Docking and Inhibition of Antiviral Ligands of Japanese Encephalitis Virus with Capsid Envelope Strain SA-14-14-2(3P54)

Managobinda Rath¹, Dr. Mahesh Chanrda Sahu¹, Dr. Susant Kumar Sahu²

¹Directorate of Medical Research, IMS & SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, K8, Kalinga Nagar, Bhubaneswar-751003.
²Department of Pharmacy, Utkal University, Bhubaneswar, Vani Vihar, Bhubaneswar-751004

Abstract: Japanese Encephalitis Virus (JEV) is a flavivirus that threatens more than half of the world's population. This disease is most prevalent in Southeast Asia and East Asia and mortality is generally much higher in children. Lifelong neurological defects such as deafness, emotional liability and hemiparesis may occur in those who have had central nervous system involvement. Genomic arrangement of the virus shows a single-stranded RNA genome packaged in the capsid which is formed by the capsid protein. The outer envelope is formed by envelope protein and is the protective antigen. It aids in entry of the virus into the cell. The genome also encodes several nonstructural proteins (NS1, NS2a, NS2b, NS3, N4a, NS4b, and NS5). There is no specific antiviral drug is yet available for clinical therapy. The tertiary structure of protein 3P54 was found in Protein data bank(PDB) and the structure was refined by Pymol and inhibitors were found from different literature study. Three Inhibitors of Capsid Envelope protein have been screened by applying Lipinski’s Rule of five then docked against Capsid Envelope protein of JEV. Different Dope score have been recorded for different ligands. However cilnidipine, niclosamide forming hydrogen Envelope protein and FGIN-I-27 is not forming hydrogen bond atom during the docking process against the target protein 3P54. Further study on this aspect may help to discover more effective drugs for the treatment of this deadly disease caused by Japanese Encephalitis Virus.

Keywords: Flavivirus, JEV Envelope Protein, Ligands, Lipinski’s Rule of five, Docking, pymol, discovery Studio4.0

1. Introduction

Japanese Encephalitis is now one of the most concern disease in Asia, especially in rural and suburban areas where rice culture and pig farming coexist. Japanese Encephalitis (JE) is a mosquito-borne flavivirus viral disease and also known as Japanese B encephalitis to distinguish from Economo’s A encephalitis. Japanese encephalitis including West Nill Virus (WNV), Tick-Borne Encephalitis Virus (TBEV) and Dengue Virus (DV) transmission cycle is Culex tritaeniorhynchus mosquitoes and similar species that lay eggs in rice paddies and other water sources, with pigs, wild birds and aquatic birds but may also be transmitted to humans and horses. It is affecting 30, 000 to 50, 000 cases and 10, 000 deaths in eastern Asia per year. There are some vaccines for JEV, but they are not widely available in Asia due to cost, licensing issues and safety concerns. JEV is mainly transmitted in the warm season, when large epidemics can occur. JEV most seen in temperate area of Asia. JEV is primarily a children disease (0-14 year) but all age groups are affected. Approximately in JE cases 30% - 50% survivors have significant nuerologic disorder and 20% - 30% cases are fatal.

Capsid binds to viral RNA and forms a nucleocapsid that is enveloped by endoplasmic reticulum - derived membrane containing E and prM. E proteins are responsible for cellular attachment and possess a hydrophobic loop that mediates fusion of viral and host membranes. During JEV life cycle, the JEV virion undergoes a maturation and process that continuously fusion peptide from premature insertion into the cell membrane of the host. In an immature virion, E forms irregular timers with fusion loop capped by prM until it is cleaved in the trans-golgi network prior to viral secretion. E rearranges into an icosahedral network of flat antiparallel homodimers that bury the loop at their interface. Mature virion of JEV that attach to the cells and taken up into the endosome. This process penetrate the endosome and drags to the host and viral membranes, thereby releasing the nucleocapsid in to the cell of flavivirus E structure, and the major contacts are between the fusion loop and domain l(DL-DIII pocket, not at the central region. The small dimer may be organized of E proteins from the viruses in the JEV serocomplex that provides an effective atomic model for JEV, E protein within mature virions. The flavivirus neutralizing antibodies binds E and inhibits the several stages of entry process, including attachment and fusion.

2. Materials and Methods

Docking
Molecular docking is a research technique which predicts the optimal orientation of one molecule to a second to form a stable complex. Knowledge of the preferred orientation is based on the strength and binding affinity between two molecules.

Autodock
Autodock is one of the most worldwide preferable molecular docking software. Autodock is a command line tool. It predicts the small 3D molecules and gives the binding energy of two molecules.

