International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Z-Nearly Prime Submodules

Nuhad Salim Al-Mothafar

Department of mathematics, college of Science, Baghdad University, Baghdad, Iraq

Abstract: Let R be a commutative ring with identity and N be a proper submodule N of R-moduLe M is called prime if whenever $rx \in N$; $r \in R$, $x \in M$, implies either $x \in N$ or $r \in [N: M]$. In this paper we say that N is Z-nearly prime submodule of R-moduLe M, if whenever $f \in M^* = Hom(M, R)$, $x \in M$ such that $f(x) \cdot x \in N$, then either $x \in N + J(M)$ or $f(x) \in [N + J(M): M]$, J(M) is the Jacobson radical of M. We prove some result of this type of submodules.

Keywords: prime submodule, Z-prime submodule, nearly prime submodule, nearly regular module

1. Introduction

Throughout this paper R is commutative ring with one. And M is a unitary R-module. A proper submodule N of an Rmodule M is called a prime submodule if for each $r \in R$, $x \in M$, such that $rx \in N$, then either $x \in N$ or $r \in [N:M]$, where $[N:M] = \{r: r \in R, rM \subseteq N\}$, [1]. There are several generalization of the notion of prime submodules as Zprime. The definition of Z-prime is came in [2], as following: we say that a proper submodule N of an R-module *M* is called *Z* -prime if for each $x \in M$, $f \in M^* =$ Hom(M, R), such that $f(x) \colon x \in N$ implies that either $x \in$ N or $f(x) \in [N:M]$. In [3] we study nearly prime as a generalization of prime submodules and they define a nearly prime submodules as follows: a proper submodule N of an R-module M is called nearly prime, if whenever $rx \in N$, $r \in R$, $x \in M$ implies either $x \in N + J(M)$ or $r \in [N + J(M): M].$

In this article, we study Z-nearly prime submodules as generalization of Z-prime submodules, we give basic properties and we illustrate the relation between Z-nearly prime submodule and Z-prime submodule. It is clear that each Z-prime submodule is Z-nearly prime submodule, but the converse is not true in general. However, we gives a condition under which the two concepts one equivalent. And we study the Z-nearly prime submodules in other modules such as F-regular, injective, divisible, injective hull modules.

2. Z-Nearly Prime Submodules

In this section wedefine the concepts of Z-nearly prime submodule and investigate some properties. As generalization of Z-prime submodles,

Definition (2.1):

A proper submodule *N* of *R*-moduLe *M* is called *Z*-nearly prime submodule of *M* if whenever $f \in M^* = Hom(M, R)$, $x \in M$ such that $f(x).x \in N$, then either $x \in N + J(M)$ or $f(x) \in [N + J(M):M]$; J(M) is the Jacobson radical of *M*. Specially, an ideal *I* of a ring *R* is *Z*-nearly prime ideal of *R* if and only if *I* is a *Z*-nearly prime submodule of *R*-module *M*.

Remarks and examples (2.2):

- 1) It clear that everyZ-prime submodule N of an R-module M is Z-nearly prime submodule f M, but the converse is not true in general.
- 2) Let $M = Z \oplus Z$ as Z-module and consider the submodule $N = 2Z \oplus 0$ of $Z \oplus Z$, then N is not Z-nearly prime, since if we take $f: Z \oplus Z \to Z$, define by $f(n \cdot m=2n, f3,03,0=63,0=18,0\in N$ but $6\notin N+JZ:Z=0$ and $(3,0) \notin N+J(Z)$, thus N is not Z -nearly prime submodule of Z as Z-module.
- If N =< 2>, then N is Z-nearly prime submodule of Z as Z-module, where J(Z) = 0, [N:Z] =< 2>.
- 4) The direct sum of two Z-nearly prime submodules of an R-module M_1 and M_2 need not to be Z-nearly prime submoules of M_1 and M_2 for example:

Let $M = Z \oplus Z$. Let $N_1 = 2Z$ is a Z-prime submodule of Z as Z-module, hence is Z-nearly prime and $N_2 = (0)$ is Zprime, hence is Z-nearly prime but $2Z \oplus 0$ is not Z-nearly prime in $Z \oplus Z$, by (2).

