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Abstract: Soyabean [Glycine max (L.) Merr.] is considered essential due to its high oil production and nutritive value. However, 

because of the different abiotic and biotic stress, the plant experiences from accumulation of reactive oxygen species (ROS) that results 

in severe oxidative damage. The effect of abiotic stress such as heavy metals, salinity, temperature and drought were detected on 

soyabean during crop production. Abiotic stress produces several morphological changes in root, stem and leaf of the plants. Plants 

possess homeostatic cellular mechanism to regulate the level and concentration of various abiotic factors by using several enzymatic and 

non enzymatic responses. The cell wall and plasma membrane are the main barriers against the metal pollutants and some other 

compound present in plants like phytochelatin based sequestration etc. Exposure of heavy metal to the plants could lead multiple toxic 

effects by inducing reactive oxygen species (ROS), which inhibit most cellular processes at various levels of metabolism. The present 

study summarizes the response of Glycine max to different biotic, abiotic factors as well as heavy metal pollutants.  
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1. Introduction 
 

Soyabean is a species of legume belongs to Fabaceae family 

that is indigenous to East Asia, China and Manchuria. It is 

one of the most important sources of oil and protein in the 

19
th

 century and hence it is widely grown for its nutritious 

value worldwide. Soyabean originated from China around 

1100 to 1700 B.C. but was introduced into early Europe only 

in the 17th Century [1]. In the summer 1910; Alfred Jones 

shipped soyabeans for culture trials to West Africa. The 

main producers of G. max are the Brazil (27%), United 

States (35%), China (6%), Argentina (19%) and India (4%) 

[2]. Soybean was first grown in Ghana in 1909. It has gained 

worldwide importance as a primary source of vegetable oil 

and protein. Soyabean production constitutes around 55% of 

the total world production of oilseeds and figures around 

170 to 185 million tons. It contains about 40 % high quality 

proteins (as against 7.0 % in rice, 12 % in wheat, 10 % in 

maize and 20-25 % in other pulses) and 20 % oil [2]. 

 

Soybean seed is one of the most nutritious legumes and has 

higher energy value, because it contains good amount of 

mineral and about 37% of high-quality proteins, which is 

almost twice of the meat proteins, 4 times of the egg proteins 

and 12 times of the milk proteins. It also has 18% of 

unsaturated fat, vitamins A, E, F and B and is one of the 

good sources of lecithin, essential substances for the cell 

because it dissolves the bad cholesterol and helps in the 

absorption of vitamins. Soybean is a major protein source 

for humans and other animals. About 90% of soluble 

proteins in soybean seeds are globulins and more than 70% 

of globulins are ‘glycinin’ (11S globulin) and ‘β-

conglycinin’ (7S globulin). Glycinin is relatively rich in 

sulfur containing amino acids such as methionine and 

cysteine (3% to 4.5%) and is stored primarily in cotyledons 

of seeds where it is deposited in protein bodies. Soybean, 

with over 40% protein and 20% oil, has now been 

recognized all over the world as a potential supplementary 

source of edible oil and nutritious food [3]. Foy in 1992 [4] 

reported that aluminium toxicity hampers crop production in 

tropical and subtropical areas and it is a primary factor in 

limiting plant growth in acid soils.  

 

2. Abiotic Stress  
 

Stress is an altered physiological condition caused by factors 

that tend to obliterate the equilibrium. Many chemical and 

physical changes produced by different stress conditions [5]. 

Abiotic stress is previously known as a major limiting factor 

in plant growth and will soon become more severe as 

desertification cover more and more of the worlds terrestrial 

area [6]. Abiotic stresses such as high salinity, drought and 

particularly heavy metal can impose limitations on crop 

productivity and limit land availability for agriculture [7]. 

Particularly, these are more responsible for most of the 

reduction that differentiates yield potential from harvestable 

yield [8]. Among abiotic stressors, heavy metal 

contamination represents a global environmental problem 

endangering humans, animals and plants. Abiotic factors 

may alter the quality and magnitude of plant defences or 

modify the plant’s physiology and signalling pathways. 

Tolerance to abiotic stresses is very complex, due to the 

complexity of interactions between stress factors and various 

molecular, biochemical and physiological phenomena 

affecting plant growth and development [9]. 

 

In order to alleviate the stress and re-establish cellular 

homeostasis and antioxidant capacity, plants have developed 

highly effective mechanisms to regulate the uptake, 

accumulation, distribution, and detoxification of heavy metal 

ions such as the accumulation of secondary metabolites, the 

production of volatile compounds and changes in protein 
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expression [10]. This response is usually not only 

accompanied by an alteration in the gene expression pattern, 

but also by inevitable qualitative and quantitative changes in 

proteins [11]. 

