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Abstract: This study presents modeling, analysis and prediction of the temperature spread variation for a 110 MW GT11N2-3VGV 

Alstom Gas Turbine at the Kpone Thermal Power Station (KTPS) for the purpose of optimised operation. The study focuses on the 

temperature spread variation around the mean point of the turbine section since uneven distribution of temperature around this section 

leads to severe deformation. A data-driven statistical analysis called Time Series Modeling was used as a tool for predicting the 

temperature spread variation of the gas turbine. Analysis of historical monitoring data of the industrial turbine informed the use of first 

order autoregressive model (AR (1)). The validity of the proposed autoregressive mode was tested using data covering three months 

logged from the Egatrol 8.0 software interface and the model was verified using residual analysis. The study revealed that the 

temperature spread at any instant follows an autoregression model of order one (1) with 95% confidence limits and an error of ±3.01. 

Hence, the AR (1) model can be used to predict the thermal health of the turbine as well as determine when maintenance should be 

conducted. 
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1. Introduction 
 

Safe, adequate, affordable and reliable supply of power is 

one of the critical factors for sustained economic growth in 

developing countries. Research has shown that economic 

growth and development have a strong correlation with 

electricity use [1]. This correlation implies a critical reliance 

on the availability of electricity for economic growth. 

Likewise the availability of electricity is dependent on the 

availability and reliability of generation, transmission and 

distribution infrastructure. 

 

Since 1997 to date, the state-owned Volta River Authority 

(VRA) and other Independent Power producers (IPP’s) have 

built a number of thermal power Plants that operate on 

Natural Gas, diesel fuel oil (DFO) and Light crude oil (LCO) 

fired thermal plants to meet peak power demands and to 

provide back up in the event of shortfalls in hydroelectric 

power. As result, there is need for Ghana’s thermal power 

generation to be given critical attention for effective 

operation. Ghana currently has a gross installed generating 

capacity of 3,737 MW out of which 2,134.5 MW 

(representing 57.12%) is from thermal sources. Hydropower 

(1580 MW) and Solar PV power (22.5 MW) constitute 42.28 

% and 0.60%, respectively [2]. The Volta River Authority 

(VRA) projects an annual demand growth rate of 200 MW of 

electric power; making the need for supply availability and 

reliability all the more heightened if Ghana’s economic 

development trajectory is to be maintained. To meet this 

demand, Ghana can only rely on efficient thermal power 

generation as the nation’s untapped hydro-power generation 

resources do not hold much promise [3].  

 

Temperature spread variation may be used to determine the 

thermal health status of a gas turbine. Most temperature 

spreads are the result of combustion anomalies that can lead 

to tragic failures. High capacity gas turbines mostly employ 

multiple combustors, called ‘can annular combustors,’ each 

of which produce high temperature gases that are directed to 

the first stage nozzles of the turbine section in a manner 

intended to generated torque. Most temperature spreads are 

the result of mechanical problems; typically, plugged fuel 

nozzle orifices, enlarged fuel nozzle orifices, fuel nozzle 

assembly problems, fuel flow divider defects (for liquid fuel 

fired turbines), and failed liquid fuel check valves. Detection 

of combustion chamber malfunction relies on comparisons of 

thermocouples located circumferentially at a convenient 

point in the hot gas path. The method usually recommended 

by engine manufacturers compare absolute values taking no 

account of any initial asymmetry due to manufacturing 

tolerances, thermocouple positioning or turbulence of the gas 

flow at the measurement point [4]. Currently, there is no 

model available for the monitoring of temperature spread 

variation in Gas turbine operation in Ghana.  

 

The main aim of this work is to optimise the operation of the 

thermal power generation plant at the Kpone Thermal Plant 

Station (KTPS) through monitoring, modeling and prediction 

of the temperature spread around the mean point of the 

turbine section on the gas turbine train using the Time Series 

approach. This will also serve as a guide to enhance the 

effectiveness of maintenance works. 