Proposition (2.3):

If *N* is *Z*-nearly prime submodule of an *R*-module *M*, *K* is any proper submodule of *M* such that $K \not\subseteq N$ and $J(M) \subseteq K$, then $N \cap K$ is *Z*-nearly prime submodule in *M*

Proof:

Since $K \nsubseteq N$, then $N \cap K$ is a proper submodule in M. Let $f \in M^* = Hom(M, R), x \in M$ such that $f(x).x \in N \cap K$. We want to prove either $x \in (N \cap K) + J(M)$ or $f(x) \in [(N \cap K) + J(M): M]$, suppose that $x \notin (N \cap K) + J(M) = (N + J(M)) \cap K$, then $x \notin N + J(M)$, but N is Z-nearly prime of an R-module M, then $f(x) \in [N + J(M): M]$, then $f(x)M \subseteq N + J(M)$. Since $f(x).x \in N \cap K$, then $f(x)x \in K$, then $f(x)M \subseteq K + J(M) \cap K$ is Z-nearly prime in M. Which implies that $N \cap K$ is Z-nearly prime in M.

Recall that ring R is said to be a good ring if J(R). M = J(M); where M is an R-module, [4]

Corollary (2.4):

Let *R* be a good ring and *N* be an *R*-module *M*, *K* be any proper submodule of *M* such that $K \not\subseteq N$, J(K) = K, then $N \cap K$ is *Z*-nearly prime in *M*

Volume 7 Issue 1, January 2018

DOI: 10.21275/ART20179321

Proof:

Since $K \not\subseteq N$, then $N \cap K$ is a proper submodule in M. Since R be a good ring and J(K) = K, then $J(M) \subseteq K$, by above proposition $N \cap K$ is *Z*-nearly prime in M.

Proposition (2.5):

Let *N* and *K* be two *Z*-nearly prime submodules of *M* and either $J(M) \subseteq N$ or $J(M) \subseteq K$, then $N \cap K$ is *Z*-nearly prime of *M*

Proof:

Since $N \cap K \subseteq N$ and N is a Z-nearly prime submodule of M, then $N \cap K$ is a proper submodule in M. Let $f \in M^* = Hom(M, R)$, $x \in M$ such that $f(x).x \in N \cap K$. We want to show that either $x \in (N \cap K) + J(M)$ or $f(x) \in [(N \cap K) + J(M):M]$, suppose that $f(x) \notin [(N \cap K) + JM:M,$ then $fxM \not \in (N \cap K) + J(M)$, then $fxM \not \in N + J(M)$ and $f(x)M \not \subseteq K + J(M)$. Since N and K are two Z-nearly prime submodules of M, then either $x \in K + J(M)$ or $f(x) \in [K + J(M):M]$, and either $x \in K + J(M)$ or $f(x) \in [K + J(M):M]$, then $x \in (N + J(M)) \cap (K + J(M))$. If $J(M) \subseteq N$, then $x \in N \cap (K + J(M))$, then $x \in (N \cap K) + J(M)$. If $J(M) \subseteq K$, then $x \in (N + J(M)) \cap K$, hence $x \in (N \cap K) + J(M)$, which implies that $N \cap K$ is Z-nearly prime of M.

Proposition(2.6):

Let N be a submodule of an R-module M. If[N + J(M): M] is a maximal ideal of R, then N is a Z – nearly prime submodule of M.

Proof:

Let $f \in Hom(M, R), x \in M$ such that $f(x).x \in N$, if $f(x) \notin [N + J(M):M]$ and since [N + J(M):M] is a maximal ideal of R, then $R = \langle f(x) \rangle + [N + J(M):M]$, where $\langle f(x) \rangle$ is an ideal of R generated by f(x), hence there exists $s \in R$ and $k \in [N + J(M):M]$ and 1 = sf(x) + k. Thus, $x = sf(x)x + kx \in N + J(M)$, therefore N is a Z-nearly prime submodule of M.