 

Salt stress 

Salt stress is one of the most important abiotic stresses that 

adversely affect natural productivity and causes significant 

crop loss worldwide. It has been considered as a serious 

constraint on agricultural productivity due to it involves the 

morphological and developmental changes. Salinity stress 

affects plant growth and also development processes like 

seed germination, seedling growth and vegetative growth, 

flowering and fruit set and finally leads to tissue death and 

ultimately plant dies [12] [13]. Salinity reduces the uptake 

and transport of nitrate [14][15] that is necessary for protein 

synthesis [16]. Serrano and his co-workers [17] 

experimentally proved that salt stress affects the integrity of 

cellular membranes, activities of enzymes and the 

functioning of the plant photosynthetic apparatus. It also 

causes osmotic stress and ion ionic imbalance [18]. 

 Although, there is a great diversity of responses among 

cultivars to salinity [19] stress can provoke several 

metabolic alterations in plants such as lipid peroxidation, 

reduction in chlorophyll content, increase in ROS and anti-

oxidative enzyme activity all such alterations are 

accompanied by reduced plant growth [20]. Salinity also 

limits the photosynthesis which can increase oxygen induced 

cellular damage due to increase ROS generation [21]. To 

counteracts the ROS overproduction under stress, defence 

systems that scavenge cellular ROS have been developed in 

plants to cope with oxidative stress via the non-enzymatic 

and enzymatic systems [22]. Higher plants have multiple 

protective mechanisms against salt stress including ion 

homeostasis, osmolyte biosynthesis, ROS scavenging, water 

transport and transducers of long-distance response 

Coordination.  

 

Drought Stress  

Drought has been known as one among the most limiting 

environmental stresses on plant growth and productivity. 

Drought stress causes biochemical changes such as osmolite 

and specific protein accumulation caused by changes in the 

cellular and molecular level [23]. Plant responses to drought 

leads to some adaptive changes such as: growth rate, 

stomatal conductance, osmotic potential network, and 

antioxidant defences and also changes in metabolism and the 

expression of several genes that are thought to play an 

important role on adaptive response of plants to water stress 

[24]. 

Some of the genes responsive to drought stress, high salinity 

and cold temperatures at the level of transcription (m RNA) 

have been widely reported [25]. A change in protein 

expression, accumulation and synthesis of protein has been 

observed in several plant species under conditions of 

drought stress during the growth [26]. Late embryogenesis 

abundant (LEA) protein especially with a molecular weight 

of 10-30 kDa involved in the protection of higher plants 

from damage caused by environmental stresses, especially 

drought [27].  

 

 

 

Heavy metal stress 
Exposure to heavy metals has been documented to induce 

changes in the expression of plant proteins [28]. 

Accumulation of heavy metals not only decreased 

nodulation [29] and growth of leguminous plants [30] but 

also has multiple direct and indirect effects on plant growth 

and alters many physiological functions and biochemical 

reactions. Excess HMs causes the enhanced production of 

reactive oxygen species (ROS) in the plant tissue [31]. 

 

Heavy metal ions act as elicitors in plant defence reactions 

For example: glyceollins, isoflavonoid, phytoalexins which 

are involved in the interaction between soybean (Glycine 

max) and the phytopathogenic oomycete Phytophthora sojae 

were induced by mercury (HgCl2) treatment. There is 

evidence that plant’s ability to mitigate the negative impacts 

of redox reactive heavy metal stress, by increased 

antioxidative protection appears to be limited [32]. Authors 

suggested within the framework of the Graduate Research 

School was to evaluate plant responses to heavy metal stress, 

in particular considering the elicitation of volatile production 

and upregulation of phytohormone levels by heavy metal 

salts [33]. In this context, oxylipins may not only play an 

important role during plant herbivore interactions, but also 

mediate responses after encountering abiotic stress.  

 

3. Plant Responses against Abiotic Stress 

Phytoharmone in response of plant stress 

Plant hormones are involved in many physiological and 

developmental processes play a crucial role in the adaptation 

to abiotic stress as shown by the regulation of hormone 

synthesis in the presence of heavy metals [34]. For example, 

plants exposed to toxic levels of Cd, Cu, Fe, and Zn produce 

higher levels of ethylene, but Co does not have the same 

effect [35]. Cd and Cu stimulate ethylene synthesis by 

upregulating ACC synthase expression and activity [36]. 

