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Abstract: The PCR products from mitochondrial Cytochrome-b gene were sequenced for seven River Nile teleost species. A three-

nucleotides cytochrome-b gene deletion existed in Siluformes catfishs sequences which may accounts for species adaptation and 

monophyletic evolution need. Analyzed Cytochrome-b gene sequences showed similar nucleotide composition to actinopterygian fishes, 

also high variation at nucleic level which supported the gene‘s suitability as DNA genetic marker in fish phylogentic studies. Results 

indicate closer genetic relationship between teleost actinopterygian River Nile fish species which reflected shared ancestry. Also, data 

confirm the close genetic and evolutionary relation of early divergent orders; Acipenseriforms (Sturgeons) and Semionotiformes 

(Alligator gars). These new sequence data perhaps is useful for successful fish managing, conservancy and aquaculture objectives. 

Additional DNA sequences from other River Nile telesot family representatives utilising the cytochrome-b gene primers used in this 

study, possibly provide contribution to future fish molecular phylogeny studies in this area. 
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1. Introduction 
 

In Egypt, the River Nile considers the superlative natural 

supply providing massive fertile deposits, fishes and diverse 

aquatic species. Nearly, total of 128 fish species inhabit the 

River Nile belonging to 27 families [1-3], from those 

families; Cichlidae, Cyprinidae, Mormyridae, Latidae, 

Schilbeidae, Bagaridae and Clariidae have some species with 

substantial economic and important aquaculture intentions 

[4-10]. 

 

The mitochondrial (mtDNA) genome spans about 16–18 

kilobase pair with similar gene order from myxini to higher 

vertebrates [11-14]. The mtDNA encompass 37 genes which 

are likely to be conserved between vertebrates including 13 

oxidative phosphorylation genes, 22 transfer RNAs, 2 

ribosomal RNAs, L-strand replication origin and a control 

region [15-17]. mtDNA genome possess small size [18], 

rapid evolutionary rate at nucleotide level [19-20] and 

recombination deficiency [21]. Thus, the mtDNA has been 

widely used as constructive molecular genetic marker for 

evolutionary studies, genetic variations and taxonomic 

identifications among related families from population to 

species level.  

 

The DNA variation using sequences of the Cytochrome-b 

gene has been widely used in population studies of 

teleostean fishes [24-26] also as discrimination tool for 

species identification and molecular evolution studies [27-

29]. 

 

Molecular genetic tools are reliable and sensitive for 

assessment of the DNA sequence discrepancies [22-23]. 

Analysis of mtDNA sequence offers valuable genetic 

resource, for which the information can be beneficial for 

understanding evolutionary relations based on comparing 

DNA sequence among species. The aim of this work was 

evaluation of partial Cytochrome-b gene sequence regions 

for sequence variances and phylogenetic relationship among 

seven River Nile teleostei species. These species are Schilbe 

mystus (Linnaeus, 1758), Barbus bynni (Forskål, 1775), 

Oreochromis niloticus (Linnaeus, 1758) Bagrus bajad 

(Forsskål, 1775) Mormyrus kannume (Forsskål, 1775), Lates 

niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 

1822). 

  

2. Material and Methods 
 

2.1 Fish Samples and DNA extraction. 

 

Fish species (Figure 1) were acquired as previously reported 

[31] and classified into species level [32-34]. Genomic DNA 

from roughly 30mg fish muscle tissues was extracted by EZ-

10 spin column genomic DNA kit (Bio Basic Inc., Canada). 

The DNA purity and concentration was estimated using UV 

spectrophotometry. 
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Figure 1: Photographs of the seven River Nile teleostei 

species in this study. Photos 1, 4 and 7 after EL-Mahdi, 2018 

[30] while 2,3,5,6 after EL-Mahdi, 2018 [31]. 

 

2.2 PCR and sequencing of mtDNA Cytochrome-b gene. 

 

The primers (GluFish; 5’AAC CAC CGT TGT TAT TCA 

ACT ACA A3’ by Sevilla et al., 2007 and H15173; 5’CCC 

CTC AGA ATG ATA TTT GTC CTC A 3’ by Parson et al., 

2000) [35, 28] were used to amplify the mitochondrial 

cytochrome-b gene. The PCR reactions were carried out in 

25 ml final volumes containing 1.0× premixed OnePCR
TM

 

2X (GeneDireX Inc, USA), 10 pM of each primer and about 

50ng of each DNA sample. PCRs were conducted using the 

cycling conditions: initial denaturation at 95°C for 2 min, 35 

cycles (94°C for 1 min, 56°C for 1 min and 72°C for 2 min), 

and one cycle at 72°C for 10 min for final extinction in the 

Primus 25 advanced (PEQLAB Biotechnologie GmbH). 

