Motoring the Environmental Changes in Al-Hawizeh Marsh using Remote Sensing Techniques

Ebtesam F. Khanjer

Department of Astronomy and Space, College of Science, University of Baghdad

Abstract: Remote sensing data in combination with the appropriate multispectral bands such as Landsat OLI/TIR and TM data were used to get change detection of amount of water changes cover using multi-spectra and spatio–temporal Lands at satellite images for the periods of 1990 – 2015 in Al-hawizeh marsh in southern of Iraq. Multi Pre-processing image techniques have been adopted include geometric correction, atmospheric correction, image clipping and Enhancement. After these steps has been used results images classification to chafe these changes in Hawizeh marshes by using supervised classification technique. From the results of classification process indicate the water bodies was much decreased in year 2000 than 1990 and increased in 2015 than 2000 but less than 1990.

Keyword: AL-Huwiza marsh, Landsat satellite images, change detection, image classification

1. Introduction

Change detection is the measurements the extent of the change in the characteristics of the selected area, and the disclosure of these changes involves a comparison the satellite images with different time intervals to detected environmental changesusing two or more images for same geographical area [1]

The method of change detection after classification is the most simple change detection analysis techniques based on the classification. After classification compare method can be used to two or more images after registration, including a classification step and a comparing step. Each image of multi-temporal images is classified separately and then the classification result images are compared. If the corresponding pixels have the same category label, the pixel has not been changed, or else the pixel has been changed [2,3].

2. Image Preprocessing

The preprocessing is an inevitable step in the change detection. In this study, the preprocessing included radiometric and geometric corrections of the satellite images. Radiometric correction comprised the process of histogram matching of the satellite images from different time periods, whereas geometric correction meant registration of the satellite images, so that the images could overlap in the best possible way. This is important because some of the essential methods are based on the comparison of the two images from different time periods [4,5].

3. Supervised Classification

In this study is based on the supervised classification. Change detection is based on the classification of all the image pixels from one time period in accordance with the preset number of classes, where the classes represent the appropriate land cover class. By using specified number of classes and they mathematically [7]

4. Maximum Likelihood Classification

Maximum likelihood classification is the most common type supervised classification method used with remote sensing image data. It was based on using appropriate algorithms for naming each image pixels as representing specific ground cover Types, or classes. Regardless of the specific method chosen, the fundamental practical procedures [8]:

1) Select and decide the regions or types into which the image is to be divided. These are the information classes and could, for instance, be water, Vegetation, Wet soil, dry soil, and Mixed soil.
2) Choose prototype or representative pixels from each of the required group of classes. These pixels are said to be region of interest (ROI) or training data. Pixels for a given class located in a mutual regions surrounded by a border.
3) Training data are using to estimate the parameters of the particular classifier algorithm to be used, these parameters will be the properties of the probability model used or will be questions that define partitions in the multispectral space.
4) By using the trained classifier, naming or classify every pixel in the image into one of the desirable ground cover kinds (information classes). Here the entire image segment of interest is commonly classified.
5) Produce tabular summaries or thematic (class) maps which summarize the results of the classification.

5. Study Area

Marsh is one of the most important areas in the south of Iraq is considered an economic resource and a tourist resort in the future. Its play an important role for improves the economic, social, biodiversity status in the country [10].

Keyword: AL-Huwiza marsh, Landsat satellite images, change detection, image classification
Al Hawizeh marshes lie south of Iraq to the east of the Tigris River between the Iran-Iraq border. The marshes cover an approximate area of at least 3,000 km², with length 80Km, width 30Km, depth 6m. They are fed by kahlah and train full flows from mountains of Iran. The time of train full was between November and May months. The northern and central parts of the marshes are permanent, but the southern parts become seasonal in the natural state. The province of Basra has established a natural reserve in it. It was called Al-Safi Reserve[11].

6. Methods and Material

The aim of this paper is to detect the water change from 1990 to 2015. The multispectral satellite data is used to image processing for estimation this change. The software ENVI 5.1 and MATLAB is used data acquisition and processing. The data utilized is given in the following table(1) for the years 1990 and 2015. Multi-bands spectra are shown in the figure() for each year.

<table>
<thead>
<tr>
<th>Original images</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshes (1990)</td>
<td>Landsat5 Thematic Mapper (TM), 5-7-1990 path 166 Row 38</td>
</tr>
<tr>
<td>Marshes (2000)</td>
<td>Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Scan Line Corrector On (SLC-On) 4-7-2000 path166 Row 38</td>
</tr>
<tr>
<td>Marshes (2015)</td>
<td>Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor), 5-5-2015 path166 Row 38</td>
</tr>
</tbody>
</table>

Figure 1: Show the location of study area in south Iraq

Table 1: The Landsat and date of captured each original image

Figure 2: Show the Multi-band images in 1990 Bath166, Row38

Figure 3: Show the Multi-band images in 2000 Bath166, Row38
The study area, Al Hawizeh marshes location in south of Iraq with following geographic coordinate:
Proj: UTM, Zone 38: Datum WGS-84: ULGce. 47° 25’ 88’’;
Pixel=30m: diameter of clipping area

(ROI)=1463x2714(Byte)[BSQ]. The following figure shows the selected area with different time.

Figure 4: Show the Multi-band images in 2015 Bath166, Row38

Figure 5: Show selected area with false color, enhancement image, and its histogram (1990)

Figure 6: Show selected area with false color, enhancement image, and its histogram (2000).
Figure 7: Show selected area with false color, enhancement image and its histogram (2015)

Figure 8: Show classified image and water class for 1990
Figure 9: Show statistical results of classified image for 1990

Figure 10: Show classified image and water class for 2000
Figure 11: Show statistical results classified image for 2000

Figure 12: Show classified image and water class for 2015
7. Conclusion

Many monitoring techniques were employed to detect the water cover of Al-Hawizeh marsh, supervised classification has been applied and the results shown the decrease of the water cover in 2000 compared with the past years (1990). Water levels decreased from (23% to 6%). This is due to the policy of deliberately drying the marshes in the previous government. After that, the same area witnessed an increase in water cover in 2015 from (6% to 12%), this is clearly evident through the results in the figures (8,10,12) from classification image and isolation water class (Mask filter). This is the result of a strategy to revive the marshes of Iraq.

Results of this research shown in figures (9,11,13) indicate that surface under vegetation and mixed soil have been reduced from 1990 to 2000 as (27% to 21, and 19% to 13) respectively, and then increased in 2015. On the other hand, the dry soil has increased form (16% to 27%) at year 2000 with respected to 1990, and the decreased in 2015.

References