ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Convergence Weakly to Asymptotic Common Fixed Point Theorems for Different Types of Proximal Point Schemes

Salwa Salman Abed¹, Zena Hussein Maibed²

Department of Mathematics, College of Education for Pure Science, Ibn Al-Haithem, University of Baghdad

Abstract: In this paper, we introduce a proximal point schemes of szl –widering mapping which is independent of non-expansive mappings. Also, we discuss the weak convergence for these proximal point schemes in Hilbert space.

Keywords: maximal monotone, converge strongly, nonexpansive mapping

1. Introduction and Preliminaries

Let X be a real Hilbert space and A be maximal monotone mapping. The Monotone operators have proven to a key class of objects in modern optimization and analysis see ([1]-[5]). The zero point problem for monotone operator A on a real Hilbert space X, that is ,finding a point $z \in X$ such that $0 \in A(z)$ in order to solve this problem, many types of iterative algorithms have been studied such as [6]-[17]. Consider a single valued non-expansive mapping as: $J_{r_n} = (I + r_n A^{-1})(x)$, which is called resolvet mapping where $< r_n >$ be a sequence of positive real numbers. In [6,7] Xu, studied the convergence of the proximal point scheme.

$$x \in C$$
, $x_{n+1} = \alpha_n x + (1 - \alpha_n) T_{x_n}$, $n = 1,2,3,...(1)$

where T is non_ expansive mapping and $<\alpha_n>$ be a sequence in (0,1) .In[8] Moudafi, studied the convergence of the proximal point schemes

$$x_t = tf(x_t) + (1-t)T_{x_t} as t \to \infty \quad (2)$$

$$x_{n+1} = \alpha_n f(x_n) + (1-\alpha_n)T_{x_n} as n \to \infty$$

where T is non_ expansive mapping, f b a contraction mapping and $<\alpha_n>$ be a sequence in (0,1).In [9] Xu, who extend Moudafi results. On other hand, Kamimura and Takahashi[10], studied the convergence strongly of the proximal point scheme

$$u \in C, x_{n+1} = \alpha_n u + (1 - \alpha_n) J_{r_{n_{x_n}}}, n \ge 1 (3)$$

in 2016[11,12], Abed and Maibed studied the strong convergence of the many proximal point schemes. Now, consider X be a real Hilbert space, $\emptyset \neq C$ be a convex closed in X. We recall some definitions and lemmas which will used in the proofs.

Definition (1.1): [1]

A mapping $T: C \to X$ is called Lipschitz if there exists a real number L > 0 such that

$$||T(x) - T(y)|| \le L||x - y||$$
 for each $x, y \in C$. (4)

When $L \in (0,1)$ then T is called contraction mapping and if L = 1then T is called nonexpansive mapping

Lemma (1.2) [16]

Let $\langle a_n \rangle$ and $\langle b_n \rangle$ are sequences of nonnegative number such that

 $a_{n+1} \le a_n + b_n$, for each $n \ge 1$. If $\sum_{n=o}^\infty a_n$ converge then $\lim_{n \to \infty} a_n$ exists.

Lemma (1.3): [17]

Let C be a nonempty convex closed subset of real Hilbert space X and T is non-expansive multivalued mapping such that $Fix(T) \neq \emptyset$. Then T is demi-closed, i.e., $x_n \rightharpoonup p$ and $\lim_{n \to \infty} d(x_n, T(x_n)) = 0$. Then $p \in T(p)$.

Lemma (1.4): [7]

If $\langle a_n \rangle$ be a sequence of non-negative real number such that:

$$a_{n+1} \leq (1 - \gamma_n)a_n + S_n$$
 , $n \geq 0$

Where $\langle \gamma_n \rangle$ is a sequence in (0,1) and $\langle S_n \rangle$ be a sequence in \mathbb{R} such that

$$\textstyle \sum_{n=0}^{\infty} \gamma_n = \infty \text{ and } \lim_{n \to \infty} \sup \frac{S_n}{\gamma_n} \leq 0 \text{ or } \sum_{n=1}^{\infty} |S_n| < \infty.$$

Then $a_n \to 0$

as $n \to \infty$.

