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Abstract: Patient-specific models can be used to overcome imaging limitations, improve prognostic predictions, stratify patients, and 

assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials 

and treatment protocols, accelerating the pace of clinical research in the war on cancer. The aim of the study is to review the growing 

literature of patient-specific models to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-

specific mathematical neuro-oncology models. 
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1. Introduction 
 

Cancer is a complex disease which leads to the uncontrolled 

growth of abnormal cells, destruction of normal tissues and 

invasion of vital organs. There are different stages of tumor 

development with varying duration, starting from genetic 

changes at the cell level and finishing with detachment of 

metastasis and invasion. Tumor cell transport and 

proliferation are the main contributors to the malignant 

dissemination (1). Extensive research has been done to 

model cancerous growth, specially on solid tumors, in which 

growth primarily comes from cellular proliferation. It is far 

beyond the aim of the present paper to list exhaustively the 

many significant contribution in the topic. References (2-4) 

therein represent some of these contributions. Gliomas are 

diffusive and highly invasive brain tumors accounting for 

about 50% of all primary brain tumors and, unfortunately, 

the prognosis for patients with gliomas is very poor. Median 

untreated survival time for high grade gliomas ranges from 6 

months to 1 year and even lower grade gliomas can rarely be 

cured. Theorists and experimentalists believe that 

inefficiency of treatments results from the high mobility of 

glioma cells. Additionally gliomas can exhibit very high 

proliferation rates. The understanding of malignant glioma 

growth still very less complete, mostly because gliomas 

proliferate as solid tumors and invade the surrounding brain 

parenchyma actively. Proliferation and specially migration 

of gliomas represent a very challenging problem from a 

mathematical viewpoint. Cancer research has been a fertile 

ground for mathematical modeling, beginning with the early 

concept of simple exponential growth of solid tumors 

doubling at a constant rate. The introduction of logistic or 

gompertzian growth (there is increased doubling time and 

decreased growth fraction as a function of time) allowed to 

slow the growth in the later stages. With the recognition that 

tumor cells might spread outside the grossly visible mass, 

invading locally and metastizing distantly, and that some 

cells die during the development process, the mathematical 

concepts necessarily became more complex than those used 

in the original simple models for solid tumors.  The initial 

answer to the question of how to measure the growth of an 

infiltrating glioma was provided by Murray in the early 90s 

(5). He formulated the problem as a conservation law where 

the rate of change of tumor’s cell population results from 

mobility and net proliferation of cells. Mathematical neuro-

oncology (MNO) is a young and burgeoning field that 

leverages mathematical models to predict and quantify 

response to therapies. These mathematical models can form 

the basis of modern “precision medicine” approaches to 

tailor therapy in a patient-specific manner. Patient-specific 

models (PSMs) can be used to overcome imaging 

limitations, improve prognostic predictions, stratify patients, 

and assess treatment response in silico (6). The information 

gleaned from such models can aid in the construction and 

efficacy of clinical trials and treatment protocols, 

accelerating the pace of clinical research in the war on 

cancer. The aim of the study is to review the growing 

literature of PSM to clinical neuro-oncology. It will also 

provide a forward-looking view on a new era of patient-

specific MNO. 

 

2. Material and Methods 
 

In this systematic review, we searched MEDLINE/PubMed 

and the Cochrane Database for studies regarding 

management of severe influenza cases. We searched peer-

reviewed journals on infectious diseases and viral infection 

including influenza, hand-searched selected articles and also 

looked at the websites of the leading health authorities (e.g. 

WHO, CDC, HPA). To minimise the introduction of bias, no 

language or publication restrictions were applied.  

  

3. Results and Discussion 
 

Gliomas present a unique clinical challenge. In addition to 

intra- and inter-tumoral heterogeneity, these lesions are 

defined by their diffuse invasion of otherwise normal-

appearing brain tissue peripheral to the imageable 

abnormality. This diffuse growth limits the clinical utility of 

neuroimaging in interpreting treatment response (7).  

 

Mathematical models in medicine. Over the last several 

decades, much research has been devoted to understanding 

the physical and biological properties of gliomas in the 

effort to develop an extensive knowledge of this disease. 

Mathematical models are vital to many disciplines of 

science. Yet, compared to other scientific disciplines, there 

has been relatively little effort within neurosurgery or neuro-

oncology to exploit such knowledge to form predictive 

systems that could accurately model or simulate the behavior 

of a malignant glioma. Such modeling could improve our 

sense of growth and invasive patterns and might translate 

into a useful clinical tool (8).   
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Cancer is an inherently multi-scale process and different 

types of models adequately describe different aspects of the 

proliferation and spread of gliomas. All of the time and 

spatial scales of glioblastoma are important, from individual 

cell interactions to the role nutrients and brain geometry play 

on the tumor (9).   