The next example show that the converse of remark (2.2)(1) is nottrue.

Let $M = Z \bigoplus Z_{16}$ as Z-module, the submodule $N = Z \bigoplus$ (0) of *M* is not *Z*-prime, see [2], but it is a Z-nearly prime submodule of *M*, because [N + J(M): M] = 2Z is a maximal ideal of *Z* and hence by proposition (2.6), $N = Z \bigoplus$ (0) is a *Z*-nearly prime submodule of M; J(M) ={ $(0, \overline{0}), (0, \overline{2}), (0, \overline{4}), (0, \overline{6}), (0, \overline{8})(0, \overline{10}), (0, \overline{12}), (0, \overline{14})$ }.

Proposition (2.7):

Let N be a proper submodule of an R-module M such that $[K: M] \not\subset [N + J(M): M]$ for each submodule K of M and $N + J(M) \subsetneq K$. If [N + J(M): M] is a prime ideal of R, then N is aZ-nearly prime submodule of M.

Proof:

Let $f \in Hom(M, R)$, $x \in M$ such that $f(x).x \in N$ and suppose $x \notin N + J(M)$. It is clear that the submodule $K = \langle x \rangle + [N + J(M)]$, and so $[K : M] \not\subset [N + J(M) :$ M]. Then there exists $s \in [K : M]$ and $s \notin [N + J(M) :$ M]. Thus, $sM \subseteq K$ and $sM \not\subset N + J(M)$. But $sM \subseteq K$ implies $f(x)sM \subseteq rK = f(x)[N + J(M) + \langle x \rangle] \subseteq N + J(M)$ and $f(x)s \in [N + J(M) : M]$.Since [N + J(M) : M] is a prime ideal and $s \notin [N + J(M) : M]$, $f(x) \in [N + J(M) : M]$.Therefore N is a Z -nearlyprime submodule fM.

Proposition(2.8):

Let N be a submodule of an R-module M and $P = [N + J(M):_R \langle e \rangle]$. If the ideal $[N + J(M): \langle e \rangle] = P$, for each $e \in M$; $e \notin N + J(M)$, then N is a Z -nearlyprime submodule of M.

Proof:

Let $f \in Hom(M, R)$, $x \in M$ such that $f(x).x \in N$ and suppose $x \notin N + J(M)$. Thus $f(x) \in [N + J(M) : \langle x \rangle]$.But $[N + J(M) : \langle x \rangle] = P$, so $f(x) \in P$. Therefore N is a Z-nearly prime submodule of M.

Now, we give the following lemma:

Lemma(2.9):

Let N be a submodule of an R-module M. If the submodule $[N + J(M) :_M < r >] = N + J(M)$, for each $r \in R, r \notin P$, then the ideal $[N + J(M) :_R < e >] = P$, for each $e \in M$; $e \notin N + J(M)$.

Proof:

Let $e \in M$; $e \notin N + J(M)$.It is clear that $P \subseteq [N + J(M):_R \langle e \rangle]$. Let $r \in [N + J(M):_R \langle e \rangle]$, then $re \in N + J(M)$.Suppose $r \notin P = [N + J(M):_R M]$. Since $[N + J(M):_M \langle r \rangle] = N + J(M)$ and $e \in [N + J(M):_M \langle r \rangle]$, so $e \in N + J(M)$, which a contradicts our assumption. Thus, $r \in P$ for each $e \in M$ such that $e \notin N + J(M)$. Therefore $[N + J(M): \langle e \rangle] = P$.

Corollary (2.10):

Let *N* be a submodule of an R-module *M* and P = [N + J(M): M]. If $[N + J(M):_M < r >] = N + J(M)$, for each $r \in R$, then N is a Znearlyprime submodule of *M*.