Lemma (1.5): [18]

If $\langle a_n \rangle$ be a sequence nonnegative real numbers such that:

$$a_{n+1} \le (1 - \gamma)a_n + \gamma_n S_n + \beta_n$$
, $n \ge 0$ (5)

Where $\langle \gamma_n \rangle$, $\langle \beta_n \rangle$ and $\langle S_n \rangle$ are satisfies the following:

- 1) $\gamma_n \subset [0,1]$; $\sum_{n=1}^{\infty} \gamma_n = \infty$
- 2) $\lim_{n\to\infty} \sup S_n \le 0$ or $\sum_{n=1}^{\infty} |\gamma_n S_n| < \infty$
- 3) $\beta_n \ge 0$ for each $n \ge 0$ such that $\sum_{n=0}^{\infty} \beta_n < \infty$. Then $\lim_{n \to \infty} a_n = 0$.

Lemma (1. 6): [19]

Let X be a Hilbert space and C be a nonempty convex closed subset of X if $\langle x_n \rangle$ be a sequence in X and $||x_{n+1} - x|| \le ||x_n - x||$ for all $n \in N, x \in C$. Then $\langle P_c(x_n) \rangle$ converges strongly to a point in C.

Now, we introduce the concept of szl – widering mapping

Definition (1.7): [20]

Let X be a normed space and C be a nonempty subset of X, then A mapping $T: C \to C$ is called szl—widering if for each

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 10111702 DOI: 10.21275/10111702 7

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

 $s, l \in (0,1)$ then there exists z > 0 such that the following equation holds:

$$||Tx - Ty||^{2} \le (1 - s)||x - y||^{2} + l||y - Ty||. ||x - Tx - (y - Ty)|| + z|\langle x - Tx, y - Ty\rangle|, for each x, y \in C(6)$$

The concept of *szl* –widering mapping is independent of concepts of non-expansive mappings. As shown by the following examples:

Example (1.8):

(a) Let $T: R \to R$ such that T be identity mapping then T is non-expansive, but it is not sz - widering

(b) Let $T: R \to R$ such that T(x) = 2xThen T is szl —widering but not non-expansive mapping.

Lemma (1.9):[20]

Let $\emptyset \neq C$ be a closed convex subset of Hilbert space X and T is S is S is a closed convex subset of Hilbert space X and T is S is a closed convex subset of Hilbert space X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of Hilbert space X and X is a closed convex subset of X and X is a closed convex subset of X and X is a closed convex subset of X and X is a closed convex subset of X and X is a closed convex subset of X and X is a closed convex subset of X and X is a closed convex subset of X and X is a closed convex subset of X is a closed convex subset of X in X is a closed convex subset of X in X is a closed convex subset of X in X in X is a closed convex subset of X in X in X in X is a closed convex subset of X in X in X in X in X in X in X is a closed convex subset of X in X

Now, we introduce a proximal point schemes of non-expansive and szl—widering mappings and we discuss the weak convergence for these proximal point schemes under different conditions to asymptotic common fixed point of szl—widering mappings.

2. Main Results

Theorem (2.1)

If $\langle T_n \rangle$ be a sequence of bounded szl –widering mappings has .Define the proximal point scheme $\langle x_n \rangle$ as follows

$$x_{n+1} = a_n x_n + b_n T_n x_n + c_n y_n$$

$$y_n = J_{r_n} ((1 - a_n) x_n + a_n T_n x_n - r_n h x_n) (7)$$

where $\langle a_n \rangle$, $\langle b_n \rangle$ and $\langle c_n \rangle$ are sequences in (0,1) such that:

1)
$$a_n + b_n + c_n = 1$$
 and $r_n < 2(1 - a_n)\alpha$

2)
$$\bigcap_{n=1}^{\infty} Fix(T_n) \cap (A+h)^{-1}(0) \neq \emptyset$$

Then the proximal point scheme converges weakly to the asymptotic common fixed point of T_n , $\forall n \in \mathbb{N}$

