
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 7 Issue 1, January 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Solving Job-Shop Scheduling Problem Using a

Developed Particle Swarm Optimization Algorithm

Wathiq N. Abdullah

Department of Computer Science, University of Baghdad, College of Education for Pure Science- Ibn AlHaitham

Abstract: This paper aims to provide an efficient optimization algorithm to solve the problem of job-shop scheduling. PSO has been

widely studied in numerous applications for its worthy global searching ability. A new modified of particle swarm optimization

algorithm is adopted, which is an extension of the standard particle swarm optimization algorithm (PSO) in order to get a better

performance. The improvement technique used is the overcome of the idle particle position. The system used the developed PSO as a

search method for an optimal schedule. The experimental results show that the developed PSO performs better than the original PSO.

Keywords: Job-Shop, Scheduling, Particle Swarm, Optimization

1. Introduction

Manufacturing processes have become increasingly complex,

and so have their planning and control. The market requires

high product variety, high quality, short lead times, and an

accurate delivery performance [1].

Scheduling problems are usually approached with a mixture

of search techniques and heuristics. These problems are

likely to be uncontrollable and cannot be solved by

combinatorial search methods. Furthermore, they involve a

competition for limited resources; as a result, they are

complex by various restrictions [2].

In the past, each machine had its own operator, its own tools,

and so on. Nowadays, tools are more versatile, hence can be

used by various different machining centers. These tools are,

however, at the same time more expensive. Therefore, a

company often decides to cut its tool investments. Similarly,

operators are expensive, but often they only need to tend a

machine during part of the operations, e.g., to position a job

on the machine. This enables the operators to tend more than

one machine; therefore, the number of operators is often

smaller than the number of machines.

Such an operator and tool sharing clearly increases the

interdependency of the machines, because a unique tool can

only be used by one machine at a time and an operator can

only tend one machine at a time. The planning and control

must take these dependencies into account and the machines

must be planned and controlled simultaneously to realize

short lead times and a good delivery performance [3].

Local search approaches can find the solutions, but the worth

of a solution and computational time be influenced by to a

unlimited degree on suitable initial populations [4]. As a

result of the initiation of computation techniques,

metaheuristics can be used to solve problems in less time so

that the limitation of computational complexity can be fixed

by metaheuristic applications [5] This paper tries to adopt a

metaheuristic technique, Particle Swarm Optimization

algorithm to solve the problem of job-shop scheduling.

The scheduling problems are complex for the following

reasons: (i) Scheduling is a practicality problem. The final

solution must achieve all the constraints of the problem.

Also, the optimization of an evaluation function should be

satisfied, altering certain criteria as cost, delay, inventory

time, process time, etc. (ii) Several scheduling problems

require many restrictions because of the unavailability of

resources, due dates, etc. [6]

The remainder of this paper is organized as follows: the

formulation of job-shop scheduling problem, the particle

swarm optimization algorithm of solving job-shop

scheduling problem, and finally, the results of the system and

some conclusions' remarks are given.

2. Job-Shop Scheduling Problem Formulation

The JSP is a scheduling problem that assumes M various

machines and N various jobs. Each job consists of Q

operations and each operation needs a different machine.

The jobs' operations are handled in a fixed processing order

[7] which specifies the precedence restrictions [8]. The

operations of a job are totally ordered so that no operation of

a job can start before the completion of its predecessor [9].

Scheduling systems typically rely on priority rules, which

have therefore become the subject of intense study [10].

Two kinds of constraints need to be considered for the Job-

Shop Problem [11] as follows:

1) The constraint of operation precedence for a specific job:

Let cij denote the time to complete the job i on machine j

and let tij denote the time to process the job i on machine j.

For a job i, if the processing on machine h precedes that on

machine j, the following constraint should be satisfied:

 cij −tij >= cih …….. (1)

2) The constraint of operation un-overlapping for a specific

machine:

For two jobs i and j, both need to be processed on machine

k. If job I comes before job j, we need the following

Paper ID: ART20179752 DOI: 10.21275/ART20179752 1845

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 7 Issue 1, January 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

constraint [7]:

cjk −cik >= tjk …….. (2)

The goal of the Job-Shop Problem is to choose for each

operation a suitable machine and a starting time so that the

maximum completion time Cmax (the makespan) is

minimized [12, 13, 14].

