ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391

Results for Some of the Projective Special Linear Groups

Rana Noori Majeed ¹, Rasha Ibrahim Khalaf ², Niran Sabah Jasim ³

1,2,3 Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad

Abstract: In this labor we compute the cyclic decomposition for the projective special linear groups $PSL(2,s^{\nu})$ where $\nu=2$ and s=3,5 and 7.

Keywords: General linear group, special linear group, projective special linear group, cyclic decomposition

1. Introduction

The projective special linear group denoted by PSL(n,F) get it by factor out the special linear group SL(n,F) by its center. This group consists two cases the first case where $F \equiv +1 \pmod{4}$ while the other case $F \equiv -1 \pmod{4}$.

In this labor we consider the case where $F = s^2$ and s = 3,5, and 7, so we count for the case $F \equiv +1 \pmod{4}$.

This labor consists two sections, in the first section some basic concept presented in it, while the cyclic decomposition calculate for the groups PSL(2,9), PSL(2,25) and PSL(2,49) in the next section.

2. Preliminaries

This section offers some notions needed it.

Theorem 2.1: [1]

(i) The group $PSL(2,s^{v})$ is simple for $s^{v} > 3$.

(ii)
$$|PSL(2,s^{v})| = \begin{cases} (s^{v}+1) s^{v} (s^{v}-1) & if \quad s=2\\ \frac{1}{2} (s^{v}+1) s^{v} (s^{v}-1) & if \quad s \text{ is a prime } s \neq 2. \end{cases}$$

Lemma 2.2: [1]

PSL(2, S^{v}) has exactly (2 $S^{v} + 10$) / 4 conjugacy classes $C_{<z>}$ for $<z>g \in PSL(2, S^{v})$.

For $s^v \equiv +1 \pmod{4}$:

< <u>z>g</u>	C_{g}	C _g	C _G (g)
< <u>z</u> >	$C_{<\!z\!>}$	1	$s^{v} (s^{2v} - 1)/2$
<z> c</z>	$C_{< z>c}$	$(s^{2v}-1)/2$	S ^V
<z> d</z>	C_{d}	$(s^{2v}-1)/2$	S ^V
<z> a^η</z>	$C_{\ll} a^{\eta}$	$s^{v}(s^{v}+1)$	$(s^{v}-1)/2$
$< z > a^{(s^v - 1)/4}$	$C < z > a^{(s^v - 1)/4}$	$s^{v}(s^{v}+1)/2$	$(s^{v}-1)$
<z> b[™]</z>	$C_{\leq z > b}^{\varpi}$	$s^v(s^v-1)$	$(s^v + 1)/2$

where $1 \le \eta \le (s^v - 5)/4$ and $1 \le \varpi \le (s^v - 1)/4$.

Theorem 2.3: [2]

Let $\rho \in \mathbb{C}$ be a $(s^v - 1)$ -th root of oneness and $\sigma \in \mathbb{C}$ be a $(s^v + 1)$ -th root of oneness, where $i = 2, 4, 6, ..., (s^v - 5) / 2$, $j = 2, 4, 6, ..., (s^v - 1) / 2$, $1 \le \eta \le (s^v - 5) / 4$ and $1 \le \varpi \le (s^v - 1)/4$. Then for $s^v \equiv +1 \pmod{4}$ the ordinary character table of PSL $(2, s^v)$, is:

