Semiannihilator Small Submodules

Sahira M. Yaseen

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

Abstract: Let R be an associative ring with non-zero identity and M be a left R-module. A submodule N of M is called semiannihilator small (sa-small), if for every submodule L of M with N+L=M, then $ann(L) \ll R$. The properties of sa-small submodules have been studied. The sum of sa-small submodules is studied. Moreover, we introduce the concepts semiannihilator -hollow modules. We give many properties related with this type of modules.

Keywords: semiannihilator small submodule, semiannihilator -hollow modules

1. Introduction

Let R an associative ring with non-zero identity, M a left Rmodule. A submodule N of M is called small, if for every submodule K of M with N+K=M, then K=M [1]. Recently, many authors have been interested in studying different kinds of annihilator small submodules as in [2] and [3], where the authors in [3] introduced the concept of Rannihilator small submodules, that is; a submodule N of an R-module M is called R-annihilator small, if whenever N+K=M, where K a submodule of M; then ann(K)=0, where ann_R (T) ={r R: r.T=0}. This has led us to introduce the concept of semiannihilator small submodules, in way that a submodule N of M is called semiannihilator small (sa-small) in case $ann(K) \ll R$ where K is a submodule of M whenever N+K=M. It is clear that every R-annihilator small submodule is sa-small, but the converse is not true generally as examples can show next.

In this paper we define a subset of M that consists of all semiannihilator small elements by $_{sa}$ and we shall denote the sum of all semiannihilator small submodules of M by Jsa(M), and study its properties. Finally, we shall introduce the concept of semiannihilator -hollow modules as a generalization of hollow modules.

2. Semi Annihilator – Small Submodules

In this section we introduce the concept of semiannihilatorsmall submodules and give characterizations, properties of this class of submodules.

Definition 2.1 A submodule N of a R-module M is called semiannihilator – small in M(sa-small) if N+X=M. X a submodule of M implies that ann X \ll R we

if N+X=M , X a submodule of M ,implies that annX << R, we write N \ll_{sa} M in this case .

Examples and remarks2.2:-

- sa-small submodule need not be small, For example, consider Z as Z- module, every proper submodule of Z is sa-small. But{0} is the only small submodule of Z.
- 2) It is clear that R-a-small submodules are sa-small submodules.
- 3) If M is a faithful R-module then every small submodules are R-annihilator small submodules and then are sa-small submodules.

- 4) Let R be a smpil ring and let M be a R- module .Then every proper submodule of M is sa-small in M.
- 5) There are sa- small submodules that are direct summands as in the Z2-module M=Z2⊕Z2, where it is clear that A=Z2⊕(0) is a direct summand of M, M=A⊕Z2=A⊕<(1,1)> and ann(Z2) ≪ Z2.

Since the ideal A of R is small in R iff $A \subseteq J(R)$, where J(R) is the jacobson radical of R. The following is a characterizations of sa-small submodules:

Proposition 2.3: A submodule N of a module M is sa- small in M if N+X=M, X a submodule of M ,implies that annX $\ll J$ (R).

Proposition 2.4: Let M be an R-module with submodules $A \subseteq N$. If N $\ll_{sa} M$ then A $\ll_{sa} M$.

Proof: Let X be a submodule of M such that A+X=M, since $A\subseteq N$ hence N+X=M. N is sa-small in M then annX $\ll R$ and hence $A \ll_{sa} M$.

Proposition 2.5: Let M be a R-module with submodules $A \subseteq N$, if $A \ll_{sa} N$ then $A \ll_{sa} M$.

Proof: Let X be any submodule of M such that A+X=M, now $N\cap M=N\cap (A+X)$ implies that $N=A+(N\cap X)$ by the modular law. Since $A \ll_{sa} N$, thus $ann(N\cap X) \ll R$. But $ann(X) \subseteq ann(N\cap X)$ then $ann(X) \ll R$, hence $X \ll_{sa} M$.

Proposition 2.6: Let I be an ideal of commutative ring R and let M be an R- module if IM is a sa-submodule in M ,then I is sa- ideal of R.