3. Particle Swarm Optimization

The particle swarm principle was inspired by the model of

social behaviors. The Particle Swarm Optimization (PSO)

algorithm creates the simple manner procedures for each

particle, recalls the best position of the particles, and shares

the information among particles. However, this algorithm

accomplishes the optimization through cooperation and

competition between the populations' individuals [15].

The Particle Swarm Optimization system is a member of the

extensive group of swarm intelligence approaches, to solve

the problems of optimization [16]. It was firstly suggested by

J. Kennedy [17]. The basic PSO model consists of a swarm

of particles, which are a random initialization of population

of candidate solutions.

The modified PSO algorithm is described as follows.

STEP 1: Create randomly an initial particle swarm, by

setting the initial position and the initial velocity of each

particle;

STEP 2: Compute fitness value for each particle;

STEP 3: Compare each particle fitness value and its best

position fitness value if better, update the position;

STEP 4: Compare each particle best position and the best

position of particle swarm, if better, update the best position;

STEP 5: modify the position and velocity;

STEP 6: Perform the improvement process: avoiding the idle

position;

STEP 7: Checking of the termination criteria are satisfied

(get good sufficient position or maximum number of

iterations are reached), then end; otherwise, go to 2. [15]

4. PSO for Job-Shop Scheduling Problem

The job-shop scheduling problem is a problem of M

machines and N jobs. Each job consists of a series of

processes. All the processes of each job are treated in a fixed

processing order.

Suppose that the available set of total operations of N jobs

be OP, the available set of machines is M, and the indices of

the operation op be i and k, then we have:

OP = {op ik | i = 1, 2, . . ., N and k = 1, 2, . . ., M } ... (3)

Where i is the job number, and k indicates the operation

number of jobi. The ik indices of the operation op are

encoded as a sequence number (index).

Each particle can be represented by two fields: the first field

(Mach) consists of M-bit string (M is the number of

machines), where each bit corresponds to one machine. If the

operation is to be processed on a particular machine, the

corresponding bit assumes value (1), otherwise it is (0). The

second field of a gene is the completion time of the operation

(C).

4.1 Generation of Initial Swarm

The initialization procedure produces swarm_size particles-

where pop_size denotes the swarm size- by setting (1) at

random position in each (mach) field of a particle and filling

the remainder bits of the field by (0's) until the whole

particle is filled and repeat the same procedure until the

initial swarm is completed.

4.2 Fitness Evaluation

The evaluation of a particle's fitness involves finding the

total completion time (TCT) of the operations on each

machine. On each machine, the total completion time can be

calculated by summing the time required to process each

operation on a specific machine. The total completion time

having the maximum value is the particle's fitness value. The

fitness function can be evaluated as follows:

Particle's Fitness = Maximum of (TCTR) = Max (TCTR)

 =) … (4)

Where:

R is the machine number: R is between (1) and total number

of machines,

n is the total number of operations,

Tpi is time required to perform the operation number i , and

 is a binary value located in the particle at

operation number (i) at bit number (R).

4.3. PSO Improvement Approach: Avoiding Idle Position

Assume that "R" is a number used to decide whether a

particle's position is ignored or not. The initial value of R for

each particle is zero. If the particle's position was not

enhanced over the execution of the algorithm, then R will be

increased by 1; else R=0. If the position can never be

enhanced, then the position will be is ignored and a it will be

substituted by a new position which is produced by the

equation (5):

New position = w * pg + h * (pg –Old position) ….. (5)

where:

w: inertia weight,

pg: is particle's global best fitness value, and

h: is a random number in the range [0,1].

5. Experimental Results

Several various experimental cases have been taken. Each

case differs from each other by swarm-size and maximum

number of iteration.

The PSO parameters values that used in the system

experiments are given in Table (1) and the values of

parameters used in each instance are given in Table (2).