Proposition (2.11):

Let *M* be an *R*-module and *N* be a submodule of *M*. If [N + J(M):M] = [N + J(M):K] for each submodule *K* of *M* such that $K \supseteq N + J(M)$, then *N* is Z-nearly prime submodule of *M*.

Proof:

To prove *N* is aZ-nearly primesubmodule of an R – module *M*. Let $f \in Hom(M, R), x \in M$ such that $f(x), x \in N$ and suppose $x \notin N + J(M)$. Let $K = [N + J(M)] + < x > \supseteq N + J(M)$. Then $x \in K$ and so $(x) \in [N:K] \subseteq [N + J(M):K] = [N + J(M):M]$. It follows that $f(x) \in [N + J(M):M]$ and hence *N* is Z-nearly prime submodule of.

Now we state and prove the following lemma.

Lemma(2.12):

Let *N* be a submodule of an R-module *M*. If the submodule $[N + J(M) :_M < r >] = N + J(M)$, for each $r \in R$, $r \notin P$, then the ideal $[N + J(M) :_R < e >] = P$ for each $e \in M$; $e \notin N + J(M)$.

Volume 7 Issue 1, January 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proof:

Let $e \in M$; $e \notin N + J(M)$. It is clear that $P \subseteq [N + J(M):_R < e >]$. Let $r \in [N + J(M):_R < e >]$, then $re \in N + J(M)$. Suppose $r \notin P = [N + J(M):_R M]$. Since $[N + J(M):_M < r >] = N + J(M)$ and $e \in [N + J(M):_M < r >]$, so $e \in N + J(M)$ which a contradicts our assumption. Thus, $r \in P$ for each $e \in M$ such that $e \notin N + J(M)$. Therefore [N + J(M): < e >] = P.

Corollary (2.13):

Let N be a submodule of an R-module M and P = [N + J(M): M]. If $[N + J(M):_M < r >] = N + J(M)$, for each $r \in R$, then N is a nearly prime submodule of M.

3. Z-nearly Prime Submodules

In this section we study the Z-nearly prime submodules in others modules such as F-regular, Z-regular, injective, divisible, injective hull modules. First we need the following proposition:

Proposition(3.1):

If N is a Z-nearly Prime submodule of an R-module M and J(M) = 0, then N is a Z-prime submodule of M.

Proof:

It is clear.

Recall that an R – module M is said to be F–regular if each submodule of M is pure,[5].

Corollary(3.2):

If N is aZ-nearlyprime submodule of an R-module M and M is a F-regular, then N is a Z-prime submodule of M.

Proof:

Since *M* is an F–regular R-module, so J(M) = 0, [7].Hence the result follows by proposition (3.1).

Corollary (3.3):

If N is a Z –nearly Prime submodule of an R-module M and R / ann(x) is an F-regular ring for every $0 \neq x \in M$, then N is a Z-prime submodule of M.

Proof:

Since R/ann(x) is a regular ring for every $0 \neq x \in M$, then *M* is an *F*-regular R-module by [7]. Hence the result follows by Corollary (3.2).

Recall that an R-module M is called Z-regular (for simplicity just regular) if $\forall m \in M, \exists L \in M * = Hom (M, R)$ such that $= L(m) \cdot m$, [8].

Corollary(3.4):

If N is a Z–Prime submodule of Z-regular R–module M, then N is a primesubmodule of M.

Proof:

Since *M* is a *Z*-regular *R*-module, then M is a F-regular R-module by [7].Hence the result follows by Corollary (3.2).

Corollary(3.5):

If *N* is a Z-nearly prime submodule of an R-module *M* and $J(N) = J(M) \cap N$ for each *N* submodule of *M*, then *N* is a Z-prime submodule of *M*

Proof :

Since $J(N) = J(M) \cap N$, so J(M) = 0 by [6, proposition(1-33),p.22]. Hence the result follows by proposition (3.1).

Now, because of the fact R is good ring if and only if $J(N) = J(M) \cap N$ for each submodule N of an R-module M, [4]. Then the following is a consequence of corollary(3.5).