 

2. Description of equipment 
 

Figure 1 shows a sectional view of the 110 MW capacity 

GT11N2-3VGV Alstom gas turbine at the Kpone Thermal 

Plant Station. Essential components of the plant set up 

include the thermal block, generator block, control valve 

block, auxiliary block, fuel oil / fuel gas block, NOx water 
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block, air Intake system, exhaust system, electrical and control modules.  

 

 
Figure 1: Sectional view of GT11N2-3VGV gas turbine 

 

This model of the Alstom turbine comprises of fourteen (14) 

compressor stages, four (4) turbine stages and operates at a 

nominal speed of 3600 rpm with a frequency range of 50 to 

60 Hz. The turbine is operated with a gear box to attain a 

frequency of 50 Hz. Table 1 shows pertinent technical 

performance data.  
 

Table 1: Technical performance data sheet (At ISO  

conditions) 
Parameter Value 

Fuel Natural gas 

Gross electrical output 113.6 MW 

G  Gross electrical efficiency 33.3% 

Gross heat rate 10,811 kJ/kWh 

Compressor pressure ratio 16.01:1 

Exhaust gas flow 400 kg/s 

Exhaust gas temperature 525 oC 

NOx emissions (at 15% O2 ) <  <25 vppm 

Source: [5] 

 
The Fuel / NOx water supply system is the source of fuel 

supply to the combustor for the combustion process in 

effective running of the Gas turbine. The standard operation 

of ALSTOM gas turbines is with gaseous fuel only. Fuel oil 

is the optional backup fuel. The fuel oil system supplies fuel 

oil to the burners of the gas turbine for combustion. At the 

defined gas turbine speed during operation with fuel oil, 

injection of NOx water is provided by the NOx water system 

to lower the emission levels of nitrous oxides (NOx) in the 

exhaust to prescribed levels and also for combustion 

stabilization, lance cleaning and purging of residual fuel oil 

from the fuel oil distribution system. The fuel oil system and 

its functional units increase and regulate the fuel oil pressure 

to control the flow rate to each lance for combustion. The 

fuel oil system supplies the EV burners with fuel oil for 

combustion for the following specified parameters: quality, 

pressure, temperature and flow rate.  

 

Maximum temperature spread is defined as the proportional 

distribution of temperature around the mean point of the 

turbine section on the GT train.  Too much deviation of this 

value from the mean point will heighten the tendency of 

deformation. Its relevance in effective gas turbine monitoring 

and operation is to inform the operator the degree of 

temperature received by the turbine blade and hardware 

(turbine inner shell) so that measures can be taken to avoid 

the occurrence of deformation hence, optimise the operation 

efficiency of the gas turbine. 

 

3. Methodology 
 

Temperature data measured at hourly intervals over a three 

months period was used for the analysis. However, a limited 

amount of data is shown in the analysis because of space 

restrictions. The type of model used was determined by 

plotting the spread temperature monitored at hourly intervals 

(Fig.2). The trend established in Fig. 2 indicates random 

behaviour hence, the study makes use of a stochastic model 

for data analysis.  

 

 
Figure 2: Time series Plot of Representative Temperature 
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Time Series Modeling and Analysis 

The time series model is represented by 

Xt =   Σφj Xt-j + at                                          (1), 

 

where φj are autoregressive parameters, at is the error 

associated with the observation, Xt and j = 1, 2, 3, 4, …n. 

These Autoregressive Models are shorthanded as AR (n) 

where n is the order of the model and n is how far back Xt 

depends on its past values. 