Paper ID: ART20179752 DOI: 10.21275/ART20179752 1846

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 7 Issue 1, January 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Different instances are implemented by the system which are

shown in Table () through Table (). Each instance has

different number of machines, different number of jobs,

different number of operations per job. The time required to

perform operations of any job are generated randomly.

In instances tables, the (M, T) field means that an operation

of a job should go to machine (M) for (T) units of time. At

the end of each instance table the resultant makespan is

given.

Table 1: The PSO Parameters.
Parameter Value

Self-confidence (C1) 1.4

Swarm confidence (C2) 1.4

Inertia weight (W) 0.8

The maximum velocity (Vmax) 25

Number of particles in the swarm 30-100

The maximum number of iterations 50-100

Table 2: Problem Parameters Used in the Instances.
 Instance 1 Instance 2 Instance 3 Instance 4

Swarm_Size 30 30 40 100

Max_Iteration 50 100 50 100

No. of Machines 6 6 10 6

No. of Jobs 4 6 8 10

Table 3: Problem Instance 1
 (M , T) (M , T) (M , T) (M , T) (M , T) (M , T)

Job 1 6,5 3,8 5,12 2,7 1,8 4,5

Job 2 1,6 6,4 4,8 5,10 3,12 2,9

Job 3 3,6 2,12 5,8 1,4 4,1 6,6

Job 4 6,5 5,3 3,1 4,12 2,5 2,14

The Makespan is 36

Table 4: Problem Instance 2
 (M , T) (M , T) (M , T) (M , T) (M , T) (M , T)

Job 1 7,2 5,10 2,4 1,6 4,8 3,10

Job 2 6,11 8,5 4,5 1,6 6,14 3,6

Job 3 2,4 7,7 5,10 4,9 1,11 8,5

Job 4 8,2 3,10 4,6 7,10 6,2 5,9

Job 5 3,8 5,8 4,10 8,10 2,13 7,6

Job 6 2,7 3,10 8,4 5,10 4,6 6,8

The Makespan is 40

Table 5: Problem Instance 3

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

(M ,

T)

Job 1 2,12 10,5 4,6 9,1 3,10 7,8 1,7 5,6 2,6 9,4

Job 2 8,5 6,4 10,14 3,8 4,6 9,3 1,10 2,10 7,7 5,11

Job 3 5,7 1,7 10,6 2,9 9,10 3,12 6,10 4,3 7,5 8,4

Job 4 1,9 9,4 5,8 6,6 1,5 6,12 3,9 8,10 4,10 2,3

Job 5 10,4 3,10 4,12 6,5 7,6 2,8 3,7 9,3 5,8 7,5

Job 6 7,10 6,5 1,7 1,12 3,14 2,6 4,3 4,9 5,9 6,8

Job 7 9,6 2,8 3,10 8,11 7,10 6,5 1,4 4,7 6,6 5,10

Job 8 2,12 10,5 4,6 9,1 3,10 7,8 1,7 5,6 2,6 9,4

The makespan is 65

Table 6: Problem Instance 4
 (M, T) (M, T) (M, T) (M, T) (M, T) (M, T)

Job 1 1,7 6,10 5,14 2,2 4,8 6,1

Job 2 6,6 1,8 5,6 3,12 4,14 2,10

Job 3 3,10 5,4 4,7 1,4 2,14 6,12

Job 4 6,4 4,7 1,4 2,12 3,10 5,1

Job 5 1,5 2,14 5,10 6,1 5,2 3,7

Job 6 5,5 4,5 3,14 6,10 1,7 2,8

Job 7 2,7 6,14 5,8 1,11 3,9 4,5

Job 8 5,11 6,4 4,12 3,8 1,6 2,6

Job 9 4,10 3,6 6,4 5,7 2,8 1,4

Job 10 3,9 6,7 5,11 3,14 4,4 1,12

The Makespan is 96

6. Conclusions

This paper presents a developed particle swarm optimization

algorithm for Job Shop Scheduling Problem.