	< z >	< z > <i>c</i>	< z > <i>d</i>	<z> a^η</z>	$< z > a^{\frac{s^{v}-1}{4}}$	<z> b **</z>
$1_{\mathbf{G}}$	1	1	1	1	1	1
Ψ	s^{v}	0	0	1	1	-1
χi	s" + 1	1	1	$ \rho^{i\eta} + \rho^{-i\eta} $	$\rho^{i\frac{s^{v}-1}{4}} + \rho^{-i\frac{s^{v}-1}{4}}$	0
$\underline{\mathbf{e_i}}$	s ^v – 1	-1	-1	0	0	$-(\sigma^{j\varpi}+\sigma^{-j\varpi})$
ξ1	$\frac{s^v + 1}{2}$	$\frac{1+\sqrt{s^{v}}}{2}$	$\frac{1-\sqrt{s^v}}{2}$	(-1) ^η	$(-1)^{\frac{s^v-1}{4}}$	0
ξ2	$\frac{s^v + 1}{2}$	$\frac{1-\sqrt{s^v}}{2}$	$\frac{1+\sqrt{s^v}}{2}$	(-1) ⁷	$(-1)^{\frac{s^{v}-1}{4}}$	0

Theorem 2.4: [3]

Let G be a cyclic p-group. Then

$$K(G) = Z_p$$
.

Theorem 2.5: [3]

Let G be a cyclic group of order p^n . Then

$$K(G) = \bigoplus_{i=1}^{n} Z p^{i}$$

3. The Cyclic Decomposition for $K(PSL(2,s^2))$ where s = 9 and 25

As in [4] if the diagonalization of the matrix for the rational valued character table presume as

$$\begin{pmatrix} v_1 & 0 & 0 & 0 & 0 \\ 0 & v_2 & 0 & 0 & 0 \\ 0 & 0 & v_3 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & v_n \end{pmatrix}$$

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391

Then the cyclic decomposition for the group $K(SL(2,s^2))$ is:

$$K(PSL(2,s^2)) = Z_{v_1} \oplus Z_{v_2} \oplus Z_{v_3} \oplus ... \oplus Z_{v_n} \qquad ...(*)$$

3.1 The Cyclic Decomposition for K(PSL(2,9))

$$|PSL(2,9)| = 360$$

 $i=2, j=2,4, \eta=1, \varpi=1,2, \rho$ is the 8-th root of oneness and σ is the 10-th root of oneness, so the character table of PSL(2,9)

	< z >	< z > <i>c</i>	< z > <i>d</i>	< z > <i>a</i>	< z > a ²	< z > <i>b</i>	$\langle z \rangle b^2$
C _g	1	40	40	90	45	72	72
C _G (g)	360	9	9	4	8	5	5
1 _G	1	1	1	1	1	1	1
Ψ	9	0	0	1	1	-1	-1
X 2	10	1	1	0	-2	0	0
θ_2	8	-1	-1	0	0	-0.618	1.618
θ_4	8	-1	-1	0	0	1.618	-0.618
ξ1	13 3		-2	-1	1	0	0
ξ2	13 -2		3	-1	1	0	0

Compile θ_2 with θ_4 , we take out

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
9 & 0 & 0 & 1 & 1 & -1 & -1 \\
10 & 1 & 1 & 0 & -2 & 0 & 0 \\
16 & -2 & -2 & 0 & 0 & 1 & 1 \\
5 & 2 & -1 & -1 & 1 & 0 & 0 \\
5 & -1 & 2 & -1 & 1 & 0 & 0
\end{pmatrix}$$

Removing one of the frequent columns we take out

(1	1	1	1	1	1)
9	0	0	1	1	-1
9 10	1	1	0	-2	0
16	-2 2	-2	0	0	1
5	2	-1	-1	1	0
5	-1	2	-1	1	0

The diagonalization of this matrix is

$$\begin{pmatrix}
360 & 0 & 0 & 0 & 0 & 0 \\
0 & -6 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Thus by (*), we take out $K(PSL(2,9)) = Z_{360} \oplus Z_6 \oplus Z_1 \oplus Z_1 \oplus Z_1 \oplus Z_1 \oplus Z_1$

3.2 The Cyclic Decomposition for K(PSL(2,25))

|PSL(2,25)| = 7800

 $i=2,4,6,8,10,\ j=2,4,6,8,10,12,\ 1\leq\eta\leq5,,\ 1\leq\varpi\leq6,\ \rho$ is the 24-th root of oneness and σ is the 26-th root of oneness, so the character table of PSL(2,25)