 

PCR products of 8 µl were electrophoresed on 1.5% (w/v) 

agarose/TAE/ethidium bromide (0.5 µg/ml) gel. PCR 

products sizes were estimated by comparison to 100 bp DNA 

ladder (0.1 µg/µl, Solis BioDyne, Estonia) which was 

approximately 460 base pairs. Gel images were taken under 

UV light by the Elttrofor M20 SaS Photo-Gel System (Italy). 

PCR fragments were bidirectionally sequenced (Macrogen 

Inc., Seoul, Republic of Korea) by the same primers used for 

PCR amplification. 

 

2.3 DNA Sequence analysis  

 

Sequences (sense/antisense reads) were manipulated using 

BIOEDIT version 7.0.5.3 [36] and free SnapGene Viewer 

v3.2.1 (GSL Biotech) and then aligned for entire targeted 

DNA fragment. The obtained partial sequences were 

compared to fish cytochrome-b gene DNA sequences in the 

GenBank nucleotide sequence database. For phylogenetic 

analysis, corresponding sequences of five species from five 

other families were recovered from the downloaded DNA 

sequences. Representatives from three families: 

Nemachilichthys rueppelli (Sykes, 1839) (Nemacheilidae); 

Gymnarchus niloticus (Cuvier, 1829) (Gymnarchidae) and 

Synodontis serratus (Rüppell, 1829) (Siluriformes; 

Mochokidae) were contained for use as in-group. The 

Acipenser gueldenstaedtii (Brandt/Ratzeburg, 1833) 

(Acipenseridae) and Atractosteus spatula (Lacépède, 1803) 

(Lepisosteidae) were selected as outgroup.  

 

Sequence alignments were carried out using Muscle software 

[37] implemented in MEGA6 version 6 [38] under 

program’s default. The MEGA6 software was also used for 

nucleotide compositions and phylogenetic analyses. 

 

The appropriate nucleotide substitution model was chosen by 

ML fits of 24 different nucleotide substitution models [39]. 

Phylogentic trees were constructed using two approaches; 

the ML (Maximum likelihood) [40] and UPMGA 

(Unweighted pair group method with arithmetic mean) [41]. 

The robustness of the trees was approximated by performing 

1000 bootstrap replicates [42] and branch length measured 

in number of substitutions per site. 

 

3. Results  
 

3.1 Amplification of mitochonderial Cytochrome-b gene  

 

PCR primers targeting mitochondrial cytochrome b gene 

were successfully amplified the expected DNA fragments 

from the seven fish species and yielded amplicons of 

approximately ~460 bp (Figure 2). 

 
Figure 2: Gel electrophoresis of amplified PCR products 

from the seven investigated River Nile fish species. It shows 

a single band at 460 bp for part of mitochondrial 

cytochrome-b gene. Sch: Schilbe mystus; Byn: Barbus bynni; 

Orn: Oreochromis niloticus; Bbd: Bagrus bajad; Mkn: 

Mormyrus kannume; Lni: Lates niloticus; Cgr: Clarias 

gariepinus ; MW: DNA ladder (100-3000 bp). 

 

3.2 DNA sequence analysis  

 

The partial Cytchrome-b gene sequences were verified as 

being derived from studied species using similarity searches 

of GenBank DNA sequences. Determined DNA sequences 

from this study have been deposited in GeneBank database 

with accession numbers: MH133960, MH133961, 

MH133962, MH133963, MH133964, MH133965, and 

MH133966 (Table 1).  

 

After excluding the forward and reverse primers regions, 

sequence analysis of partial Cytochrome-b gene based on a 

total of 402 base pair (Figure 3) . 
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Alignments of partial Cytochrome-b gene sequences from 

species under studies showed a deletion of three nucleotides 

in sequences derived from catfish species (Schilbe mystus, 

Bagrus bajad and Clarias gariepinus) since their partial 

sequences contained only 399 base pairs (Figure 3 Top). The 

three-nucleotide deletion was not seen in the remaining 

aligned partial sequences. When partial sequences from the 

seven River Nile fish species under study aligned with 5 

retrieved sequences from GeneBank database (Figure 3 

Below), the three-nucleotide deletion was also observed in 

the nucleotide sequence of the catfish Synodontis serratus 

(Siluriformes; Mochokidae). 

 

 

Table 1: The Gene Bank accession numbers for nucleotide sequences in this study. 
Name of species Order Family Accession No. 