Abscisic acid (ABA) is an important phytohormone in 

plants, which regulates root and seed development, seed 

germination, and biotic and abiotic stress responses. ABA 

interacts with other phytohormones to mediate plant 

performance under biotic and abiotic stress condition [37]. 

Cu and Cd also induce the rapid accumulation of jasmonic 

acid (JA) in Phaseolus coccineus [35]. Salicylic acid (SA) 

also involved in heavy metal stress responses; it protects 

roots from lipid peroxidation caused by Cd toxicity [38].  

 

Plant defence response against heavy metal stress 
As a first line of defence against heavy metals, plant roots 

secrete exudates into the soil matrix to chelate metals and to 

prevent their uptake inside the cells [39]. For example, Ni-

chelating histidine and citrate are present in root exudates 

and these reduce the uptake of Ni from soil binding sites on 

the root cell wall. It allows the metal exchange that 

influences the availability of ions for uptake and diffusion 

into the apoplast [40] [41]. The cell wall pectic sites, 

hystidyl groups, extracellular carbohydrates (callose) and 

mucilage prevent heavy metals uptake into the cytosol. 

According to Ernst et al., 1992 [42] the cell wall has only a 

minor impact on metal tolerance.  
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Figure 2.1 The response to heavy metal toxicity in higher 

plants [16]. 

Glycine betaine (GB) is synthesized abundantly in the 

chloroplast, where it plays a significant role in the defence 

and regulation of the thylakoid membrane by maintaining 

photosynthetic attributes [43]. In many crop plants the 

natural GB accumulates at levels that can counterbalance the 

adverse effects of various environmental stresses. In plants, 

NO and CO have already been identified as signalling 

molecules which involve in antioxidative defence [44]. 

Phytochelatins (PC) also could reduce cytoplasmic toxicity 

by complexing intracellular metals. Biliverdin IXα (BV) and 

bilirubin both play an important role against oxidative 

damage. Sugar alcohols like pinitol also play an important 

role in intracellular osmotic adjustment as well as in 

scavenging free radicals.  

 

4. Defence Against Antioxidative Stress and 

Oxidative Stress 
 

ROS are produced continuously as by products of various 

metabolic pathways that are localized in different cellular 

compartments such as chloroplast, mitochondria and 

peroxisomes. According to Gratao and his co-workers 

(2008) [45] whether ROS will act as damaging, protective or 

signalling factors depends on the delicate equilibrium 

between ROS production and scavenging at the proper site 

and time. In particular, H2O2 acts as a signalling molecule in 

response to heavy metals and other stresses [46]. 

Accumulation of ROS as a result of various environmental 

stresses is a major cause of loss of crop productivity 

worldwide [47]. 

 

ROS affect many cellular functions by damaging nucleic 

acids, oxidizing proteins, and causing lipid peroxidation 

[48]. Plants have developed robust mechanisms including 

enzymatic or nonenzymatic scavenging pathways to counter 

the deleterious effects of ROS production [49]. The presence 

of ROS scavenging enzymes of the catalase and ascorbate 

peroxidase families is needed to maintain redox 

homeostasis. The antioxidant properties of plants exposed to 

various stress factors have been studied [50] but studies 

related to the effect of heavy metal induced stress on vitamin 

levels in plants are limited. To combat the oxidative damage, 

plants have the antioxidant defence system that comprising 

of numerous enzymes such as catalase (EC 1.11.1.6), 

peroxidases (EC 1.11.1.7), superoxide dismutases (EC 

1.15.1.1) and the nonenzymic constituents tocopherol, 

ascorbate and reduced glutathione which remove, neutralize 

and scavenge the ROS and compounds of low molecular 

weight [51].  

  

5. Enzymatic Oxidant 
 

Superoxide dismutase (SOD) 

SOD is a main antioxidant enzyme that causes dismutation 

of superoxide radicals at almost diffusion limited rates to 

produce H2O2 and is the first line of defence against 

oxidative stress in plants [52]. Therefore, it has a crucial role 

in the defence mechanism against free radical toxicity [53]. 

Superoxide dismutase is divided into three main groups on 

the basis of the metal cofactor.  

1) Copper or Zinc: It present in plants, mainly in the 

chloroplasts and cytosol. In these enzymes, basically 

copper and zinc works as cofactor. 

2) Manganese superoxide dismutase: This enzyme is 

localized in peroxisomes and mitochondria. Here 

manganese as its cofactor. 