Programs
• AutoDock for docking the receptor and ligand
• AutoGrid for grid formation.
PyMOL
PyMol is computer software, a molecular visualization tool. PyMol is universally accessible for scientific research and educational use.

Lipinski’s Rule of five of SCFBio
Lipinski’s Rule of Five helps in distinguishing between the drugs and drugs like chemical structure. Lipinski’s Rule of Five predicts the probability of success and failure of the drug molecules. The drugs molecule should obey more than two rules of the following:

- Molecular mass less than 500 Dalton.
- High lipophilicity (expressed as LogP less than 5).
- Less than 5 H-bond donors.
- Less than 10 H-bond acceptors.
- Molar refractivity should be between 40-130.

PDB
Structural data of large biological molecules, such as proteins and nucleic acids. The data, typically obtained by X-ray crystallography, NMR spectroscopy, or, increasingly, cryo-electron microscopy. The Protein Data Bank (PDB) is a crystallographic database for the three-dimensional molecular structure submitted by biologists and biochemists from around the world are freely accessible on the Internet via the websites wwPDB Worldwide Protein Data Bank. We were downloaded the protein 3P54 from PDB Database (i.e. Fig -1).

Database used
- PDB
- Pubmed
- Pubchem
- Lipinski’s Rule of five

Tools used
- Pymol
- Autodock
- Discovery Studio 4.0

Protein preparation
- Target identification (3p54) from literature
- Download structure from PDB database

Ligand preparation
- Download ligands 3d structure from pubchem Tab-1
- Convert ligand sdf format to pdb format by pymol

Autodock setup
- Docking of 3P54 with each ligands set up of total grid (blind dock). Analyzed the result and found the region on protein, where ligand goes many times. Analysed the result (binding energy, H-bond interaction, interacting residues).

3. Result and Discussion

The docking approach results of the three compounds are shown in the Tab-2 and the interaction position between the ligands and the receptor are shown in the Fig-2(a), Fig-2(b), Fig-2(c). In FGIN-1-27 there is no H-bond interactions formation found. LYS124:HZ2, TRP233:HE1 and LYS166:HN, LYS166HZ3 are the H-bonds of Cilnidipine and Niclosamide with receptor 3P54 respectively. It can be seen more clearly in the tables below.

4. Conclusion

3P54 is a suitable target for drug discovery, because of neutralizing antibodies bind E and can inhibit several stages of the entry process, including attachment and fusion. The binding affinity, H-bond interaction with inhibitors and information about interacting residues may give a positive impact on future drug discovery and to fight against deadly Japanese encephalitis.

Figure 1: Chain A of 3p54 protein.

Figure 2(a): Protein binding with inhibitor cilnidipine
Figure 2(b): protein binding with inhibitor niclosamide

Figure 2(c): Protein binding with inhibitor FGIN-1-27.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Drugs</th>
<th>Information</th>
<th>3D structures</th>
<th>2D structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cilnidipine</td>
<td>MW-492.528g/mol Compound 1D-5282138</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mf-C17H18O8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>XLogP3=4.275799 H-bond doner-1 H-bond acceptor-8 Rotatable bond-11 Molar Refractivity:133.643097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>niclosamide</td>
<td>MW-289g/mol Compound 1D-4477</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mf-C17H17Cl2N2O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGIN-1-27</td>
<td>MW-436g/mol Compound 1D-132496</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mf-C17H17F2N2O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Drugs</th>
<th>Docking Score</th>
<th>H-bond Donner</th>
<th>H-bond acceptor</th>
<th>Torsional Energy</th>
<th>Atoms in H-bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cilnidipine</td>
<td>-4.9</td>
<td>1</td>
<td>8</td>
<td>3.58</td>
<td>LYS124:HZ2, TRP233:HE1</td>
</tr>
<tr>
<td>2</td>
<td>niclosamide</td>
<td>-5.43</td>
<td>2</td>
<td>4</td>
<td>1.19</td>
<td>LYS166:HN, LYS166HZ3</td>
</tr>
<tr>
<td>3</td>
<td>FGIN-1-27</td>
<td>-1.89</td>
<td>1</td>
<td>2</td>
<td>3.88</td>
<td>No H-bond formation</td>
</tr>
</tbody>
</table>

Table 1

Table 2

References

[25] Crystal Structure of the Japanese Encephalitis Virus Envelope Protein, strain SA-14-14-2. DOI: 10.2210/pdb3p54/pdb