Proof: Let R=I+J, J be an ideal of R. Then M=RM= (I+J)M=IM+JM, since IM is a sa-submodule in M ,then ann(JM) \ll R, but annJ \leq JM ,then annJ \ll R thus I is sa-ideal of R.

Proposition 2.7: let M and N be R- modules and $f:M \rightarrow N$ be an epimorphism . If $H \ll_{sa} N$, then $f^{-1}(H) \ll_{sa} M$.

Proof: Let $M = f^{-1}(H)+X$, $X \subseteq M$.Then $f(M) = f(f^{-1}(H)+X) = f(f^{-1}(H))+f(X)$.Since f is an epimorphism, then N=H +f(X).But H \ll_{sa} N, therefor annf(X) \ll R. Clearly that annX \subseteq annf(X) and hence annX \ll R. Thus $f^{-1}(H) \ll_{sa}$ M.

Volume 7 Issue 1, January 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Note . Let $f:M \to N$ be an epimorphism . Then the image of sa-small submodule of M need not be sa-small in N as the following example shows:-

Consider Z_4 and Z as Z – modules and let $\pi : Z \rightarrow Z_4$ be the natural epimorphism , $\{0\} \ll_{sa} Z.But \pi (\{0\})=0$ is not s-a-small in Z_4 , where $Z_4=0 + Z_4$ and ann $Z_4=4Z$ is not small in R.

Note . The sum of two sa-small submodules of a module M need not be sa-small submodule . For example , In Z as Z-module. Each of 2Z and 3Z are sa-small submodule of Z . But Z=3Z+2Z is not sa-small in Z where Z =Z +0 and ann0=Z is not small in Z .

We prove the following:

 $\begin{array}{l} \textbf{Proposition 2-8:-} \ \text{Let} \ M_1 \ , M_2 \ \ \text{be a } R \text{-} \ \text{modules} \ . \ \text{If} \ N_1 \ll_{sa} \\ M_1 \text{and} \ N_2 \ll_{sa} M_2 \ \text{thus} \ N_1 \oplus N_2 \ll_{sa} M_1 \ \oplus M_2. \end{array}$

Proof:- Let $p_i: M_1 \oplus M_2 \to M_1$ be the projection maps .Since $N_1 \ll_{sa} M_1$ and $N_2 \ll_{sa} M_2$, then by prop(2.5), $N_1 \oplus M_2 = P_1^{-1} (N_1) \ll_{sa} M_1 \oplus M_2$.and $M_1 \oplus N_2 = P_2^{-1} (N_2) \ll_{sa} M_1 \oplus M_2$, and $(N_1 \oplus M_2) \cap (M_1 \oplus N_2) = N_1 \oplus N_2 \ll_{sa} M_1 \oplus M_2$.

Theorem 2.9: Let $M=\Sigma Rmi$, be an R-module and $d\in M$. Then the following statements are equivalent:

1. Rd \ll_{sa} M.

2. ∩*i*∈*I*ann (m_i − r_i d) ≪R for each ri∈R.

3. There exists $j \in I$ such that $rm j \notin Rrd$ for all $0 \neq r \notin J(R)$.

Proof: (1) \Rightarrow (2) For each i \in I, mi=mi-rid+rid and hence $M=\Sigma R(m_i-r_i \ m_i)+Rd$. By (1) we have . Rm \ll_{sa} M then $ann(\Sigma R(m_i-r_i \ m_i))=\cap_i ann(mi-rid) \ll R$.

 $(2) \Rightarrow (1)$ Let L be a submodule of M with L+Rd=M. Then for each i \in I $mi= x_i + rid$, $\in R$ and $xi \in$ L. Let t \in ann(L), then $tmi=trid+t x_i$ since t $x_i = 0$ then t $(m_i-r_i d)=0$ for each i \in I, then

t $\in ann(m_i - r_i d)$, hence t $\in \cap i \in Iann(m_i - r_i d) \ll R$, then $ann(L) \ll R$.