3) Iron superoxide dismutase: They are localised in 

chloroplast in plants and are absent in animals [54]. They 

play important in shielding mangroves from excess 

irradiance. After NaCl treatment SOD activity increases 

and then H2O2 is produced [55]. 

 

Catalase (CAT) 

Plant cells are equipped with defence machinery such as 

catalases and ascorbate peroxidises [56]. Catalases 

(EC1.11.1.6), a heme containing tetrameric enzymes that are 

generally localized in glyoxysomes or peroxisomes in the 

germinating seeds of the plants and it act as scavenger of 

ROS during beta oxidation of fatty acids [57], salt stress and 

other abiotic stress conditions. Therefore, plants have 

various catalase isozymes that are encoded by some genes: 

two isozymes in castor oil plant [58], Arabidopsis [59] and 

three in tobacco [60]. Two different classes of catalases are 

present. 

a) Class I catalases- It is found in both monocot and dicot 

plants that play important role in glyoxysomal and 

photorespiratory functions [57]. 

b) Class II catalases- These are mostly found in dicot plant 

that play a crucial role in different stress responses such 

as pathogen infection, wounding and salt stress [61]. 

 

6. Alternative H2O2 dismutating pathways 
 

Ascorbate peroxidase (APX) 

APX are antioxidants that perform the same functions as 

catalases. However, unlike catalases, APX catalyses the 

removal of ascorbate in higher plants by different 

mechanism [62]. It uses two ascorbate molecules to reduce 

hydrogen peroxide to water molecules, with the consequent 

generation of two monodehydroascorbate (MDHA) 

molecules [51]. APXs are localized in four different 

organelles such as ‘thylakoid membrane bound APX in 

chloroplasts’ (t-APX), ‘stroma APX’ (s-APX), 

‘glyoxysomes’, ‘peroxisomes’, ‘membrane bound APX’ (m-

APX), ‘mitochondrial membrane bound form’ (mit-APX) 
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and lastly ‘cytosolic APX’ (c-APX) [63].APX also plays a 

critical role during drought and salt stress [64].  

 

Guaicol Peroxidase (GPOX) 
GPOX can be differentiating enzymes on the basis of 

sequences and physiological functions. It putrefies ‘indole-

3-acetic acid’ and has a vital role in the biosynthesis of 

lignin or defence response against abiotic and biotic stresses 

by destroying hydrogen peroxide. The activity of this 

enzyme varies that depends upon the stress condition and 

plant species. It prefers aromatic electron donors ‘guaiacol’ 

and ‘pyragallol’ usually oxidizing ascorbate at the rate of 

around one percent that of guaiacol [65]. 

 

Peroxidase (POX) 
POX acts as H2O2 scavenger and present in high amount in 

all plants. They generate phenoxy compounds from 

cinnamic acid in the cell wall of plants. It is also involved in 

other defence mechanisms in plants, including responses to 

insects [52] and in a coordinated response known as the 

oxidative burst [66]. In 2003, [67] it is reported that the 

enhancement of peroxide activity in salinized cells of S. 

nudiflora specified that these cells had a higher 

disintegration of H2O2 under salt stress 

Monodehydroascorbate reductase (MDHAR) 

It is a ‘flavin adenine dinucleotide’ enzyme that is localised 

in different cell organelles such as cytosol, chloroplast, 

peroxisomes and mitochondria where, it acts as scavenger of 

H2O2.This enzyme function in the presence of NAD(P)H 

[65]. In 2004, Schutzendubeland his co-workers [68] have 

been reported that MDHAR activity increased or decreased 

when exposure of cadmimum to Pinus sylvestris and 

Populus Canescens respectively.  

 

Glutathione peroxidase (GPX) 

GPXs are associated with large family of diverse isozymes 

that use GSH to reduce H2O2 and organic and lipid 

hydroperoxides, and hence protect the plant cells from 

different oxidative stress [69]. It is reported a family of 

seven related proteins in endoplasmic reticulum (ER), 

cytosol, mitochondria and chloroplast such as AtGPX-1 to 

AtGPX-7 in Arabidopsis. According to some studies, under 

salt and heavy metal stress inserted the radish phospholipid 

hydroperoxide GPX gene (Rs-PHGPx) into ayeast PHGPx 

deletion mutant and found that PHGPx mRNA levels 

suddenly enhance in plant tissues.  