Proof

Let
$$p \in \bigcap_{n=1}^{\infty} Fix(T_n) \cap (A+h)^{-1}(0)$$

Since, $y_n = J_{r_n} ((1-a_n)x_n + a_nT_nx_n - r_nhx_n)$
So, $p \in J_{r_n} ((1-a_n)p + a_nT_np - r_nhp)$
 $\|y_n - p\|^2 = \|J_{r_n} ((1-a_n)x_n + a_nT_nx_n - r_nhx_n) - J_{r_n} ((1-a_n)p + a_nT_np - r_nhp)\|$
 $\leq \|(1-a_n)(x_n - p) + a_n(T_nx_n - p) - r_n(hx_n - hp)\|^2$
 $\leq \|a_n(T_nx_n - p) + (1-a_n)[(x_n - p) - \frac{r_n}{(1-a_n)}(hx_n - hp)]\|^2$

Now, by definition of szl – widering then we get, for each $s_n, l_n \in (0,1)$ then there exist $z_n > 0$ (shortly we write them s, z and l respectively) such that

$$\begin{aligned} \|y_n - p\|^2 &\leq a_n \|T_n x_n - p\|^2 \\ &+ (1) \\ &- a_n) \left\| (x_n - p) - \frac{r_n}{(1 - a_n)} (h x_n - h p) \right\|^2 \\ &\leq a_n (1 - s) \|x_n - p\|^2 \\ &+ l \|p - T_n p\| . \|x_n - T_n x_n - (p - T_n p)\| \\ &+ z |\langle x_n - T_n x_n, p - T_n p \rangle| \\ &+ (1 - a_n) \|x_n - p\|^2 \\ &- 2 r_n \langle x_n - p, h x_n - h p \rangle \\ &+ \frac{r_n^2}{(1 - a_n)} \|h x_n - h p\|^2 \\ \|y_n - p\|^2 &\leq a_n (1 - s) \|x_n - p\|^2 + (1 - a_n) \|x_n - p\|^2 \\ &- 2 \alpha r_n \|h x_n - h p\|^2 \\ &+ \frac{r_n^2}{(1 - a_n)} \|h x_n - h p\|^2 \\ &\leq \|x_n - p\|^2 \\ &- 2 \left(\alpha - \frac{r_n}{(1 - a_n)}\right) r_n \|h x_n - h p\|^2 \\ &\leq \|x_n - p\|^2 + b_n \|T_n x_n - p\|^2 \\ &+ c_n \|y_n - p\|^2 \\ &\leq a_n \|x_n - p\|^2 + b_n (1 - s) \|x_n - p\|^2 \\ &+ l \|p - T_n p\| . \|x_n - T_n x_n - (p - T_n p)\| \\ &+ z |\langle x_n - T_n x_n, p - T_n p \rangle| + c_n \|x_n - p\|^2 \\ &\leq a_n \|x_n - p\|^2 + b_n \|x_n - p\|^2 \\ &\leq a_n \|x_n - p\|^2 + b_n \|x_n - p\|^2 \end{aligned}$$

By lemma (1.2),

We get $\lim_{n\to\infty} ||x_n - p||$ exists (8)

Hence, $\langle x_n \rangle$ is bounded sequence, and hence, $\langle f_n \rangle$ and $\langle w_n \rangle$ also bounded.

Since $||x_{n+1} - p|| \le ||x_n - p|| + ||T_n x_n - x_n||$, therefore, by (8)

we get

$$-\|T_n x_n - x_n\| \le \|x_n - p\| - \|x_{n+1} - p\| \to 0 \text{ as } n \to \infty$$
$$\|T_n x_n - x_n\| \to 0 \text{ as } n \to \infty$$
(9)

Since $\langle x_n \rangle$ is bounded sequence. Then there exists subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ such that $x_{nk} \rightharpoonup \tilde{x}$.

By (9), we get \tilde{x} is an asymptotic common fixed point of T_n , $\forall n \in N$.