2) \Rightarrow (3) Let $r \notin J(\mathbb{R})$ and assume that $rmi \in Rrd$ for all $i \in I$. Then rmi = rird = rrid for all $i \in I$, so by (1) $r \in \cap i \in Iann(mi - rid) \ll \mathbb{R}$ which is a contradiction.

(3)⇒(2) Let $r \in \cap i \in Iann(mi-rid)$ and hence $r \in ann(mi-rid)$ for all $i \in I$. Thus rmi=rrid=rird for all $i \in I$, so $rmi \in Rrd$. By (3) $r \in J(\mathbb{R})$ then $\cap i \in Iann(mi-rid) \subseteq J(\mathbb{R})$ so $\cap i \in Iann(m_i-r_id) \ll \mathbb{R}$.

Theorem 2.10: Let R be a commutative ring, $M=\Sigma Rmii\in I$ and N a submodule of M. Then the following statements are equivalent:

1. N \ll_{sa} M.

2. ∩*i*∈*I*ann(*mi*−x*i*) ≪R for all x*i*∈N.

Proof: (1) \Rightarrow (2) For each $i \in I$, let $xi \in \mathbb{N}$. Then mi=mi-xi+xi for each $i\in I$. Then $M=\Sigma R(mi-xi)i\in I+\mathbb{N}$, by (1) N \ll_{sa} M, then $ann(\Sigma R(mi-xi))=\cap i\in Iann(R(mi-xi))\ll \mathbb{R}$.

(2) \Rightarrow (1) Let M=A+N. Then for each $i \in I$ mi=ai+xi where $ai \in A$ and $xi \in N$. Hence ai=mi-xi for each $i \in I$ and

 $t \in ann(A)$ $M = \Sigma(mi - ki)i \in I + N.$ then Now. let tai=t(mi-xi)for each i∈I and hence $t \in \operatorname{ann}(R(mi - xi)) \ll \mathbb{R}$ by (2),so $\operatorname{ann}(A) \subseteq$ ann(R(mi-xi)). Thus N \ll_{sa} M.

As the same of the definition of Jacobson radical related to small submodules, we will state a definition related to sasmall submodules in the following.But first we need this definition.

Definition 2.11: Let M be an R-module and $a \in M$. an element a in M is semiannihilator small if Ra is semiannihilator small submodule of M. let $A_{sa} = \{a \in M | Ra \ll_{sa} M\}$.

The set sa is not a submodule of M. In fact, it is not closed under addition, for example in the \mathbb{Z} -module \mathbb{Z} we have that $4, -3 \in A_{sa}$ but $4-3=1 \notin A_{sa}$.

We can see by the use of proposition (2.4) that if M is an R-module and $a \in A_{sa}$, then $Ra \subseteq A_{sa}$.

Now we can prove the following:

Remark 2.12:- Let M be a module and N be sa- small submodule of M., then $N \subseteq A_{sa}$.

Proof:- Let $x \in N$, N is sa-small submodule then Rx is sasmall submodule of M by prop(2.4). Thus $x \in A_{sa}$.

Since the sum of sa-small submodules is not sa-small (consider 3Z+2Z in Z)we define.

Definition 2.13: Let M be an R-module. Denote Js(M) for the sum of all sa- small submodules of M.. If M has no sa-small submodule, we write Jsa(M) = M.

It is clear that $A_{sa} \subseteq Js(M)$ in every module, but this may not be equality (Z as Z-module).

Proposition 2.14: Let M be an R-module such that $A_{sa} \neq \phi$, then we have the following:

- 1) *Js*(*M*) is a submodule of M and contains every sa- small submodule of M.
- 2) $Js(M) = \{a1+a2+\dots+an; ai \in A_{sa} \text{ for each } i,n \geq 1\}.$
- 3) Js(M) is generated by A_{sa} .