Specifically; 

 

AR (1) model represents the model:   Xt = φ1 Xt-1 + at  

  

AR (2) model represents the model:   Xt = φ1 Xt-1 + φ2 Xt-2 + 

at  

AR (3) model represents the model:   Xt = φ1 Xt-1 + φ2 Xt-2 + 

φ3 Xt-3 + at   

Once the autoregressive parameters are determined, the 

model can be used to predict future values of Xt (that is Xt+1, 

Xt+2,, Xt+3,  ….. Xt+j) 

 

Estimation of Model Order and Parameters 

The first order model (n=1) or AR(1) is the simplest model 

that recognizes the dependence of the current data on the 

immediate past data. To verify this dependence, a scatter plot 

of Xt versus Xt-1 is made (see Fig. 3)  

 

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00 8.00

Plot Showing Data Autocorrelation 

 
Figure 3: Scatter Plot of Xt versus Xt-1 for Exploratory 

Temperature Spread Data 

 

Figure 3 indicates linear dependence of successive data. 

 

Therefore, the study would investigate the use of first order 

autoregressive model, AR (1) for analysis and prediction. 

The next step is to estimate the autoregressive parameter φ1 

and the probabilistic parameters that define the system. As 

with any modeling technique, the best set of parameters are 

those that minimize the sum of squares of the errors 

(residuals). Using this approach, the value of the first order 

autoregressive parameter φ1 can be found as: 

 

φ1 = ΣXt .Xt-1 / ΣX
2
 t-1 from t = 2 to t = N. 

 

For the best fit, the errors must have a mean of Zero and a 

variance of σa
2
 = (1/N) Σat

2
.   

  

4. Data Analysis and Discussions 
 

Monitoring of the operation of the power plant is automated 

with a fully instrumented computerized system that runs on 

Egatrol 8. Parameters monitored include fuel/NOx water 

supply system, stator temperature, cold air temperature, hot 

air temperature, temperature spread, diesel fuel oil 

temperature, gas fuel flow, gas fuel temperature, temperature 

spread, lube system parameters and excitation system 

parameters. Table 2 shows part of the data used for the 

modeling procedure.  

 

Table 2: Observed Temperature Spread Data 

Day 1 Day 2 Day3 Day 4 Day 5 Day 6 Day 7 

Obs Temp Obs Temp Obs Temp Obs Temp Obs Temp Obs Temp Obs Temp 

1 29.5 25 33.6 49 43.2 73 43.6 97 35.5 121 39.8 145 36.5 

2 29.7 26 34.2 50 43.4 74 43.1 98 35.1 122 36.0 146 36.7 

3 28.8 27 34.7 51 42.5 75 44.3 99 35.1 123 35.7 147 35.5 

4 39.5 28 34.7 52 41.5 76 42.4 100 35.0 124 36.1 148 36.0 

5 28.9 29 34.1 53 42.1 77 42.5 101 35.9 125 35.9 149 36.6 

6 29.6 30 33.5 54 41.0 78 43.2 102 36.2 126 36.1 150 36.4 

7 39.7 31 33.5 55 42.3 79 43.3 103 35.2 127 36.2 151 36.2 

8 39.7 32 42.0 56 35.8 80 41.5 104 35.1 128 36.2 152 36.4 

9 41.9 33 44.5 57 35.4 81 43.5 105 34.8 129 35.8 153 36.3 

10 41.9 34 43.5 58 35.5 82 35.1 106 34.3 130 36.4 154 36.9 

11 41.9 35 43.0 59 35.2 83 35.7 107 34.9 131 36.3 155 36.6 

12 41.9 36 41.8 60 35.3 84 35.2 108 35.4 132 36.8 156 36.5 

13 40.2 37 42.4 61 35.2 85 35.2 109 36.0 133 36.9 157 36.9 

14 40.2 38 41.0 62 34.8 86 35.9 110 36.7 134 36.6 158 36.2 

15 40.2 39 41.0 63 35.0 87 34.5 111 36.8 135 36.4 159 36.6 

16 40.2 40 35.0 64 34.5 88 35.0 112 36.1 136 36.9 160 43.3 
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17 40.2 41 34.8 65 34.7 89 43.0 113 36.7 137 36.3 161 43.3 

