Diversity and Abundance of Phytoplanktons from Wetlands of Yellandu

K. Rajyalaxmi¹, M. Aruna²

^{1, 2}Department of Botany, Telangana University, Nizamabad, (T.S.). India

Abstract: Phytoplanktons are primary producers of aquatic matter in the aquatic environment. Because of their photosynthetic activity they provide food to aquatic flora and fuana and they make the environment suitable for the existence of organisms by releasing Oxygen into the environment they constitute the main link in aquatic food chain. The present study focuses on the diversity and abundance of phytoplankton in three seasons. A survey was carried out in three wet lands of Yellandu region in district of Bhadradri kothagudem in Telangana state. Studies were under taken to document diversity and richness of phytoplanktons of the region. The investigation revealed that Yellandu wetland region sustains a very rich phytoplankton diversity and unique aquatic community. Collections from the study sites showed rich unicellular and filamentous algae belonging to various classes, such as Cyanophyceae, Chlorophyceae, Bacillariophyceae & Euglenophyceae.

Keywords: Phytoplanktons, Yellandu lake, Challasamudram lake, Madharam lake

1. Introduction

Algae are Eukaryotic, primitive mainly aquatic plants they possess Chlorophyll a as their primary photosynthetic pigment and can manufacture their food through the process of photosynthesis, for these capacity algal members are considered as autotraphs. These are food for many small aquatic invertebrates and in turn, these small organisms are food for aquatic animals. Yellandu wetlands are body of fresh water with depth range from 30cm-160cm.lakes in Yellandu region is important site for wintering of the migrating birds and important natural resources for fish production in Yellandu. Yellandu is a town in Bhadradri kothagudem district of the telangana state, geographycally located at 17.59 41° N latitude, 80.3224° E longitude. Algal samples were collected from 3 wet lands located in Yellandu region named as 1. Yellandu lake, located at 17.6° N latitude, 80.33° E longitude. 2. Challasamudram, located at 17.5° N latitude, 80.3° E longitude. 3. Madharam lake 17.58° N latitude, 80.34° E longitude. Samples collected from different sites of these three lakes for a period of one year between June 2016 to May 2017. Earlier works of Chattopadyaya. C., Benerjee T.C.(2007) Chaudary, R. Pillai R.S.,(2009). Ghosh,S., Barinova,s., Keshri J.P.,(2012). S.K. Agarwal P.K. Singh, V.P.,(2007) on fresh water phytoplanktons of Indian states show that a large part of it is still unexplored.

2. Materials and Methods

Collection, Preservation and identification

The samples of the planktonic algal species were collected monthly from three selected lakes. Collections were made early in the sunrise by using planktonic mesh net, benthic algae collected with forceps, terrestrial members are collected by scalpel. Collection made between June 2016 to May 2017. Samples are stored in 4% aqueous solution of formaldehyde in laboratory for specific studies. The morphological studies were made in fresh material using light microscope and making their camera lucida drawings. Identification of the taxa was done using Fritsch (1961), Prescott(1962), Philipose (1967), Tiwari A,A Rana and S V S Chauhan (2003), Prasad and Misra (1992) and Desikachary (1959).

S.No	Algal species	Class	Yellandu lake	Challasamudram lake	Madharam lake
1	Pediastrum meyen	Chlorophyceae	**	**	*
2	Pediastum duplex	Chlorophyceae	-	-	**
3	Oedogonium patulum	Chlorophyceae	**	*	*
4	Oedogonium grande	Chlorophyceae	**	**	*
5	Euastrum verrucosum	Chlorophyceae	*	*	-
6	Euastrum spinulosum	Chlorophyceae	*	*	-
7	Eustum quadriculatum	Chlorophyceae	*	*	-
8	Spirogyra varians	Chlorophyceae	**	**	**
9	Spirogyra acanthospora	Chlorophyceae	*	**	*
10	Spirogyra discoidea	Chlorophyceae	**	*	**
11	Closterium acerosum	Chlorophyceae	*	**	*
12	Clostrium tumidum	Chlorophyceae	*	-	*
13	Cosmarium auriculatum	Chlorophyceae	*	*	-
14	Cosmarium botrytis	Chlorophyceae	*	*	-
15	Chara vulgaris	Chlorophyceae	**	**	**
16	Chara glabra	Chlorophyceae	**	**	**
17	Chlorella vulgaris	Chlorophyceae	*	**	*
18	Chlorella ellipsoidea	Chlorophyceae	*	**	*

Table I: Documentation of Phytoplankton species found in the Wetlands of Yellandu

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR)				
ISSN (Online): 2319-7064				
Index Copernicus Value (2016): 79.57 Impact Factor (2015): 6.391				