Proof:

1. Let $\{N\alpha | \alpha \in \Lambda\}$ be the set of all sa- small submodules of M, thus $Js(M) = \Sigma N\alpha$, $\alpha \in \Lambda$. Let $x, y \in Jsa(M)$, this means that $x = \Sigma x\alpha$, $\alpha \in \Lambda$ and $y = \Sigma y\alpha, \alpha \in \Lambda$ where $x\alpha, y\alpha \in N\alpha$ for each $\alpha \in \Lambda$ and $x\alpha, y\alpha \neq 0$ for at most a finite number of $\alpha \in \Lambda$. Then $x+y=\Sigma(x\alpha+y\alpha)$ $\alpha \in \Lambda$ such that $x\alpha+y\alpha \in N\lambda$ for each $\alpha \in \Lambda$, $x+y \in Jsa(M)$. Now, let $r \in R$ and $x \in Js(M)$. it is clear that $rx \in Ja(M)$. Hence, Js(M) is a submodule of M.

2. Follows from (1) and $A_{sa} \subseteq Js(M)$.

3. Since $A_{sa} \subseteq Js(M)$, then $\langle A_{sa} \rangle \subseteq Jsa(M)$. Clearly, $Js(M) \subseteq \langle A_{sa} \rangle$. Then Jsa(M) is generated by A_{sa} .

Proposition 2.15: Let M be an R-module such that $A_{sa} \neq \phi$. Then the following statements are equivalent:

Licensed Under Creative Commons Attribution CC BY

 A_{sa} is closed under addition; that is, a finite sum of sasmall elements is sa-small.
 Js(M)= A_{sa}.

Proof:

 $(1) \Longrightarrow (2)$ Let $a1+a2+\dots+an \in Jsa(M)$, $ai \in Ai \ i=1,\dots,n$, Ai is s-a-small in M for each $i=1,\dots,n$. then $Rai \ll_{sa} M$ by proposition (2.4). Hence $ai \in A_{sa}$ for each $i=1,\dots,n$, by the assumption in (1) we get that $a1+\dots+an \in A_{sa}$. thus $Jsa(M) \subseteq A_{sa}$ and hence $Jsa(M) = A_{sa}$.

 $(2) \Rightarrow (1)$ Let $x, y \in A_{sa}$, since $A_{sa} \subseteq Jsa(M)$ then $x, y \in Jsa(M)$ and by using proposition (2.14) we have $x+y \in Jsa(M)$. Hence, $x+y \in A_{sa}$, but A_{sa} is closed under addition. We can prove that a finite sum of sa- small elements is sa-small by the use of induction.

Proposition 2.16: Let M be an R-module such that $A_{sa} \neq \phi$. consider the following statements:

- 1) Js(M) is an sa-small submodule of M.
- 2) If K and L are sa-small submodules of M, then K+L is an sa-small submodule of M.
- 3) A_{sa} is closed under addition; that is, sum of sa-small elements of M is sa- small.

4) $Js(M) = A_{sa}$.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Leftrightarrow (4)$. If M is finitely generated, then $(1) \Leftrightarrow (2)$.

Proof:

(1)⇒(2) Let K,L be sa-small in M, then K+L⊆Jsa(M) which is sa-small by assumption. Thus by using proposition (2.4) we get K+L \ll_{sa} M.

(2) \Rightarrow (3) Let *x*, *y* \in *A*_{sa}, then *Rx*, *Ry* are sa-small in M, and hence by (2) *Rx*+*Ry* is sa- small in M. But *R*(*x*+*y*) \subseteq *Rx*+*Ry* and by using proposition (2.4) we get *R*(*x*+*y*) \ll_{sa} M. Hence, *x*+*y* \in *A*_{sa}.

 $(3) \Leftrightarrow (4)$ By proposition (2.14).

Now, let M be finitely generated to prove $(2) \Rightarrow (1)$. Consider $\{m1,2,...,mn\}$ to be the set of generators of M. Let X be a submodule of M such that Js(M)+X=M, then mi=ai+xi such that $ai\in Jsa(M)$ and $xi\in X$ for each i=1,...,n. Thus $\Sigma Rmini=1=\Sigma Raini=1+\Sigma Rxini=1$ and hence $M=\Sigma Raini=1+X$. Now, since $ai\in Jsa(M)$ and since $(2) \Rightarrow (3) \Leftrightarrow (4)$ we get $Jsa(M)=A_{sa}$; that is, $ai\in A_{sa}$ and hence $Rai \ll_{sa}$ M thus $ann(X) \ll R$ implies that $Jsa(M) \ll_{sa}M$.