18 41.5 42 35.1 66 34.1 90 35.2 114 36.6 138 36.2 162 43.3 

19 40.2 43 34.5 67 34.4 91 34.5 115 36.2 139 35.3 163 44.7 

20 40.2 44 34.9 68 35.4 92 35.2 116 36.3 140 35.7 164 42.3 

21 40.2 45 34.8 69 35.6 93 35.3 117 35.8 141 35.8 165 44.0 

22 34.9 46 41.5 70 35.0 94 35.2 118 35.9 142 35.6 166 41.8 

23 34.2 47 41.0 71 34.0 95 35.2 119 35.9 143 35.8 167 35.7 

24 34.5 48 42.4 72 43.8 96 35.2 120 36.0 144 36.0 168 36.4 

 

Fig. 4 shows a plot of observed data against time whereas 

Fig. 5 show the plot of model data against time. The model 

data used for plotting Fig. 5 was generated using the average 

average subtracted data defined as Xt = Observed Data – 

Data Average. It can be observed that both figures (Fig. 4 

and Fig. 5) exhibit identical variation with time.  Secondly, a 

closer observation of both scenarios show that Fig. 4 is 

centered around the mean value of the data while Fig. 5 is 

centered around Zero. 

 

Figure 4: Spread Observed Data 
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Figure 5: Temperature Spread variation of Model Data 

 

In order to determine the validity of using an autoregressive 

model, a scatter plot of Xt versus Xt-1 is generated as shown 

in Fig. 6. 

 

 
Figure 6: Scatter Plot of Xt versus Xt-1 
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It is revealing from Fig. 6 that the points are scattered around 

a straight line through the origin. The straight line trend 

shows that Xt is dependent on Xt-1. Using a simple regression 

method that minimizes the sum of squares of the errors, the 

autoregressive parameter φ is obtained to be 0.836. 

Therefore, temperature spread may be described by: 

 

Xt= 0.836Xt-1+ at                          (2) 

 

The rather large value of φ indicates a strong dependence on 

relation between Xt and Xt-1.  

 

Check for Model Adequacy 

It was established that there is a strong dependence of Xt on 

Xt-1. However, there could be dependence of Xt on Xt-2, Xt-3, 

and so on leading to higher order AR (n) models. Thus, there 

is the need to check such dependence. Figure 8 shows a plot 

of Xt versus Xt-2. The data seems to be scattered and does not 

show the strong linear relationship as in Fig. 6. Therefore, 

there is no clear evidence that a higher order model is 

needed. 

 

Figure 7 shows a plot of Xt versus Xt-2. The data seems to be 

scattered and does not show the strong linear relationship as 

in Figure 6 which shows the dependence of Xt on Xt-1. 

Therefore, there is no clear evidence that a higher order 

model is needed.  

 

 
Figure 7: Scatter Plot of Xt versus Xt-2 

 

Figure 8 shows the Xt data obtained from the observation 

with Xt generated from the model superimposed on it. The 

similarity of the two plots is one of the proofs of the 

adequacy of the AR(1) model to describe the system. 

Inspection of Figure 8 shows deviations of the data series 

from the model series. These deviations are the errors or 

residuals. The statistical nature of these errors allows us to 

estimate the confidence intervals of each measurement. For 

the model to be complete, the variance of the errors (at) is 

needed. The errors are assumed to be random with a mean 

value of Zero and a variance, σa
2
 = (1/N) Σat

2
. 

 

 
Figure 8: Comparison of the Data Series and the Model Series 

 

The variance of the errors was obtained to be 2.36. Thus, the 

errors are Normally Independently Distributed with Mean of 

Zero and Variance of 2.36 (that is at ~ NID (0, σa
2
).Thus the 

complete statistical model for the prediction of the spread is: 

Predicted model value    

Xt= 0.836Xt-1+ at                                                           (3) 

and at = NID (0, 2.36) 

 

Since the number of observations are statistically large, Z-

Distribution is used to estimate the error at each observation. 