Theorem (2.2):

Let $\langle T_n \rangle$ be a sequence of szl —widering mappings on C and $\langle f_n \rangle$ be a sequence of non-expansive mappings on C. Let $(\bigcap_{n=1}^{\infty} Fix(T_n)) \cap (\bigcap_{n=1}^{\infty} Fix(f_n)) \cap (A+h)^{-1}(0) \neq \emptyset$. If the proximal point scheme generated by:

$$x_{n+1} = a_n x_n + b_n T_n x_n + c_n f_n(x_n) + d_n y_n$$

$$y_n = J_{r_n} (a_n x_n + (1 - a_n) T_n x_n - r_n h x_n)$$

where $\langle b_n \rangle$, $\langle c_n \rangle$ and $\langle d_n \rangle$ are sequences in [0,1], $\langle a_n \rangle$ is sequence in (0,1] such that $2\alpha a_n > r_n$ and $a_n + b_n + c_n + d_n = 1$. Then the proximal point scheme $\langle x_n \rangle$ converges weakly to the common fixed point of T_n . Also, $\langle P_E(x_n) \rangle \to \tilde{x}$.

Where $E = \bigcap_{n \in \mathbb{N}} Fix(f_n) \cap (A+h)^{-1}(0)$.

Proof:

Let
$$p \in (\bigcap_{n=1}^{\infty} Fix(T_n)) \cap (A+h)^{-1}(0) \cap (\bigcap_{n=1}^{\infty} Fix(f_n))$$

 $p \in (A+h)^{-1}(0) \Rightarrow p = J_{r_n}(I-r_nh)p.$
 $p = J_{r_n}(a_np + (1-a_n)p - r_nhp)$

8

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 10111702 DOI: 10.21275/10111702

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

$$\begin{aligned} \|y_{n} - p\|^{2} &= \|J_{r_{n}}(a_{n}x_{n} + (1 - a_{n})T_{n}x_{n} - r_{n}hx_{n}) \\ &- J_{r_{n}}(a_{n}p + (1 - a_{n})p - r_{n}hp)\| \\ &\leq \|(1 - a_{n})(T_{n}x_{n} - p) + a_{n}[(x_{n} - p) - \frac{r_{n}}{a_{n}}(hx_{n} - hp)]\|^{2} \\ &\leq (1 - a_{n})\|T_{n}x_{n} - p\|^{2} + a_{n}\|(x_{n} - p) - \frac{r_{n}}{a_{n}}(hx_{n} - hp)\|^{2} \\ &\leq (1 - a_{n})(1 - s)\|x_{n} - p\|^{2} \\ &+ l\|p - T_{n}p\|.\|(x_{n} - T_{n}x_{n}) - (p - T_{n}p)\| \\ &+ z|\langle x_{n} - T_{n}x_{n}, p - T_{n}p\rangle| + a_{n}\|x_{n} - p\|^{2} \\ &- 2r_{n}\langle x_{n} - p, hx_{n} - hp\rangle \\ &+ \frac{r_{n}^{2}}{a_{n}}\|hx_{n} - hp\|^{2} \\ \|y_{n} - p\|^{2} &\leq (1 - a_{n})\|x_{n} - p\|^{2} + a_{n}\|x_{n} - p\|^{2} \\ &\leq \|x_{n} - p\|^{2} \\ &\leq \|x_{n} - p\|^{2} \\ &\leq \|x_{n} - p\|^{2} \\ &\|y_{n} - p\|^{2} &\leq \|x_{n} - p\|^{2} \\ \|y_{n} - p\|^{2} &\leq a_{n}\|x_{n} - p\|^{2} + b_{n}\|T_{n}x_{n} - p\|^{2} \\ &+ c_{n}\|f_{n}(x_{n}) - p\|^{2} + d_{n}\|y_{n} - p\|^{2} \\ &\leq (a_{n} + b_{n} + c_{n})\|x_{n} - p\|^{2} \\ &\leq (a_{n} + b_{n} + c_{n})\|x_{n} - p\|^{2} \\ &= \|x_{n} - p\|^{2} \end{aligned}$$

By lemma (1.2),

we get $\lim_{n\to\infty} ||x_n - p||$ exists (10)

Then $\langle x_n \rangle$ is bounded sequence, and hence $\langle J_{r_n} \rangle$, $\langle f_n \rangle$ and $\langle w_n \rangle$ also bounded sequence.