3. Semiannihilator-hollow module

In this section we introduce the concept of semiannihilatorhollow modules and give basic properties of this module.

Definition 3.1: A nontrivial R-module M is called semiannihilator -hollow(sa-hollow) if every proper submodule of M is sa-small in M.

Examples and Remarks 3.2:

(1) Z as Z- module is sa-hollow module but it is not hollow.
(2) Z₆ and Z₄ as Z- module are not sa- hollow modules.

The epimorphic image of sa-hollow module need not be sahollow as the following example shows:-

Consider Z and Z₄ as Z – modules and $\pi: Z \rightarrow Z_4$ let be the natural epimorphism . Z as Z- module is sa-hollow module, $\{0\} \ll_{sa} Z$. But π ($\{0\}$)=0 is not sa-small in Z₄, where Z₄=0 + Z₄ and ann Z₄ =4Z not small in Z.

Proposition 3.3:-Let M and N be two R- modules and $f:M \rightarrow N$ be an epimorphism .If N is sa-hollow module then M is sa-hollow module.

Proof:-Let K be submodule of M ,then f(K) is submodule of N and since N is sa-hollow module , f(K) is sa-small submodule, then $f^{-1}(f(k)) \ll_{sa} M$ by (Proposition 2.6), $f^{-1}(f(k))=K+kerf$, $K \leq K+kerf$ then by(Proposition 2.4), K is sa-small submodule of M.

Corollary 3.4: Let M be R- module, K be submodule of M . If M/K is sa-hollow module then M is sa-hollow module. A submodule N of R-module M is called fully invariant submodule of M if $f(N) \subseteq N$, for every $f \in Hom(M,M)$. A module M is called duo module if every submodule of M is fully invariant[3].

Proposition 3.5: Let $M=M_1 \bigoplus M_2$ be duo module .If M_1 and M_2 are sa-hollow modules, then M is sa-hollow module.

Proof: Let M_1 and M_2 be sa-hollow modules, and $N_1 \bigoplus N_2$ be a proper Submodule of $M_1 \bigoplus M_2$

 $N_1 \leq M_1 \text{and} N_2 \leq M_2$, then $N_1 \text{and} N_2$ are s-a-small submodules of M_1, M_2 respectivly thus by(Proposition 2.7) $N_1 \oplus N_2$ is sa-small submodule of M.

Corollary3.6: Let $M = M_1 \bigoplus M_2$ be an R- module such that R=ann(M₁)+ann(M₂). If M₁ and M₂ are be sa-hollow, then so is M.

We call a ring R is sa-hollow, if R is sa-hollow R-module. A module M is called multiplication, if for every submodule N of M there exists an ideal I of R such that N = IM = (N:M)M [4].

Proposition 3.7 :Let M be a multiplication R-module. If M is sa-hollow then R is a sa-hollow ring.

Proof: Suppose that M is sa-hollow. Let I be an ideal of R. Then IM is a submodule of M and hence IM is sa-small(Prop.2.6). Then I is sa-small ideal of R and hence R is sa-hollow.

References

- [1] D.Kasch,Modules and rings ,Acadimic Press,London,1982.
- [2] T. A. Kalati and T. D. Keskin, Annihilator small submodules, Bulletin of the Iranian Mathematical Society, 39, no. 6, 1053-1063(2013).

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

- [3] Hala Al-Hurmuzy, Bahar Al-Bahrany, R- Annihilator Small Submodules, M.Sc theses, College of science, Baghdad University, 2016
- [4] A.C. Ozcan ,Duo Modules, Glasgow math .J. Trust 48,2006,pp.533-545.
- [5] F.P.Smith ,Some Remarks on Multiplication Modules, Arch. Math., 50 (1988), 223-235.

Volume 7 Issue 1, January 2018 www.ijsr.net Licensed Under Creative Commons Attribution CC BY