Semiannihilator Small Submodules

Sahira M. Yaseen
Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

Abstract: Let R be an associative ring with non-zero identity and M be a left R-module. A submodule N of M is called semiannihilator small (sa-small), if for every submodule L of M with N+L=M, then ann(L) ≪ R. The properties of sa-small submodules have been studied. The sum of sa-small submodules is studied. Moreover, we introduce the concepts semiannihilator -hollow modules. We give many properties related with this type of modules.

Keywords: semiannihilator small submodule, semiannihilator -hollow modules

1. Introduction

Let R be an associative ring with non-zero identity, M a left R-module. A submodule N of M is called small, if for every submodule K of M with N+K=M, then K=M [1]. Recently, many authors have been interested in studying different kinds of annihilator small submodules as in [2] and [3], where the authors in [3] introduced the concept of R-annihilator small submodules, that is; a submodule N of an R-module M is called R-annihilator small, if whenever N+K=M, where K a submodule of M; then ann(K)=0, where annk (T) ={r R: r.T=0}. This has led us to introduce the concept of semiannihilator small submodules, in way that a submodule N of M is called semiannihilator small (sa-small) in case ann(K) ≪ R where K is a submodule of M whenever N+K=M. It is clear that every R-annihilator small submodule is sa-small, but the converse is not true generally as examples can show next.

In this paper we define a subset of M that consists of all semiannihilator small elements by sa and we shall denote the sum of all semiannihilator small submodules of M by fsa(M), and study its properties. Finally, we shall introduce the concept of semiannihilator -hollow modules as a generalization of hollow modules.

2. Semi Annihilator – Small Submodules

In this section we introduce the concept of semiannihilator-small submodules and give characterizations, properties of this class of submodules.

Definition 2.1 A submodule N of a R-module M is called semiannihilator – small in M(sa-small) if N+X=M, X a submodule of M ,implies that annX ≪R, we write N ≪sa M in this case .

Examples and remarks2.2:-

1) sa-small submodule need not be small, For example , consider Z as Z- module , every proper submodule of Z is sa-small. But {0} is the only small submodule of Z.
2) It is clear that R-a-small submodules are sa-small submodules.
3) If M is a faithful R-module then every small submodules are R-annihilator small submodules and then are sa-small submodules.

4) Let R be a smpl ring and let M be a R- module .Then every proper submodule of M is sa-small in M.

5) There are sa- small submodules that are direct summands as in the Z2-module M=Z2 ⊕ Z2, where it is clear that A=Z2(0) is a direct summand of M , M=A ⊕ Z2=A ⊕ <(1,1)> and ann(Z2) ≪ Z2.

Since the ideal A of R is small in R iff A⊆ J(R),where J(R) is the jacobson radical of R . The following is a characterizations of sa-small submodules:

Proposition 2.3: A submodule N of a module M is sa-small in M if N+X=M, X a submodule of M ,implies that annX ⊆ J (R).

Proposition 2.4: Let M be an R-module with submodules A⊆N. If N ≪sa M then A ≪sa M.

Proof: Let X be a submodule of M such that A+X=M, since A⊆N hence N+X=M. N is sa-small in M then annX ≪ R and hence A ≪sa M.

Proposition 2.5: Let M be a R-module with submodules A⊆N, if A ≪sa N then A ≪sa M.

Proof: Let X be any submodule of M such that A+X=M, now N∩M=N∩ (A+X) implies that N=A+(N∩X) by the modular law. Since A ≪sa N, thus ann(N∩X) ≪ R . But ann(X)⊆ann(N∩X) then ann(X) ≪ R, hence X ≪sa M.

Proposition 2.6: Let I be an ideal of commutative ring R and let M be an R- module . Then M is a sa-module in M, then I is sa- ideal of R.

Proof: Let R=I+J, J be an ideal of R. Then M=R= (I+J)=IM+JM, since IM is a sa-submodule in M then ann(IM) ≪ R, but annJ ≲ JM , then annJ ≪ R thus I is sa-ideal of R.

Proposition 2.7: let M and N be R- modules and f:M→ N be an epimorphism . If H ≲sa N, then f−1(H) ≲sa M.

Proof: Let M = f−1(H)+X , X ⊆M.Then f (M) =f(f−1(H)+X)=f(f−1(H))+fX. Since f is an epimorphism , then N=H+fX. But H ≲sa N , therefor annf(X) ≪ R. Clearly that annfX ≲ annf(X) and hence annfX ≪ R. Thus f−1(H) ≲sa M.
Note. Let \(f : M \rightarrow N \) be an epimorphism. Then the image of a small submodule of \(M \) need not be small-in-\(M \) as the following example shows:

Consider \(Z_4 \) and \(Z \) as \(Z \)-modules and let \(\pi : Z \rightarrow Z_4 \) be the natural epimorphism \((0) \triangleleft Z \). But \(\pi (\{0\})=0 \) is not small in \(Z_4 \), where \(Z_4=0+Z_4 \) and \(\text{ann} Z_4=4Z \) is not small in \(Z \).

Note. The sum of two small submodules of a module \(M \) need not be small submodule. For example, \(M \rightarrow N \), where \(Z = Z \times Z \), and ann\(Z_4=4Z \) is not small in \(Z \).

We prove the following:

Proposition 2.8: Let \(M_1, M_2 \) be a \(R \)-modules. If \(N_1 \triangleleft M_1 \) and \(N_2 \triangleleft M_2 \) then \(N_1 \cap N_2 \triangleleft M_1 \cap M_2 \).

