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1. Introduction

The triple representation of complex matrices form a
quaternion matrix, some new concept to quaternion division
algebra where presented. [3]

The following matrix inequality for products of quaternion

hermition matrices A and B, tr (4 » B)?" < tr(4%" x B2")
is established, where Kk is positive integer. [1]

Recently, there has been substantial interest in matrix trace
inequalities for triple representation of complex and also
hermition matrices of the same order.[1,2]

2. Lemmas and Theorem

Lemma 2.1:
Suppose that P is a quaternion square matrix; then

n-r n=r _or
tr[p? "« (P
[ — 2" (n—-r-1)
<tr {(PZZ @D, pH? )}tr[Pz

% PHZ] r+1 (1)
where n and r are integers.

Proof:
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The proof is completed.

Lemma 2.2: Suppose that P is quaternion square matrix;
then

tr[P2" « (P")2"] < tr(P  PH)2", where k is a positive
integer

@

Proof:
Let S, = (P x PH)? ™" — (PH « p)2°7" 3)

When k=1, from equation (3) we know that the matrix S; is
quaternion hermitian. On the other hand, through direct
calculation, we obtain

0 < trS? = 2tr(P * P2 — 2tr[P? * (P1)?]
Hence Lemma 2.2 holds while k = 1

Suppose that Lemma 2.2 holds when k <mn; in the

following, we will prove that
Lemma 2.2 is valid when k = n+1.

From equation (3) it is easy to know that S, 1 is quaternion
hermitian and

0 < trS2,, = 2er(P » P2 — 2tr[(P » PH)?"
« (P P)?']
That is,
tr[P  PH]
Noticing that
tr[(P » P")2" « (P « P)?"]
= tr{[(P * PHY2" ™ 4 (P« P”)Zn_l)]
« [P« PY2" s (PH « PY2]
= tr{[(P * P")2" "« (PH + P)2"'|[(P" « P)2"
« (P P17 ']y
And combining the above equalities and inequality (4), we
have

tr[P * PH12"" > tr{[(P « PTY2" % (PH 5 P)2" ]
«[(PH YT (P PHYPT}

on+l

< tr[(P * PHZ" « (PH + P)¥"']  (4)

©)

Let
Ruy = (P+ P> 7w (PP (6)
Then it is easy to verify that the matrix R,_; in (6) is
quaternion hermitian, and by inequality (5) and (6), we have

tr(P * P)?"" > (tr(Ry—y * RY_1)) = tr(R2_,) (7)
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Making use of Lemma 2.1 and inequality (7), we have
tr(P« P 2 tr(RE_)) = tr(Ry o * RIL,)? (8)

Making use of the induction assumption and inequality (8),
we have

tr(P + P)" > tr[(Ry_p)? * (RY_,)?]

Furthermore,
tr(P « P2 > tr(R,_)?
Since R,_, is quaternian hermitian. Repeating the above
procedure, we have
tr(P  P")?""" = tr(Ry)?" = tr[(P » P") « (PH + P)]?"

Furthermore,

tr(P + PH)2""" > tr[P? « (PH)2]2" (9)
Making use of the induction assumption, we have
tr[P? « (P1)?]2" = tr{(P)" « [(P)2]?"} = tr[PZ"" «
(PH)2n+1]

(10)

Combining the inequalities (9) and (10), we have proved that
Lemma 2.2 holds
when k = n+1.
The Proof is complete.

Theorem 2.3 : Suppose that A and B are quaternion
Hermitian matrices of the same order; then

tr(A = B)2" < tr(4%" « B?"), (11)
where Kk is a positive integer.

Proof : When k = 1, it is easy to verify that the matrix
A*B—B=xAis
Skew- hermitian, and tr(A * B — B x A)?> < 0 (12)
On the other hand, through direct calculation, we have
(A*B—BxA)?=(A*B)>+ (B*A)*—(A*B?xA4)
— (B *A?xB)

and

tr(A =B — B x A)? = 2tr (A = B)? — 2tr(A% = B?) (13)
Combining inequality (11) and (12),
we have

tr(A * B)? < tr(A® = B?)

Hence Theorem 2.3 holds while k =1

Suppose that Theorem 2.3 holds when K < 1; in the
following, we will prove that Theorem 2.3 is valid when k =
n+1.

It is easy to verify that the matrix
(A *B)?" —[(A *B)?"]" is quaternion skew hermitian, on
the other hand, through direct calculation, we have,
0 > tr{(A*B)*" — [(A = B)*"]"}?
= 2tr(A* B)?"" = 2er{(A * B)*" = [(A » B)"]*"}
Thus
tr(A*B)2"" < tr{(A=B)¥" «[(A*B)"]¥"}  (14)
Making use of Lemma 2.2, we have
tr{(A = B)?" + [(A* B)"1?"} < tr[(A * B) * (A= B)"]*" = tr(4% « B%)?"
15
Making use of induction assumption, we have )
tr(A% = B3 <tr[(4%)%" = (BY)?"]| = tr[A2"" « B2
(16)
Combining the inequalities (14) — (16), We have
tT(A " B)2n+1 S tT(A2n+1 " an+1

) An

Thus we have proved that theorem 2.3 holds when k = n+1.
The proof is complete.
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