Present study, the River Nile species partial Sequences 

Schilbe mystus (Linnaeus, 1758) Siluriformes Schilbeidae MH133960 

Barbus bynni (Forskål, 1775) Cypriniformes Cyprinidae MH133961 

Oreochromis niloticus (Linnaeus, 1758) Perciformes Cichlidae MH133962 

Bagrus bajad (Forsskål, 1775) Siluriformes Bagaridae MH133963 

Mormyrus kannume (Forsskål, 1775) Osteoglossiformes Mormyridae MH133964 

Lates niloticus (Linnaeus, 1758) Perciformes Latidae MH133965 

Clarias gariepinus (Burchell, 1822) Siluriformes Clariidae MH133966 

The Genebank/NCBI Sequences used 

Nemachilichthys rueppelli (Sykes, 1839) Cypriniformes Nemacheilidae AP011305.1 

Gymnarchus niloticus (Cuvier, 1829) Osteoglossiformes Gymnarchidae AP008930.1 

Synodontis serratus (Rüppell, 1829) Siluriformes Mochokidae HF566064.1 

Acipenser gueldenstaedtii (Brandt/Ratzeburg, 1833) Acipenseriformes Acipenseridae KJ789859.1 

Atractosteus spatula Lacépède, 1803 Semionotiformes Lepisosteidae JF912044.1 

 

 
Figure 3: Top) Aligned partial sequences of cytochromeb gene among the seven River Nile teleostei fishes under study. 

Sequences are from the forward strand. Identities among sequences are designated by dots. There is a deletion of three base 

pair arrowed and marked by datchs. Below) Part from the multiple alignment (1-60 bp) for total of 12 sequences (including 

current study partial sequences) corresponding to 12 actinopetrygian families. The three-nucleotides deletion is clearly visible 

in the siluriforme synodontis serrtus sequence (Accession no: HF566064.1, marked)
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3.3 Nucleotide composition bias  

 

In average, nucleotides composition (Table 2) was T(U) 

=27.6, C=30.4, A=27.8 and G= 14.2. The G+C=44.59% and 

A+T=55.40% displayed nucleotides preference towards AT 

contents. The 402 sites that represents at least on third (1/3) 

of the cytochrome b gene coding region revealed 234 

(58.20%) conserved nucleotides, and 168 (41.79%) variable 

nucleotides that included 103 (25.62%) parsimony 

informative, and 65 (16.17%) singleton sites. A greater part 

of cytochrome-b gene being analysed was conserved (58%), 

however sequence divergence of 33.33% was observed. 

 

Table 2: Nucleotide constitution for part of cytochrome b gene sequences analyzed for seven River Nile teleosts species. C= 

conserved; V= variable; PI= parsimony informative; S= singleton sites. 
Species/Nucleotide constitution T(U)% C % A% G% Total G+C % A+T% C V PI S 

Schilbe mystus 26.1 32.3 27.6 14.0 399.0 46.36 53.63 

234 168 103 65 

Barbus bynni 29.1 26.6 29.9 14.4 402.0 41.04 58.96 

Oreochromis niloticus 27.4 32.3 25.6 14.7 402.0 47.01 52.99 

Bagrus bajad 29.8 28.8 28.3 13.0 399.0 41.85 58.15 

Momyrus kannume 23.4 33.8 27.9 14.9 402.0 48.76 51.24 

Lates niloticus 28.9 29.6 27.9 13.7 402.0 43.28 56.72 

Clarias gariepinus 28.3 29.6 27.8 14.3 399.0 43.86 56.14 

Average. 27.6 30.4 27.8 14.2  44.59 55.40 

 

3.4 Molecular phylogentic Analysis. 

 

For phylogentic analysis, total of twelve sequences (seven 

analysed in the current study, and five retrieved from 

Genbank) were used. Trees were rooted with Acipenser 

gueldenstaedtii and Atractosteus spatula as an outgrop. The 

GTR+G best-fit model of nucleotide substitution (BIC= 

5553.773; AIC= 5359.948; lnL=-2649.778; 

transition/transversion bias (R)= 2.89; (+G) = 0.29; 

Nucleotide frequencies f(A), f(T), f(C), and f(G) were 0.280; 

0.278; 0.298; and 0.144 receptively) was selected using the 

MEGA6 software. 

 

The genetic distances between twelve sequences from 

actinpetrygian species calculated by the ML/GTR+G model 

with rate variation among sites modelled with a gamma 

distribution (shape parameter = 0.29) is shown in Table 3. 