 

Dehydroascorbate reductase (DHAR) 

This enzyme regenerates ASH from the oxidized state and it 

responsible for the maintenance of cellular ASH (redox 

state) that is crucial for tolerance to different biotic or abiotic 

stresses which leads to the production of reactive oxygen 

species. Yin and his co-workers (2010) [70] suggested that 

over expression of DHAR enzyme also increase plant 

tolerance to Aluminium by regulating high level of ASH.  

 

Glutathione S transferase (GST) 

It plays important role in different functions of cells such as 

apoptosis regulation, detoxification of hydroxyl ions and 

peroxides with the help of GSH that produces scavenger of 

genotoxic and cytotoxic compounds which can damage the 

different proteins and nucleic acid [22]. 

Non-Enzymatic Antioxidant 

Other than anti-oxidative enzymes, non-enzymatic 

antioxidants also have a crucial role in scavenging free 

radicals that are generating in the plant tissues during 

different abiotic stress conditions. The non-enzymatic 

component comprises molecules such as α-tocopherol, 

ascorbic acid, glutathione and carotenoids that can scavenge 

Reactive oxygen species (ROS). Ascorbic acid and 

tocopherols have a poor ability to donate electrons and 

thereby transfer of single hydrogen atoms making them 

efficient antioxidants [71]. Reduced glutathione is a 

powerful reluctant and hence a very efficient scavenger of 

ROS. In 1997, Cheeseman and his co-workers are reported 

that superoxide radicals generated in plants are scavenged 

non-enzymatically by reduced ascorbate and glutathione 

[72]. Carotenoids scavenge free radicals that are produced 

owing to higher excitation energy from chlorophyll during 

photosynthesis reactions [71]. 

 

Ascorbic acid 
It is widely distributed, water soluble antioxidant that 

minimizing the damage caused by reactive oxygen species in 

plants. It is present in all plant tissues, usually being higher 

in photosynthetic cells and meristematic tissues and some 

fruits. It has been reported that its reduced state ASH mostly 

remains in the leaves and chloroplast under normal 

physiological conditions [73]. It is also known as a most 

powerful reactive oxygen species (ROS) scavenger. The 

ASH redox system consists of L-ascorbic acid, DHA and 

MDHA. On the other hand, in high amount of cadmium 

decrease in the ASH in the nodules and roots of G. max has 

also been observed [73].  

 

Glutathione (GSH)  
It occurs abundantly in reduced form GSH and the 

steadiness between the GSH and GSSG is a vital component 

in maintaining cellular redox state in plant tissues [74]. It is 

present in different cell organelles like mitochondria, 

cytosol, vacuole, endoplasmic reticulum, peroxisomes, 

apoplast and chloroplasts where it helps to shield the 

photosynthetic apparatus from oxidative damage (Jimenez et 

al., 1998; Mittler et al., 1992). It is particularly important in 

plant because GSH plays a key role in the antioxidative 

defence system by regenerating another potential water 

soluble antioxidant like ASH, via the ASH-GSH cycle [75]. 

It is mandatory to maintain the normal reduced state of cells 

so as to neutralize the inhibitory effects of reactive oxygen 

species and induced oxidative stress. It is a potential 

scavenger of O2, hydrogen peroxides and most dangerous 

reactive oxygen species like hydroxyl ions [51].  

 

Proline 

Proline also acts as a potent antioxidant and potential 

inhibitor of PCD. It is a good osmoprotectant and helps in 

membrane stability by stabilizing the protein. An 

interrelation was also shown between increased proline 

content and developed tolerance to the abiotic stress factors. 

Therefore, proline can now be considered as nonenzymatic 

antioxidants of those plants, microbes and animals require 

alleviating the adverse effects of reactive oxygen species 

[76]. In plants, proline also mitigate the effect of singlet 

oxygen and free radical induced damages and performs an 

crucial role in protection of proteins against denaturation 
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[77]. Free proline has been proposed as a metal chelator, an 

inhibitor of lipid peroxides or hydroxyl redical and O2 

scavenger [6]. 

 

Proline is also an effective quencher of reactive oxygen 

species that is formed under salt, dehydration and metal 

stress conditions in all plants including algae [77]. Hong and 

his co-workers (2005) [78] reported that a significant lower 

level of malondialdehyde that is a marker for free radical 

production was observed in proline overproducing plants. 

 

α- Tocopherol (Vitamin E) 

Tocopherol recognized as potential scavengers of reactive 

oxygen species and lipid radicals that is confined to the 

biomembrane where they play both antioxidant and 

nonantioxidant functions [79]. Four different isomers (α, β, 

γ, δ) are found in plants, out of them, α-tocopherol has the 

highest anti-oxidative activity due to the presence of three 

methyl groups in its structure [80]. Oxidative stress activates 

the expression of genes responsible for the synthesis of 

tocopherols in higher plants.  