	<z></z>	<z> c</z>	<z> d</z>	<z> a</z>	<z> a²</z>	<z> a³</z>	<z> a4</z>	< z> a⁵	<z> a⁶</z>	<z> b</z>	<z> b²</z>	<z> b³</z>	<z> b4</z>	<z> b⁵</z>	<z> b⁶</z>	
C _R	1	312	312	650	650	650	650	650	325	600	600	600	600	600	600	
C _G (g)	7800	25	25	12	12	12	12	12	24	13	13	13	13	13	13	
1 _G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Ψ	25	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	
Z 2	26	1	1	1.732050806	1	0	-1	- 1.732050806	-2	0	0	0	0	0	0	
74	26	1	1	1	-1	-2	-1	1	2	0	0	0	0	0	0	
76	26	1	1	0	-2	0	2	0	-2	0	0	0	0	0	0	
7 8	26	1	1	-1	-1	2	-1	-1	2	0	0 0		0	0	0	
710	26	1	1	- 1.732050806	1	0	-1	1.732050806	-2	0	0	0	0	0	0	
θ ₂	24	-1	-1	0	0	0	0	0	0	- 1.77091205	- 1.13612948	- 0.24107336 0.709209774		1.497021496	1.941883634	
θ4	24	-1	-1	0	0	0	0	0	0	- 1.13612948	0.709209774	1.941883634	1.497021496	- 0.24107336	- 1.77091205	
θώ	24	-1	-1	0	0	0	0	0	0	- 0.24107336	1.941883634	0.709209774	- 1.77091205	- 1.13612948	1.497021496	
θε	24	-1	-1	0	0	0	0	0	0	0.709209774	1.497021496	- 1.77091205	- 0.24107336	1.941883634	- 1.13612948	
010	24	-1	-1	0	0	0	0	0	0	1.497021496	- 0.24107336	- 1.13612948	1.941883634	- 1.77091205	- 1.13612948	
θ ₁₂	24	-1	-1	0	0	0	0	0	0	1.941883634	- 1.77091205	1.497021496	- 1.13612948	0.709209774	- 0.24107336	
ξi	13	3	-2	-1	1	-1	1	-1	1	0	0	0	0	0	0	
₹2	13	-2	3	-1	1	-1	1	-1	1	0	0	0	0	0	0	

Volume 7 Issue 1, January 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391

Compile χ_2 with χ_{10} and θ_2 with θ_4 , θ_6 , θ_8 , θ_{10} , θ_{12} , we take

(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
25	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	
52	2	2	0	2	0	-2	0	-4	0	0	0	0	0	0	
26	1	1	1	-1	-2	-1	1	2	0	0	0	0	0	0	
26	1	1	0	-2	0	2	0	-2	0	0	0	0	0	0	
26	1	1	-1	-1	2	-1	-1	2	0	0	0	0	0	0	
144	-6	-6	0	0	0	0	0	0	1	1	1	1	1	1	
13	3	-2	-1	1	-1	1	-1	2	0	0	0	0	0	0	
13	-2	3	-1	1	-1	1	-1	2	0	0	0	0	0	0)	

Removing six of the frequent columns we take out

(1	1	1	1	1	1	1	1	1
25	0	0	1	1	1	1	1	-1
52	2	2	0	2	0	-2	-4	0
26	1	1	1	-1	-2	-1	2	0
26	1	1	0	-2	0	2	-2	0
26	1	1	-1	-1	2	-1	2	0
144	-6	-6	0	0	0	0	0	1
13	3	-2	-1	1	-1	1	1	0
13	-2	3	-1	1	-1	1	1	0)

7800 0 0 0 0 $0 \quad 0 \quad 0$ $0 \ 0 \ 0$ 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0