Proof: Let \(p_1 : M_1 \rightarrow M_2 \) and \(p_2 : M_2 \rightarrow M_1 \) be the projection maps. Since \(N_1 \triangleleft M_1 \) and \(N_2 \triangleleft M_2 \), then by prop(2.5), \(N_1 \cap M_1 = N_1 \cap M_1 \) and \(M_1 \cap N_2 = M_1 \cap N_2 \) and \(N_1 \cap N_2 \triangleleft M_1 \cap M_2 \).

Theorem 2.9: Let \(M=\sum Rm_i \) be an \(R \)-module and \(\text{ann} M \in \mathbb{D} M \). Then the following statements are equivalent:
1. \(\text{ann} M \).
2. \(\forall i \in \text{ann}(m_i r_i d) \Rightarrow \forall i \in \text{ann}(r_i) \).
3. There exists \(\forall i \in \text{ann}(m_i r_i d) \).

Proof:
(1) \(\Rightarrow \) (2) For each \(i \in \text{ann}(m_i r_i d) \) and hence \(M=\sum (m_i r_i d) \). By (1) we have, \(Rm_i \triangleleft M \) and \(\text{ann}(m_i r_i d) \triangleleft R \).

(2) \(\Rightarrow \) (1) Let \(L \subset M \) and \(m_i r_i d \in \text{ann}(m_i r_i d) \).

(3) \(\Rightarrow \) (2) Let \(r \in \text{ann}(m_i r_i d) \) and hence \(\forall i \in \text{ann}(m_i r_i d) \).

Theorem 2.10: Let \(R \) be a commutative ring, \(M=\sum Rm_i \in R \) and \(N \) a submodule of \(M \). Then the following statements are equivalent:
1. \(N \triangleleft M \).
2. \(\forall i \in \text{ann}(m_i) \Rightarrow \forall i \in \text{ann}(m_i) \).

Proof:
(1) \(\Rightarrow \) (2) For each \(i \in \text{ann}(m_i) \), \(\forall i \in \text{ann}(m_i) \).

(2) \(\Rightarrow \) (1) Let \(N \triangleleft M \) and \(m_i \in \text{ann}(m_i) \). Hence \(m_i \in \text{ann}(m_i) \).

Definition 2.11: Let \(M \) be an \(R \)-module and \(a \in M \). An element \(a \) in \(M \) is semiannihilator small if \(Ra \) is semiannihilator small submodule of \(M \) and \(a \in M \).

The set \(\text{ann} M \) is not a submodule of \(M \). In fact, it is not closed under addition, for example in the \(\mathbb{Z} \)-module \(\mathbb{Z} \) we have that \(4, -3 \in \text{ann} M \) but \(4-3=1 \in \text{ann} M \).

We can see by the use of proposition (2.4) that if \(M \) is an \(R \)-module and \(a \in M \), then \(Ra \triangleleft M \).

Now we can prove the following:

Remark 2.12: Let \(M \) be a module and \(N \) be a small submodule of \(M \), then \(N \in \text{ann} M \).

Proposition 2.14: Let \(M \) be an \(R \)-module such that \(A \neq \phi \), then the following hold:
1. \(J(M) \) is a submodule of \(M \) and contains every small submodule of \(M \).
2. \(J(M) = \{a_1 + a_2 + \cdots + a_n | a_i \in A, i \geq 1\} \).
3. \(J(M) \) is generated by \(A \).

Proof:
1. Let \(\{Na | a \in A \} \) be the set of all small submodules of \(M \), then \(J(M) = \sum Na \). Let \(x \in J(M) \), this means that \(x = x_1a \), \(a \in A \) and \(y = y_1a \) for each \(a \in A \).

2. Follows from (1) and \(A \neq \phi \).
3. Since \(A \neq \phi \), \(J(M) \). Clearly, \(J(M) \).

Proposition 2.15: Let \(M \) be an \(R \)-module such that \(A \neq \phi \). Then the following statements are equivalent:
1. A_{sa} is closed under addition; that is, a finite sum of sa-small elements is sa-small.

2. $fs(M)=A_{sa}$

Proof:

(1) \Rightarrow (2) Let $a_1+a_2+\cdots+a_n\in fsa(M)$, $a_i\in\mathcal{A}$ for each $i=1,\ldots,n$. Hence $\mathcal{A}\subseteq A_{sa}$ by assumption in (1). From the basic properties of this module, the sum of sa-small elements is sa-small in M, then $K+L$ is a submodule of M and since N is sa-small submodule, then $f^{-1}(f(k))\subseteq a_{sa}$ M. Thus by (2) we have $x+y\in fsa(M)$.

Proposition 2.16: Let M be an R-module such that $A_{sa}\neq\phi$. Consider the following statements:

1. $fs(M)$ is a sa-small submodule of M.
2. If K and L are sa-small submodules of M, then $K+L$ is a sa-small submodule of M.
3. A_{sa} is closed under addition; that is, a finite sum of sa-small elements is sa-small.
4. $fs(M)=A_{sa}$.

Proof: Let K and L be sa-small submodules of M. Then $K+L\subseteq fsa(M)$ which is a_{sa} small by the use of induction.

Corollary 3.4: Let M be R-module, K be submodule of M. If M/K is sa-small module, then M is sa-small module. A submodule N of R-module M is called fully invariant submodule of M if $f(N)\subseteq N$, for every $f\in \text{Hom}(M,M)$. A module M is called a module if M is fully invariant.

Proposition 3.5: Let $M=M_1\oplus M_2$ be a sa-small module. If M_1 and M_2 are sa-small submodules, then M is sa-small module.

References

