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Abstract: This paper discusses the expansion of Ceva theorem in the normed space. The Ceva theorem is expanded using the Wilson 

angle. Before entering the core issue first discusses about Wilson's angle and its properties. Furthermore, it is proved by the Ceva's 

Theorem by first modifying it. 
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1. Introduction 
 

The angle between two vectors in the Euclidean space  

has been well known. In the Euclidean space the angle 

between two vectors is defined using the dot  product  [8]. 

An angle between two vectors has also been expended  in the 

inner product space [7]. Furthermore, in the normed space it 

has also been known the angle between the two vectors 

among other angles  P, I, g ( [1], [2], [3], [4]),  Thy angle [2] 

and  Wilson angle [6]. 

 

The angle in the normed space discussed in this paper is the 

angle of Wilson. The Wilson angle is introduced by 

Valentine and  Wayment (1971).  A review of the Wilson 

angle is discussed as follows :    

 

Let   be a  is a normed space over the field , for 

any     Defines a nonlinear function  : 
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:,2 bababa         (1) 

From the nature of the normed space  belongs : 
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2 babbaa   
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meanwhile : 
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Of  the  equation  (2) and  (3)  obtained : 

       Vbababa  ,,.,                   (4) 

fulfill the cauchy - Schwarz inequality  [8]. The Wilson angle 

is defined as the angle between two vectors    and   satisfy 
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From the angle of Wilson obtained the rules of cosine : 

),(cos2
222

bababac                (6) 

Next from the equation Next from the equation (6)  sine rules 

are obtained : 

Kbaba  ),(sin                                                   (7) 

With ))()((2 csbsassK      and   

                                                             cbas 2  

 

2. Main Result  
 

Definition. 2.1.  Let  ,V  be a normed space for  

}0{\,, Vcba  , defined ],,[ cba  as  satisfy  

bca  , which completed with a Wilson angle  

),( ba , ),( ca , dan ),( cb . 

 

Definition. 2.2. Let   ,V  be a normed space for   

}0{\Vd  , called the Ceva vector of  ],,[ 321 aaa  if 

any  )1,0(  so that it satisfies   ji ada   with  

ji  . 

 

Definition. 2.3.  Let   ,V  be a normed space for   

}0{\,, Vfed  , called vector ceva ally of  ],,[ cba  if 

any  )1,0(i ,  6,5,4,3,2,1i   so that it satisfies   

eaf )1()1( 56   ,  

dce )1()1( 45   , 

dbf )1()1( 46    
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Theorem. 2.1. Let   .,V  be a normed space for   

],,[ cba , then the following statement is equivalent. 

1. Let  }0{\,, Vfed    be a  so that it satisfies 

eaf )1()1( 56   , 

dce )1()1( 45   ,

dbf )1()1( 46   ,  with  )1,0(i ,   

and    i = 1,2,3,4,5,6 
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Proof. 

)21(   

pay attention ],)1(,)1[( 46 bdf    with angle 

))1(,( 6 fb  , ))1(,)1(( 46 df    and 

))1(,( 4 db    obtained  : 

))1(,(sin)1( 661 fbfbK             (8) 

dbK )1( 41  ))1(,(sin 4 db                     (9) 

                                                          

From equation (8) dan (9)  obtained : 
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pay attention ],)1(,)1[( 45 cde    with angle 

))1(,( 5 ec  , ))1(,)1(( 45 de    and 

))1(,( 4 dc  .  Obtained  : 

dcK )1( 42  ))1(,(sin 4 dc                  (11) 

))1(,(sin)1( 552 ececK             (12)        

                                                          

From equation  (11) and  (12)  obtained  : 
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pay attention ],)1(,)1[( 56 aef    with angle 

))1(,( 6 fa  , ))1(,)1(( 65 fe    and 

))1(,( 5 ea   obtained  : 

))1(,(sin)1( 663 fafaK         (14)          

eaK )1( 53  ))1(,(sin 5 ea                  (15)            

 From equation  (14) and  (15)  obtained  : 
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Multiply equations  (10), (13)  and (16)  then obtained : 
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Suppose that eaf )1()1( 46    
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While it is known : 
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From equation  (15)  and  (16)  obtained  : 
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