Since
$$||x_{n+1} - p|| \le ||x_n - p|| + ||T_n x_n - x_n||$$

By (10) we have,
 $-||T_n x_n - x_n|| \le ||x_n - p|| - ||x_{n+1} - p|| \to 0 \text{ as } n \to \infty$
 $||T_n x_n - x_n|| \to 0 \text{ as } n \to \infty$ (11)

Since $\langle x_n \rangle$ is bounded sequence

Then there exists subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ such that $x_{nk} \to \tilde{x}$.

By (11)we get \tilde{x} is an asymptotic common fixed point of T_n , $\forall n \in \mathbb{N}$.

Theorem (2.3):

If $\langle T_n \rangle$ be a bounded sequence of szl —widering mappings on C and $\langle f_n \rangle$ be a sequence of non-expansive mapping on C .If proximal point scheme $\langle x_n \rangle$ is defined as

$$x_{n+1} = a_n x_n + b_n f_n(x_n) + d_n [c_n x_n + (1 - c_n) J_{r_n} y_n]$$

$$y_n = J_{r_n} ((1 - a_n) x_n + a_n T_n x_n - r_n h x_n)$$

Where $\langle a_n \rangle$, $\langle b_n \rangle$ and $\langle c_n \rangle$ are sequence in (0,1] such that

1)
$$a_n + b_n + c_n = 1$$
 and $2\alpha(1 - a_n) > r_n$

2)
$$(\bigcap_{n=1}^{\infty} Fix(T_n)) \cap (\bigcap_{n=1}^{\infty} Fix(f_n)) \cap (A+h)^{-1}(0) \neq \emptyset$$

Then the proximal point scheme $\langle x_n \rangle$ has converges weakly to an asymptotic common fixed point.

Proof:

Let
$$p \in (\bigcap_{n=1}^{\infty} Fix(T_n)) \cap (\bigcap_{n=1}^{\infty} Fix(f_n)) \cap (A+h)^{-1}(0)$$

Since $y_n = J_{r_n}((1-a_n)x_n + a_nT_nx_n - r_nhx_n)$
 $||y_n - p||^2 = ||J_{r_n}((1-a_n)x_n + a_nT_n(x_n) - r_nh(x_n))$
 $-J_{r_n}((1-a_n)p + a_nT_np - r_nhp)||^2$

Now, by definition of szl — widering then we get, for each $s_n, l_n \in (0,1)$ then there exist $z_n > 0$ (shortly we write them s, z and l respectively) such that

 $||y_n - p||^2 \le ||(1 - a_n)x_n + a_n T_n(x_n) - r_n h x_n||$

$$\begin{aligned} &-(1-a_n)p-a_nT_np+r_nhp\|^2\\ &\leq a_n\|T_nx_n-T_np\|^2\\ &+(1) \\ &-a_n)\left\|(x_n-p)-\frac{r_n}{(1-a_n)}(hx_n-hp)\right\|^2\\ &\leq a_n(1-s)\|x_n-p\|^2\\ &+l\|p-T_np\|.\|(x_n-T_nx_n)-(p-T_np)\|\\ &+z|\langle x_n-T_nx_n,p-T_np\rangle|\\ &+(1-a_n)\|x_n-p\|^2\\ &-2r_n\langle x_n-p,h_nx_n-hp\rangle\\ &+\frac{r_n^2}{(1-a_n)}\|hx_n-hp\|^2\\ \|y_n-p\|^2\leq a_n\|x_n-p\|^2+(1-a_n)\|x_n-p\|^2\\ &-2r_na\|hx_n-hp\|^2\\ &+\frac{r_n^2}{(1-a_n)}\|hx_n-hp\|^2\,;\ \alpha>0\\ &\leq \|x_n-p\|^2\\ &-\left(\frac{2\alpha(1-a_n)-r_n}{(1-a_n)}\right)r_n\|hx_n-hp\|^2\\ \text{But, }2\alpha(1-a_n)>r_n\\ \|y_n-p\|^2\leq \|x_n-p\|^2\\ \|x_{n+1}-p\|^2\leq a_n\|x_n-p\|^2+b_n\|f_n(x_n)-p\|^2\\ &+d_n\|c_nx_n+(1-c_n)J_{r_n}y_n-p\|^2\\ &\leq a_n\|x_n-p\|^2+b_n\|x_n-p\|^2\\ &+d_n\left[c_n\|x_n-p\|^2\\ &+d_n\left[c_n\|x_n-p\|^2\right]\\ &+(1-c_n)\|J_{r_n}y_n-p\|^2 \end{bmatrix}\\ \|x_{n+1}-p\|^2\leq (a_n+b_n)\|x_n-p\|^2\\ &+(1-c_n)\|J_{r_n}y_n-p\|^2 \end{bmatrix}$$