19	Chlamydomonas gliobosa	Chlorophyceae	**	**	*
20	Chladophora glomerata	Chlorophyceae	**	**	*
21	Microspora sps.	Chlorophyceae	*	*	*
22	Scenedesmus denticulatus	Chlorophyceae	*	*	*
23	Scenedesmus quadricauda	Chlorophyceae	*	*	*
24	Scenedesmus obiquus	Chlorophyceae	**	**	*
25	Tetraedron regulare	Chlorophyceae	*	*	*
26	Tetraedron quadratum	Chlorophyceae	*	*	*
27	Zygnema pectinatum	Chlorophyceae	*	*	*
28	Anabaena Constricta	Cyanophyceae	**	**	*
29	Anabaenopsis sp.	Cyanophyceae	*	**	*
30	Gloeocapsa atrata	Cyanophyceae	*	**	*
31	Gloeotrichia natans	Cyanophyceae	*	**	-
32	Oscillatoria Formosa	Cyanophyceae	*	**	*
33	Oscillatoria rubescens	Cyanophyceae	*	-	*
34	Oscillatoria tenuis	Cyanophyceae	*	**	*
35	Phormidium luridum	Cyanophyceae	*	**	*
36	Phormidium molle	Cyanophyceae	*	**	-
37	Lyngbya ceylanica	Cyanophyceae	*	*	*
38	Nostoc sphaerium	Cyanophyceae	**	*	**
39	Spirulina major	Cyanophyceae	*	-	-
40	Synechocystis aqualis	Cyanophyceae	**	*	*
41	Chroococcus minutus	Cyanophyceae	*	*	*
42	Hydrococcus sps.	Cyanophyceae	*	*	*
43	Cymbella parva	Bacillariophyceae	**	*	*
44	Cymbella cymbiformis	Bacillariophyceae	*	*	*
45	Gomphonema gracile	Bacillariophyceae	**	-	*
46	Gomphonema acuminatum	Bacillariophyceae	*	*	*
47	Navicula radiosa	Bacillariophyceae	**	*	**
48	Pinnularia gibba	Bacillariophyceae	*	*	*
49	Pinnularia viridis	Bacillariophyceae	*	*	*
50	Euglena caudata	Euglenophyceae	*	*	-

*Present, ** Abundance, - Absent

Table 2: Species composition and percentage

Class	No. of Genus	No. of Species	Percentage
Chlorophyceae	14	27	54%
Cyanophyceae	11	15	30%
Bacillariophyceae	4	7	14%
Euglenophyceae	1	1	2%
Total	30	50	100%

3. Result

The algal members comprised of 30 genera of which 27 belonged to Chlorophyceae, 15 to Cyanophyceae, 7 to Bacillariophyceae and 1 to Euglenophyceae(Table-I). Overall species composition of this study was Chlorophyceae 54%, Cyanophyceae 30%, Bacillariophyceae 14% and Euglenophyceae 2% (Table-II). Highest number of species was represented by Chlorophyceae with 27 species, least number of species represented by Euglenophyceae with 1 species. Highest phytoplankton diversity found at Yellandu lake, high Cyanophycean species found at Challasamudram lake and poor diversity at Madharam lake.

References

- [1] **Fritsch FE 1961.** *The structure and reproduction of the algae*. Cambridge University Press London.
- [2] Presscot G W 1962. Algae of the Western great lakes Area.Pub Cranbook.Institute of Science Bullenton No. 30.
- [3] **Tiwari A,A Rana and SVS Chauhan 2003**. Studies on the Algal flora of Bandh Beratha water reservoir of

Barathpur District, Rajastan Ann Forest 11(2): 187-192.

- [4] **Philipose M T 1967:** *Chlorococcales,* Indian council of Agriculture Research, New delhi pp 365.
- [5] Mitsch, W.J., X. Wu, R.W. Nairn, P.E. Weihe, N. Wang, R. Deal, and C.E. Boucher. 1998. Creating and restoring wetlands. BioScience 48: 1019-1030.
- [6] APHA 1995. American Public Health Association. Standard methods for the examination of water and waste water, 19th edition, washinton.
- [7] Chinnaiah B. Ramesh babu M. and Digamber Rao,
 B. 2011: Phytoplankton diversity and population dynamics of Ramappa lake,(A.P) *India.ad.plant.sci.*,24(II): 527-529.
- [8] **Desikachary . T.V. 1959**: *Cyanophyta* , ICAR, Monographs on Algae. New Delhi, 686.
- [9] Kumara swamy B. Dup singh L. Ramesh babu M. and Digamber Rao B. 2013: Study of Algae from fresh water reservoirs of Warangal (A.P.).India. Nature Environment and pollution technology, 12 (4): 577-584.
- [10] Odelu. G. 2015: Phytoplankton Studies in Kalvar Reservior of Karimnagar District of Telangana, India. International journal of Current Research Vol.7, Issue, 12, pp. 23431-23437.
- [11] Rev.Dr.J.W.Prakash (2016). Chlorophycean Diversity of selected ponds in Etturunagaram wild life Santuary, Warangal District, Telangana, India. International journal of Applied sciences (ISSN 2455-4459), 4(3), 454-459.

Volume 7 Issue 1, January 2018

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

- [12] Seenayya G. and A.R. Zafar 1979: An ecological study of the Mir Alam Lake, Hyderabad. India. Indian J. Bot. 2(2): 214-220.
- [13] Zafar A.R. 1964: On the ecology of Algae in certain fish ponds of Hyderabad India. I. Physico – Chemical Complexes. Hydrobiology. 23(1-2): 179-195.
- [14] Anand N 1998: India Fresh water micro algae, B. Singh. And M.P. Singh Dehradun, India. Pp. 84.
- [15] Pandey U C and Pandey D C 1982: Addition to the algal flora of Allahabad VII, Cyanophyceae phycos 21(1&2) 76-79.