The error at the 95% Confidence is then et = ±1.96*√2.36 = 

3.01. Finally, the prediction of the observed value is:  (Xt + 

Average) ± 3.01. Table 3 shows the observed values and the 

predicted values for a 24-hour period. Comparing observed 

values with predicted values, it is observed that the observed 

values fall within the 95% confidence limits of the predicted 

values. Hence, the prediction model is validated. The results 

of the study compares reasonably well with the findings of 

[6] irrespective of the slight difference in approah. [6] 

deployed a fusion approach based on fuzzy C-means (FCM) 

clustering algorithm and support vector machine (SVM) 

classification model to monitor and diagnose the exhaust gas 
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temperature of a gas turbine. The historical monitoring data 

of EGT from an industrial gas turbine was analyzed and used 

to verify the performance of the fusion fault diagnosis 

approach. The study showed that the SVM multiclassification 

model can effectively diagnose the fault of gas turbine EGT 

with a 95% accuracy rate for the testing samples. 

 

Table 3: Comparison of Observed Values and the Predicted 

Values 
No. Observed 

June 

26,2016 

Predicted 

Value 

(Xt+Average) 

95% Confidence 

Limits 

of Predicted Values; 

(error = ±3.01) 

Accuracy 

Y/N 

1 40.5 - - - 

2 38.5 40.1   37.09, 43.11 Y 

3 38.0 38.5  35.49, 41.51 Y 

4 38.0 38.0  34.99, 41.01 Y 

5 39.0 38.0  34.99, 41.01 Y 

6 39.9 38.9  35.89, 41.91 Y 

7 39.0 39.6  36.59, 42.61 Y 

8 37.6 38.9  35.89, 41.91 Y 

9 37.6 37.7  34.69, 40.71 Y 

10 39.3 37.7  34.69, 40.71 Y 

11 37.1 39.1  36.09, 42.11 Y 

12 37.7 37.3  34.29, 40.31 Y 

13 36.5 37.8  34.79, 40.81 Y 

14 36.1 39.1 36.09, 42.11 Y 

15 37.1 36.5  34.09, 39.51 Y 

16 39.9 37.3  34.29, 40.31 Y 

17 36.9 39.6  36.59, 42.61 Y 

18 38.9 37.1  34.09, 40.11 Y 

19 39.7 38.8  35.79, 41.81 Y 

20 38.1 39.5  36.49, 42.51 Y 

21 38.7 38.1  35.09, 41.11 Y 

22 37.1 38.6  35.59, 41.61 Y 

23 37.4 37.3  34.29, 40.31 Y 

24 39.5 37.5  34.49, 40.51 Y 

Average 38.3    

 

5. Conclusions 
 

The thermal power plant consists of several subsystems that 

must operate together to achieve the overall goal of 

producing power. The gas turbine is considered as a major 

component of the system. The main purpose of this work is to 

optimise the operation of the gas turbine by developing a 

model that can predict temperature spread variation. 

Considering the distribution characteristics of the gas turbine 

temperature spread and its effect on the thermal health 

condition of the gas turbine, an autoregressive model is 

proposed and successfully applied to an industrial gas turbine 

in this study. It can be concluded that an autoregressive 

model of order one, AR(1) describes the dynamics of the 

temperature spread variation at any time. Based on the results 

shown in table 5, it is demonstrated that the autoregressive 

model, AR(1)  can effectively predict the temperature spread 

around the mean point of the turbine section within a margin 

of error of ± 3.01 with 95% confidence. Hence, the model 

has a great potential to improve the conduct of maintenance 

operations so far as the gas turbine used is concerned. It is 

worth noting that the scope of this work does not include 

exhaust gas conditions at the inlet of the first stage turbine. 

Therefore, more studies and improvement about the 

application of this approach are needed further. 
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