 

Carotenoids 

Carotenoids are pigments that are located in plants and 

microorganisms. It is a lipid soluble antioxidant plays a 

majority of functions in plant metabolism as well as 

oxidative stress tolerance. An increase in Carotenoid 

contents was also reported afterward Cd stress [75].  

 

Flavonoids 

Flavonoid occurs widely in the plant kingdom. Flavonoids 

usually accumulate in vacuole as glycosides, but they also 

found as exudates on the surface of leaves and other aerial 

plant parts. Flavonoids are among the most important 

bioactive secondary metabolite of the plant. Most flavonoids 

outperform prominent antioxidant, such as ASH and α-

tocopherol [81]. Flavinoids serve as reactive oxygen species 

scavengers by overcome the effect of free radicals before 

they damage the cell therefore, it have crucial role in the 

plants under adverse environmental condition There is 

substantial increase in flavonoid levels under biotic and 

abiotic stress such as metal toxicity, drought, nutrient 

deprivation and wounding [82]. 

 

Ferritin 

Ferritin, a prevalent multimeric, iron storage protein. They 

have considerable role during oxidative stress in plants and 

halophytes by shielding the chloroplast [61]. Different 

isoforms of ferritin gene have been reported in soybean and 

cowpea [83] three in Lupinus luteus (Strozycki et al. 2003) 

two in maize and tobacco [84]. Ferritin exclude increased 

amount of free iron and prevents formation of OH radicals 

[84]. Ferritin accumulation was found in the sites where high 

amount of H2O2 present [85]. 

  

Cadmium (Cd) 
Cadmium (Cd) is a poisonous pollutant that can easily be 

taken up by plant roots and transported to the leaves 

therefore, effecting the plant growth and development, 

alternation in photosynthesis rate, water use efficiency and 

the uptake of micronutrients and macronutrients leading to 

reduction in crop production due to plant affected by several 

diseases such as chlorosis etc [86]. The main difficulty with 

the Cadmium is that it can be transferred to the food chain 

and hazardous to the human health [87].  

 

In recent years, according to some evidences it plays a key 

role in heavy metal toxicity [88] [89]. Generally, Cd is 

accumulated in roots, different vegetal parts [90] and small 

portion is transported to the aerial parts and other cellular 

compartments [48]. The tolerance of plants to Cd involves 

metal detoxification processes, such as complexation with 

phytochelatins [48] [86].  

 

Lead (Pb) 

Lead (Pb
2+

) is potent environmental pollutants that pose a 

serious threat to the environment or human and animal 

health [91] has attracted considerable attention due to its 

widespread distribution. Lead contamination in soil and 

potential risk to the environment leads to the considerable 

attention of scientists due to it not only stimulated the 

changes of soil microorganism’s activities but also affected 

the change of physiological indices therefore, resulted in 

yield decline [92]. 

 

Pb
2+

 accumulated in different plant tissues particularly in the 

root tissues [93]. It have multiple direct and indirect effects 

on the plant’s biochemical and physiological activities like 

growth and metabolism, reduction in photosynthesis and 

membrane disorganization along with visible symptoms 

including stunted growth and small leaves [94]. 

 

Zinc (Zn) 

Out of seventeen essential elements, zinc is now being 

recorded most important micronutrient for the development 

and plant growth in crop production. It have significant role 

in the synthesis of nucleic acid, protein, membrane integrity, 

enzyme activation and helps in the utilization of nitrogen 

and phosphorus in plant. Plant availability of soil Zn is 

affected by soil type, soil pH, soil moisture, organic matter, 

mineralogy and Zn diffusion and plant uptake [70]. Darwish 

et al., (2002) [18] reported that treatment of Zn gave the 

highest seed, oil yield/fed in soybean. Yasari (2012) [95] 

studied the effect of Zn on the soyabean crop such as 

variation in amount of seed oil, protein content and 

percentage depends upon the addition of Zn that is directly 

adding them in to the soil or sprinkling them on the crop.  

 

Activity of PSII is inhibited when Mn is replacing by Zn in 

the thylacoid membrane. Generally, in the membrane sixteen 

molecules of Mn and Zn per four hundred chlorophyll 

molecules are present. However, during stress condition in 

high concentrations of zinc, the ratio of manganese and zinc 

changes to twelve molecules of Mn and thirty molecules Zn 

atoms [96].  
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