Corollary(3.6):

If N is a Z-nearly prime submodule of an R-module M and R is a good ring, then N is a Z-prime submodule of.

Proof:

Since *R* is a good ring, then $J(N) = J(M) \cap N$ for each submodule *N* of *M* by [9] .Therefore, J(M) = 0 by [6,proposition(1-33), p.22] and hence *N* is a Z-prime submodule of *M*.

Recall that an R-module M is called divisible if and only if rM = M, $\forall 0 \neq r \in R, [4]$.

By using this concept, we have the following:

Proposition(3.7):

Let R is PID and M is a divisible R-module such that $J(M) \neq M$. If N is a Z-nearly prime submodule of M, then N is a Z-prime submodule of M.

Proof :

Since *M* is a divisible *R* -module and $J(M) \neq M$, so J(M) = 0 by [6,proposition(1-4),p.12]. Hence the result follows immediately from proposition (3.1).

Corollary(3.8):

Let *M* be an injective define on an integral domain *R* and $J(M) \neq M$. If *N* is a Z-nearlyPrime submodule, then *N* is a Z-prime submodule *M*.

Proof:

Since *M* is an injective R-module, so *M* is a divisible R-module by, [4]. But $J(M) \neq M$, so J(M) = 0 by, [6,proposition(1-4),p.12] .Hence the result follows immediately from proposition(3.1).

Recall that a submodule N of an R-module M is said to be essential, if has non-trivial intersection with every non-zero submodule of M,[4].

Recall that an R-module M is called an injective hull or injective envelope of a module M if it is an essential extension of M and an injective module,[4].

By using this concept, we can give the following result:

Volume 7 Issue 1, January 2018

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY DOI: 10.21275/ART20179321

Corollary(3.9)

Let M be an injective hull on an integral domain R and $(M) \neq M$. If N is a Z-nearlyPrime submodule, then N is a Z-prime submodule M.

Proof :

Since *M* is an injective hull *R*-module, so *M* is an injective and hence *M* is a divisible *R*-module by [4]. But $J(M) \neq M$, so J(M) = 0 by [6,proposition(1-4),p.12]. Hence the result follows immediately from proposition(3.1).

Corollary(3.10):

Let *M* has no proper essential extensions R- module and $J(M) \neq M$. If *N* is a Z-nearly Prime submodule, then *N* is a Z-prime submodule of M.

Proof:

Since *M* have no proper essential extensions *R*-module, so *M* is an injective by [4] and hence *M* is a divisible *R*-module by [4]. But $J(M) \neq M$, so J(M) = 0 by [6,proposition(1-4), p.12] .Hence the result follows immediately from proposition(3.1).

References

- C.P.Lu, (1984), "Prime submodules of modules", Commutative Mathematics, University. Spatula, 33, 61-69.
- [2] NuhadS.A. and Ali Talal Husain, "Z-Primesubmodules", Int. J. Adv. Res., 4(8), 355-361, (2016).
- [3] Nuhad S. A.,AdwiaJ.A., "Nearly Prime Submodules", International J. of Advanced Scientific and Technical Research, 5(6), (2015), 166-173.
- [4] F. Kasch, "Modules and Rings", Academic Press, London, 1982.
- [5] Fieldhous, D.J., (1969), "Pure Theories", Math.Ann., 184, 1-18.
- [6] N.H.Hamada, "Radicals of modules" M.Sc. Thesis, Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.
- [7] Naoum A. G. and Yaseen S.M., (1995),"The Regular Submodules of a Module", Annals Societies Mathematics Polonies
- [8] J. M. Zelmanowitz, "Regular Modules", Trans. Amer. Math.Sec. 163, 341-355, (1973)
- [9] NuhadS. A., Naoum A .G. (1994). "Nearly Regular Ring And Nearly RegularModules" Mutah Journal For Research and studies, 9(6), pp:13-24.

DOI: 10.21275/ART20179321