Thus by (*), we take out

 $K(PSL(2,25)) = Z_{7800} \oplus Z_1 \ Z_1 \oplus Z_3 \oplus Z_2 \oplus Z_4 \oplus Z_1 \oplus Z_1 \oplus Z_1$

3.3 The Cyclic Decomposition for K(PSL(2,49))

|PSL(2,49)| = 58800

 $i=2,\!4,\!6,\ldots,\!22,\,j=2,\!4,\!6,\ldots,\!24,\,1\leq\eta\leq11,\!,\,1\leq\varpi\leq12,\,\rho$ is the 48-th root of oneness and σ is the 50-th root of oneness, so the character table of PSL(2,49)

The diagonalization of this matrix is

	<z></z>	<z> c</z>	<z> d</z>	<z> a</z>	<z> a2</z>	<z> a²</z>	<z> a*</z>	<z> a⁵</z>	<z> a6</z>	<z> a⁷</z>	<z> a⁸</z>	<z> a°</z>	<z> a⁹ <z> a¹⁰</z></z>		<z> a¹²</z>
C ₂	1	1200	1200	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	1225
C _G (g)	58800	49	49	24	24	24	24	24	24	24	24	24	24	24	48
1 _G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ψ	49	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Z 2	50	1	1	1.931851652	1.732050806	1.414213562	1	0.51763809	0	- 0.51763809	-1	-1.414213562	-1.732050806	-1.931851652	-2
Z 4	50	1	1	1.732050806	1	0	-1	-1.732050806	-2	-1.732050806	-1	0	1	1.732050806	2
Z 6	50	1	1	1.414213562	0	-1.414213562	-2	-1.414213562	0	1.414213562	2	1.414213562	0	-1.414213562	-2
Z:	50	1	1	1	-1	-2	-1	1	2	1	-1	-2	0	1	2
Z 10	50	1	1	0.51763809	-1.732050806	-1.414213562	1	1.931851652	0	-1.931851652	-1	1.414213562	1.732050806	- 0.51763809	-2
Z 12	50	1	1	0	-2	0	2	0	-2	0	2	0	-2	0	2
Z 14	50	1	1	-0.51763809	-1.732050806	1.414213562	1	-1.931851652	0	1.931851652	-1	-1.414213562	1.732050806	0.51763809	-2
Z 16	50	1	1	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2
Zıs	50	1	1	-1.414213562	0	1.414213562	-2	1.414213562	0	-1.414213562	2	-1.414213562	0	1.414213562	-2
Z 20	50	1	1	-1.732050806	1	0	-1	1.732050806	-2	1.732050806	-1	0	1	-1.732050806	2
Z 22	50	1	1	-1.931851652	1.732050806	-1.414213562	1	- 0.51763809	0	0.51763809	-1	1.414213562	-1.732050806	1.931851652	-2
θ2	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ.	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θε	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θε	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ10	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ12	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ ₁₄	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ16	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ15	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ20	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ22	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ ₂₄	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
ξ 1	25	4	-3	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
Š :	25	-3	4	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20179774 DOI: 10.21275/ART20179774 1870