 

The distance values among species ranged from 0.323 

(schilbe mystus with clarias gariepinus) to 0.761 (clarias 

gariepinus with Acipenser gueldenstaedtii) as shown in 

Table 3. Among the seven studied River Nile teleostei, the 

highest genetic distance is between Barbus bynni and 

Clarias gariepinus (0.639) whilst the lowest was between 

Schilbe mystus with both Clarias gariepinus (0.323) and 

Bagrus bajad (0.375). 

 

 

 

 

 

 

 

The ML/GTR+G model formed a tree (Figure 4) with 

highest log likelihood -2650.2693 based on evolutionary 

distances (Table 3). This tree showed three major 

clades/groups. Clade A demonstrated a clear separation of 

siluformes catfish species of families; Schilbidae, Mockedae, 

Bagridae, and Claridae with high bootstrap support value of 

83. While perciformes species; Oreochromis niloticus 

(cichlidae) and lates niloticus (Lattidae) grouped together on 

well-supported branch (value of 87). 

 

Clade B contains the cyprinformes Barbus bynni 

(cyprinidae) and Nemachilichthys rueppelli (Nemacheilidae) 

with high branch support of 97. The Osteoglossiformes 

Mormyrus kannume (Mormyridae) and Gymnarchus 

niloticus (Gymnarchidae) clustered together with branch 

support of 46. In clade/group C, the outgroup representatives  

 

separated together with branch support value of 69. Also, the 

tree revealed three evolutionary lineages, the 7 species from 

this study, Nemachilichthys rueppelli, Gymnarchus niloticus, 

and Synodontis serratus clustered in accordance with their 

genetic proximity as supported by pairwise distances (Table 

2). The UPMGA -based GTR+R model (Figure 5) with sum 

of branch length 2.74173698 based on pairwise distance 

estimated ML resulted in a tree with comparable topology to 

the ML tree. The twelve analyzed sequences were placed in 

three main groups and the bootstrap confidence levels were 

reasonably high for majority of nodes within the tree. 

 

The clear groupings between similar/related species were 

clearly demonstrated. 
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Table 3: Pair wise genetic distance involving 12 nucleotide sequences (Seven studied River Nile teleost species + 5 retrieved 

sequences) and conducted using the Maximum Composite Likelihood model. The rate variation among sites was modelled 

with a gamma distribution (shape parameter = 0.29). 
 Species name 1 2 3 4 5 6 7 8 9 10 11 12 

1 Schilbe mystus ---            

2 Barbus bynni 0.591 ---           

3 Oreochromis niloticus 0.519 0.547 ----          

4 Bagrus bajad 0.375 0.523 0.529 -----         

5 Momyrus kannume 0.440 0.468 0.487 0.521 ----        

6 Lates niloticus 0.628 0.538 0.375 0.584 0.599 ----       

7 Clarias gariepinus 0.323 0.639 0.603 0.453 0.529 0.561 ----      

8 Nemachilichthys rueppelli 0.499 0.254 0.587 0.646 0.472 0.657 0.579 ----     

9 Gymnarchus niloticus 0.687 0.469 0.623 0.495 0.380 0.639 0.576 0.447 ----    

10 Synodontis serrata 0.371 0.522 0.491 0.379 0.491 0.543 0.314 0.664 0.601 -----   

11 Atractosteus spatula, 0.674 0.504 0.582 0.589 0.551 0.721 0.681 0.573 0.561 0.625 ----  

12 Acipenser gueldenstaedtii 0.752 0.751 0.668 0.696 0.654 0.610 0.761 0.576 0.613 0.841 0.522 --- 

 

 
Figure 4: Molecular phylogenetic analysis using Maximum likelihood method/GTR+G model based on partial cytochrome-b 

sequences of seven River Nile teleost species and other related actinopterygians species. The tree is drawn to scale where 

branch lengths measured in the number of substitutions per site (below the branches) and a discrete Gamma distribution was 

used to model evolutionary rate differences among sites (+G, parameter = 0.29). 

 

 
Figure 5: Molecular phylogenetic analysis by UPGMA method using partial cytochrome b sequences of seven fish species 

and other related actinopterygians based on evolutionary distance estimated using the maximum likelihood method. Branch 

lengths (above the branches) in the same units of the number of base substitutions per site and the bootstrap support of 1000 

replicates is shown next to the branches. 
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4. Discussion 
 

4.1 Cytochrome-b gene amplification and DNA sequence 

analyses  

 

Herein, the mitochondrial Cytochrome-b gene coding 

portions were sequenced for seven River Nile teleost species. 