A number of machines are included in the system. Each

machine can process only one job at a time. Each job

contains a number of operations. The rule of a priority is

adopted to construct the schedule. The system is tested with

several different problem instances which are differ from

each other by the number of jobs, the number of operations

required to be processed in each job, the number of

machines, and the values of PSO parameters. The problem is

to find a schedule having a minimum total time often called

the makespan of a schedule. The development of the PSO

algorithm is to avoiding the existence of idle particle

position. The experimental results show that the developed

PSO algorithm gives near-optimal schedules on all instances.

References

[1] J.D. Blackburn, Time-Based Competition, The Next

Battle Ground in American Manufacturing,Richard D.

Irwin, Homewood, IL, 1991.

[2] Negenvitsky, M., Artificial Intelligence: A Guide to

Intelligent Systems. 2nd ed, Addison-Wesley, Harlow,

England, 2005.

[3] Schutten, J.M.J., Practical job shop scheduling, 2014.

[4] Liu, J.; Reeves, C. Constructive and composite heuristic

solutions to the P//#Ci scheduling problem. European

Journal of Operational Research 132, 439–452, 2001.

[5] Laxmi A. Bewoor, V. Chandra Prakash and Sagar U.

Sapkal , " Evolutionary Hybrid Particle Swarm

Optimization Algorithm for Solving NP-Hard No-Wait

Flow Shop Scheduling Problems", 2017.

[6] Garrido, A., Salido, M. A., Barber, F., and Lopez, M.

A., Heuristic Methods for Solving Job-Shop Scheduling

Problems,Spain, 1998.

[7] Liu, T.-K., Tsai, J.-T., and Chou, J.-H., Improved

genetic algorithm for the jobshopscheduling problem,

Taiwan, R.O.C., 2005.

[8] Lin, S.-C., Goodman, E.D., and Punch, W.F., A Genetic

Algorithm Approach to Dynamic Job Shop Scheduling

Problems, Technical Report GARAGe97-02-08,

Genetic Algorithms Research and Applications Group,

Michigan State University, 1997.

[9] Artigues, C., Lopez, P., and Ayache, P.-D., Schedule

generation schemes for the job-shop problem with

sequence-dependent setup times: dominance properties

and computational analysis, 2003.

[10] Haupt, R., A survey of priority rule-based scheduling,

OR Spektrum 11, 3–16, 1989.

[11] Gen, M., and Cheng, R., Genetic algorithms and

engineering design. Wiley, New York, 1997.

Paper ID: ART20179752 DOI: 10.21275/ART20179752 1847

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 7 Issue 1, January 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[12] Hmida, A. B., Huguet, M.-J., Lopez, P., and Haouari,

M., Climbing Depthbounded Discrepancy Search for

Solving Flexible Job Shop Scheduling Problems, 2007.

[13] Ombuki, B. M., and Ventresca, M., Local Search

Genetic Algorithms for the Job Shop Scheduling

Problem, Brock University, Department of Computer

Science, Canada, 2002.

[14] Wang, Y. M., Yin, H. L., and Wang, J., Genetic

algorithm with new encoding scheme for job shop

scheduling, Springer-Verlag, London, 2009.

[15] Song, Xiaoyu , "Hybrid particle swarm algorithm for job

shop scheduling problems", 2009.

[16] Das S. , Abraham A. , and Konar A., “Particle Swarm

Optimization and Differential Evolution Algorithms:

Technical Analysis, Applications and Hybridization",

Center of Excellence for Quantifiable Quality of

Service, Dept. of Electronics and Telecommunication

Engineering, Jadavpur University, Kolkata, India, 2007.

[17] Eberhart, R. and Shi, Y.; “Particle Swarm Optimization:

Developments”, Application and Resources. IEEE, pp:

81-86, 2001.

Author Profile

Wathiq N. Abdullah received the B.Sc. and M.S. degrees in

computer science from University of Baghdad in 2001 and 2004,

respectively. During 2005-2012, he worked as a lecturer in the

Iraqi universities. He received the Ph.D. in Computer Science from

the University of Technology in Iraq.

Paper ID: ART20179752 DOI: 10.21275/ART20179752 1848

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