 

Measuring tumor growth on serial MRIs. 

Several methods have been proposed to quantify 

radiological glioma growth, especially for the contrast-

enhance areas in high-grade gliomas (10). The simplest one 

consists in a manual measurement of tumor diameters on 

successive MRIs (11). In the particular case of grade II 

glioma, maximal visible abnormalities on MRI are seen on 

Flair sequences that usually best delineate the tumor (12). 

The three largest tumor diameters (D1, D2, D3) according to 

the three reference orthogonal planes (axial, coronal, and 

sagittal planes) can be measured using printed as well as 

digitized MR images. An estimation of the tumor volume 

(V) is calculated by the ellipsoid approximation: V ¼ D1 _ 

D2 _ D3=2. Then, the mean tumor diameter (Dmean) is 

deduced from the volume: Dmean ¼ ð2 _ VÞ1=3. 

 

Finally, the glioma growth curve can be represented by the 

evolution of the mean tumor diameter with time. Despite the 

advantages of this simple and rapid method, its limit, with 

respect to full 3D tumor segmentation, is well known: the 

ellipsoid approximation overestimates the volume, the 

overestimation increasing with a more irregular contour of 

the tumor. The influence of this methodological issue on the 

evaluation of the response to radiotherapy or chemotherapy 

has also been investigated, the rate of responders differing 

between 1D, 2D, or 3D measurements (13). However, it 

remains unknown to what extent the difference between the 

two methods can affect the estimation of growth rates for 

both the pre-and postoperative periods.  

 

In summary, the gold standard in measuring grade II glioma 

evolution on MRI is the 3D segmentation on Flair images. 

Despite recent advances in automated segmentation 

algorithms (14), manual segmentation is still the reference 

method, but it is a time-consuming task. For many 

applications, the approximation given by the three-diameters 

measurement offers a simple and effective way to estimate 

growth rates. Actually, all present clinical data on grade II 

glioma dynamics relied on this method. Furthermore, few 

methods have been adapted to heterogeneous DLGG 

segmentation. The focus of early methods was on contrast 

enhanced and homogeneous tumors and while glioblastomas 

have been mostly studied in the recent years. Current metrics 

of therapeutic response rely on observable changes to 

clinical imaging (15), ignoring the underlying growth 

dynamics of the tumor. Further, the current standard of care 

leaves few treatment options and may over-treat patients 

with slow growing tumors. Patient-specific mathematical 

modeling provides a novel means of developing UVCs for 

each patient’s tumor and provides predictive insight into 

prognosis, treatment response, and optimal treatment design. 

The future of patient-specific modeling and application 

depends on asking questions that mathematical models can 

realistically answer with data that can be obtained from 

patients either non-invasively or infrequently (16).  

 

PSM must be validated and incorporated into clinical trials 

to become broadly and directly applicable to patient care. 

Advantages of a patient-specific modeling approach include: 

a) Identification of individualized tumor proliferation and 

inva- sion rates or other kinetic information about an 

individual patient’s tumor b) Development of methods for 

quantifying and predicting response to therapy – alone and 

also with respect to UVCs pro- vided by model predictions 

c) More informed treatment planning and response 

assessment tools that compare each patient’s tumor growth 

against its own virtual control. 

 

4. Conclusion 
 

Despite an extensive amount of work dedicated to brain 

tumor segmentation, the problem remains difficult and 

segmentation results are often not satisfactory. 

Generalization of the existing methods to several kinds of 

tumors (or pathologies) is often difficult.  Additionally, 

many methods are based on the use of different image 

modalities which are not systematically available in a 

clinical setting. Despite the need of a prior training phase, 

machine learning methods offer a flexible and efficient way 

of capturing the tumor’s properties that are not limited to 

intensity values.  

 

These advantages directly address a number of key unmet 

challenges in clinical neuro-oncology. In the coming years 

we antic- ipate a continued expansion of peer-reviewed 

journals dedicated to mathematical oncology, coordinated 

with increased funding for research in the area. Recently, 

Cancer Research has added a special section devoted 

exclusively to mathematical oncology. By producing 

individualized virtual tumors that predict disease progression 

in the absence of treatment, patient-specific modeling can 

contribute to the ongoing dialog regarding the design of 

appropriate response criteria (Wen et al., 2010), provide a 

means to perform virtual clin ical trials to assess the likely 

benefit of novel neurotherapeutics, and move neuro-

oncology toward individualized treatment plans optimized 

for maximum benefit. 
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