The Cytochrome-b primers were productively amplified the 

expected DNA fragments from each species. Analysis of 

total 402 base pairs from cytochrome-b coding sequences 

revealed a deletion of three nucleotides in Siluformes catfish 

sequences which may occurs as demands for species 

monophyletic evolution needs. This confirmed by the 

absence of this deletion in species sequences under studies 

which may represent the Siluformes catfishes monophely. A 

study reported the existing of three nucleotide deletion in 

Bagrid catfishes cytochrome-b gene when compared to 

characiformes and cyprinformes fishes [43]. Genetically 

related species have more similar DNA base constitutions 

than those who are distantly related. Data here show high 

level of nucleotide sequence identity in the cytochrome-b 

gene portion analysed from species under study (Figure 2) 

which suggests their genetic relatedness highlighting their 

close evolutionary relationship. Studies reported that, 

comparable cytochrome-b sequences among different species 

considered informative for measuring levels of genetic 

variation, evolutionary relation and sequence divergence [27, 

44-45].  

 

Nucleotide composition confirmed an anti-Guanine and 

preference in bias of thymine, cytocine and adenine as 

reported for Actinopterygian fishes and other mitochondrial 

coding genes [45-49]. Nucleotides preference towards 

adenine raised the AT content, that may reflect more 

transcriptional activities and less methylation. Studies 

reported that bias towards AT contents rather G+C contents 

considers common phenomenon in fish mitochondrial 

genome [50-52]. 

 

Alignment of a total of 402 nucleotide of Cytochrome-b gene 

coding region reveals variations at nucleic level (conserved, 

variable, parsimony informative and singleton sites). This 

suggests that the studied region of Cytochrome-b gene is a 

valuable having more useful phylogenetic information. A 

study reported usefulness of sequences with high number of 

informative sites in differentiation and genetic structure 

among populations [53]. Also, the favouritism towards 

conservations by 58% with probable sequence divergence of 

~ 33.44 % may suggest hidden evolutionary functional 

constraints required for internal genetic modification to the 

evolutionary and sudden environmental changes. 

 

4.2 Molecular phylogenetic relationships 

 

Species assorted into same cluster would have similar 

features and likely to share common sequences from 

previous ancestors. Here, the phylogenetic analysis that 

based on cytochrome-b partial sequences (Figures 4, 5) 

demonstrated trees with similar topologies and presented 

groups of genetically related species allocated closely; those 

would be genetically descent from common ancestor. But 

degree of the genetic closeness varies depending on shared 

genetic formations as indicated by high nucleotide identities. 

Mostly, trees clarified that species possessing high sequence 

identities are grouped together or closely assigned. The ML 

and UPMGA tree constructions support the evolutionary 

distances estimated based on mitochondrial cytochrome-b 

partial sequence information (Table 3). Some studies 

reported that, the genetic divergence and phylogentic 

relations among related species groups can be figured out 

from informational gene DNA contents [54-55]. Also, both 

trees showed separating of out-group species from other 

analysed sequences, which suggested that these two species 

are from a single descent clade and likely to have common 

ancestor with other studied teleosts species. As reported by 

Inoue et al., 2003 [56] and Venkatesh et al., 2001[57] the 

acipenseriforms (Acipenser gueldenstaedtii), and gars 

(Atractosteus spatula) are related to teleosts fishes. Several 

studies reported usefulness of cytochrome-b gene for 

evolutionary and relationship analysis between recently-

diverged taxa [58] and widely been used in fish systematics 

and phylogeography [59-62]. 

 

5. Conclusion 
 

In this study, portions mitochondrial of Cytochrome-b from 

seven River Nile teleost species were sequenced and 

evaluated for sequence variances and phylogenetic 

relationship. A three-nucleotide deletion existed in 

Siluformes catfishs Cytochrome b gene sequences which 

may accounts for species adaptation and evolution 

monophyletic need. Cytochrome b gene nucleotide 

compositions were similar to actinopterygian fishes, also to 

other mitochondrial coding genes. The studied Cytochrome b 

gene region displayed high variations at nucleic level, which 

supported the gene‘s importance as a DNA genetic marker in 

fish phylogentic studies. DNA sequences obtained are 

consistent and convincing which reflected the sequence 

differences, evolutionary and phylogenetic outlines among 

fish species under study. Results of this study indicate closer 

genetic relationship between the twelve actinopterygian fish 

(including those in this study) which may be useful for 

successful fish managing, conservation and aquaculture 

objectives. Data obtained builds a helpful contribution to 

future actinopterygian molecular phylogeny studies in this 

area. 
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