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391

<z> b</z>	<z> b²</z>	<z> b²</z>	<z> b*</z>	<z> b⁵</z>	<z> b⁶</z>	<z> b⁷</z>	<z> b⁸</z>	<z> b°</z>	<z> b¹⁰</z>	<z> b¹¹</z>	<z> b¹²</z>
2352	2352	2352	2352	2352	2352	2352	2352	2352	2352	2352	2352
25	25	25	25	25	25	25	25	25	25	25	25
1	1	1	1	1	1	1	1	1	1	1	1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1.937166322	-1.75261336	-1.457937254	-1.07165359	- 0.618033988	-0.125581038	0.374762628	0.851558582	1.274847978	1.61833988	1.85955297	1.984229402
-1.75261336	-1.07165359	-0.125581038	0.851558582	1.61833988	1.984229402	1.85955297	1.274847978	0.374762628	-0.618033988	-1.457937254	-1.937166322
-1.457937254	-0.125581038	1.274847978	1.984229402	1.61833988	0.374762628	-1.07165359	-1.937166322	-1.75261336	-0.618033988	0.851558582	1.85955297
-1.07165359	0.851558582	1.984229402	1.274847978	- 0.618033988	-1.937166322	-1.937166322	0.374762628	1.85955297	1.61833988	-0.125581038	-1.75261336
-0.618033988	1.61833988	1.61833988	-0.618033988	-2	-0.618033988	1.61833988	1.61833988	-0.618033988	-2	-0.618033988	1.61833988
-0.125581038	1.984229402	0.374762628	-1.937166322	-0.618033988	1.85955297	0.851558582	-1.75261336	-1.07165359	1.61833988	1.274847978	-1.457937254
0.374762628	1.85955297	-1.75261336	-1.457937254	1.61833988	0.851558582	-1.937166322	-0.125581038	1.984229402	-0.618033988	-1.75261336	1.274847978
0.851558582	1.274847978	-1.937166322	0.374762628	1.61833988	-1.75261336	-0.125581038	1.85955297	-1.457937254	-0.618033988	1.984229402	-1.07165359
1.274847978	0.374762628	-1.75261336	-0.125581038	- 0.618033988	-1.07165359	1.984229402	-1.457937254	-0.125581038	1.61833988	-1.937166322	0.851558582
1.61833988	-0.618033988	-0.618033988	1.61833988	-2	1.61833988	-0.618033988	-0.618033988	1.61833988	-2	1.61833988	-0.618033988
1.85955297	-1.457937254	0.851558582	-0.125581038	- 0.618033988	1.274847978	-1.75261336	1.984229402	-1.937166322	1.61833988	-1.07165359	0.374762628
1.984229402	-1.937166322	1.85955297	-1.75261336	1.61833988	-1.457937254	1.274847978	-1.07165359	0.851558582	-0.618033988	0.374762628	-0.125581038
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0 0		0	0	0	0	0	0	0	0

Compile χ_2 with χ_4 , χ_6 , χ_{10} , χ_{14} , χ_{18} , χ_{20} , χ_{22} and θ_2 with θ_4 , θ_6 , θ_8 , θ_{10} , θ_{12} , θ_{14} , θ_{16} , θ_{18} , θ_{20} , θ_{22} and θ_{24} we take out

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
49	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
400	8	8	0	2	0	-2	0	-4	0	-2	0	-2	0	-8	0	0	0	0	0	0	0	0	0	0	0	0
50	1	1	1	-1	-2	-1	1	2	1	-1	-2	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0
50	1	1	0	-2	0	-2	0	-2	0	-2	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0
50	1	1	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	0	0	0	0	0	0	0	0	0	0	0	0
576	-12	-12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
25	4	-3	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0
25	-3	4	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0)

Removing the frequent columns we take out

The diagonalization of this matrix is

Thus by (*), we take out $K(PSL(2,49))=Z_{58800}\oplus Z_3\ Z_1\ Z_1\oplus Z_6\oplus Z_1\oplus Z_2\oplus Z_1\oplus Z_1$

Volume 7 Issue 1, January 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391

References

- [1] K.E.Gehles, "Ordinary Characters of Finite Special Linear Groups," M.Sc. Dissertation, University of ST. Andrews, 2002.
- [2] H.Behravesh, "Quasi-Permutation Representations of SL(2,q) and PSL(2,q)," Glasgows Math.Journal, Vol.41, 393-408, 1999.
- [3] M.S.Kirdar, "The Factor Group of the Z-Valued Class Function Module The Group of the Generalized Characters," Ph.D. Thesis, University of Birmingham, 1982.
- [4] N.S.Jasim, "The cyclic Decomoposition of PSL(2,p) where p = 5,7,11,13,17 and 19," Journal of College of Education/ Al-Mustansiriya University, Vol.2, No.1, 446-459, 2011.