierce’Q statistics tests the null 

hypothesis that all correlations up to lag k are equal to 

zero. The series of malaria infections show significant 

autocorrelation as shown in figure 9 that for any k vakue 

are less than 0.05; consequently, we reject the null 

hypothesis that all lags are not autocorrelated. We can see 

from figure 9 and figure 10 that the sample ACF dies out 

very slowly, while the sample PACF is only significant at 

the first lag. Also note that the PACF value at the first lag 

is very close to one.  

 

 
Figure 3.9: malaria infections ac 

 

 
Figure 3.10: malaria infections pac 

 

Expert modeler of the STATA statistical program ver. 11.2 

was used to find the best fit model for forecasting malaria 

infections. Based on characteristics of a good model (the 

one with a few number of parameters), malaria infections 

could be modeled as 𝐴𝑅𝐼𝑀𝐴(1, 1, 1) ×  0, 1, 1 12  process 

of the form 

 

𝝓 𝑩 𝝋 𝑩  𝟏 − 𝑩𝟏𝟐 𝒚𝒕 = 𝜽 𝑩 𝝍 𝑩  𝟏 − 𝑩𝟏𝟐 𝝁𝒕(3.2) 

 

Where B denotes the backward shift operator; 

𝜙 𝐵 , 𝜑 𝐵 , 𝜃 𝐵  𝑎𝑛𝑑 𝜓 𝐵  are polynomials of order 

p=1, P=0, q=1, and Q=1 respectively and 𝜇𝑡 is the purely 

random process with mean zero and constant variance 𝜎𝜀
2. 

 

Table 3: SARIMA model output 

 
 

From table 3, the model describes the first difference or 

month-to-month change in the number of malaria 

infections as a function of present and one month lagged 

random noise.  
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 𝟏 − 𝟎. 𝟓𝟗𝑩  𝟏 − 𝑩𝟏𝟐  𝟏 − 𝑩 𝒚𝒕 =  𝟏 + 𝟎. 𝟖𝟖𝑩  𝟏 +
𝟎. 𝟕𝟓𝑩𝟏𝟐 𝝁𝒕(3.3) 
 

Where 𝑦𝑡 represents malaria infections number at time t. 

Parameter estimates are𝜙1 = 0.57, 𝜃1 = −0.88 and𝜓1 =
−0.75 . The terms ar(1) ma(1) and sma(1) are all 

statistically significant (p 0.000), and the model’s residuals 

are indistinguishable from white noise. It was again found 

that the mean rainfall (𝑃 value = 0.002) and relative 

humidity (𝑃 value = 0.000) as climatic factors were 

significant predictors of malaria infections in the study 

area both lagged at one month while the mean temperature 

has no significant proofs in predicting malaria infection. 

Graphically, predicted values from this model appear 

almost indistinguishable from the observed first regular 

and seasonal differences of malaria infections (Figure 11). 

 

 
Figure 3.11: Predicted 1st regular and seasonal 

differences 

 

The forecasting model proposed seasonal ARIMA model, 

provides a comprehensive set of tools for univariate time 

series model identification, parameter estimation and 

forecasting, and it provides a great flexibility in analysis.  

 

After getting the final model SARIMA (1, 1, 1)(0, 1, 1)12 

of the monthly malaria infections in Eastern Province, that 

has been expressed above which can be expressed in 

equation (2), the researcher used it for forecasting future 

malaria infections number. We forecasted the monthly 

malaria infections in 2017 for 6 months with the last 4 

actual values not included in the original series in order to 

compare them with the forecasted values of the series. 

 

Figure 12 shows the result of predictions and follows the 

same behavior of the original series of monthly malaria 

infections in Eastern Province and the results of forecasts 

for the year 2017 are all between the upper and lower 

boundaries of the 95% confidence intervals. This confirms 

that the forecasting is very efficient. 

 

 
Figure 3.12: Plot of the forecasted data with 95% 

confidence interval 
 

3.2. Conclusion 

 

The forecasted values through 2016 to 2017 showed 

harmony with its counterparts in the original series values. 

Moreover, the forecasted values for the year 2017 are all 

between the upper and lower boundaries of the 95% 

confidence intervals. Thus, it provided a future image of 

the reality of monthly malaria infections in Eastern 

Province. It showed a slight increase in the monthly 

malaria infections number in the Eastern Province and 

there is a real problem that faces that area. Therefore, the 

officials and decision-makers can adopt the results of this 

study to face monthly malaria infections phenomena. 

 

The increase monthly malaria infections in the upcoming 

years in Eastern Province may be due to increasing 

population, climatic changes or resistance to medicine of 

mosquito. This problem need for provision of alternative 

measures for malaria infections control. 

 

3.3. Recommendations  

 

Through the results that have been reached, we 

recommend the following:  

 

To adopt the results of this research and the adopted 

formula of forecasting by the related agencies because it 

uses the suitable scientific style in forecasting as well as 

taking in account that there is a real problem facing 

Eastern Province and our country through the upcoming 

years which is eliminating malaria as one of millennium 

goals. Furthermore, it helps the officials and decision 

makers in finding solutions and quick alternatives to face 

this problem and putting the future plans of the monthly 

malaria infections to stop aggravating the problem. 

 

To use this method in deducting the standard method and 

improving it, to forecast not only monthly malaria 

infections but also other fields of research that predictions 

be produced every year.  

 

Generalizing this study to similar studies on other 

Provinces and comparing between them. 

 

Malaria is a vital problem to socio- economic development 

and progress, thus it should be treated carefully to meet the 

millennium goals that to eliminate it in year 2030. 
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