 $= \|x_n - p\|^2$ By lemma (1.2),we get

 $\lim_{n\to\infty} ||x_n - p||$ exists (12)

Then $\langle x_n \rangle$ is bounded sequence, and hence $\langle J_{r_n} \rangle$, $\langle f_n \rangle$ and $\langle w_n \rangle$ also bounded sequence.

 $\begin{aligned} & + d_n [c_n || x_n - p ||^2 + (1 - c_n) || y_n - p ||^2] \\ & \le (a_n + b_n) || x_n - p ||^2 + d_n || x_n - p ||^2 \end{aligned}$

Since $||x_{n+1} - p|| \le ||x_n - p|| + ||T_n x_n - x_n||$ therefore, by (12)

$$-\|T_n x_n - x_n\| \le \|x_n - p\| - \|x_{n+1} - p\| \to 0 \text{ as } n \to \infty$$

$$||T_n x_n - x_n|| \to 0 \text{ as } n \to \infty$$
 (13)

Since $\langle x_n \rangle$ is bounded sequence. Then there exists subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ such that $x_{nk} \to \tilde{x}$. By (13), we get \tilde{x} is an asymptotic common fixed point of T_n , $\forall n \in N$.

Theorem (2.4):

If $\langle T_n \rangle$ be a bounded sequence of szl – widering mappings on C and $\langle f_n \rangle$ be sequence of non-expansive mapping on C such that $(\bigcap_{n=1}^{\infty} Fix(f_n)) \cap (\bigcap_{n=1}^{\infty} Fix(T_n)) \cap (A+h)^{-1}(0) \neq \emptyset$. If the proximal point scheme $\langle x_n \rangle$ is defined as:

$$x_{n+1} = a_n x_n + b_n T_n x_n + c_n f_n(x_n) + d_n T_n y_n$$

$$y_n = J_{r_n} (a_n x_n + (1 - a_n) T_n x_n - r_n h x_n)$$

Where $\langle a_n \rangle$, $\langle b_n \rangle$, $\langle c_n \rangle$ and $\langle d_n \rangle$ are sequences in (0,1) and $\langle r_n \rangle$ be sequence in \mathbb{R}^+ such that $a_n + b_n + c_n + d_n = 1 \& 2a_n \alpha > r_n$. Then the proximal point scheme $\langle x_n \rangle$ has converges weakly to an asymptotic common fixed point

9

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 10111702 DOI: 10.21275/10111702

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Proof:

Let
$$p \in (\bigcap_{n=1}^{\infty} Fix(f_n)) \cap (\bigcap_{n=1}^{\infty} Fix(T_n)) \cap (A + h-10 \neq \emptyset)$$

Since $p \in (A+h)^{-1}(0) \Rightarrow p = J_{r_n}(I-r_nh)p$.
 $p = J_{r_n}(a_np + (1-a_n)p - r_nh)$.
But $y_n = J_{r_n}(a_nx_n + (1-a_n)T_nx_n - r_nhx_n)$
 $\|y_n - p\|^2 = \|J_{r_n}(a_nx_n + (1-a_n)T_nx_n - r_nhx_n) - p\|^2$
 $= \|J_{r_n}(a_nx_n + (1-a_n)T_nx_n - r_nhx_n) - J_{r_n}(a_np + (1-a_n)p + r_nhp)\|^2$
 $\|y_n - p\|^2 = \|a_nx_n + (1-a_n)T_nx_n - r_nhx_n - a_np - (1-a_n)p + r_nhp\|^2$
 $\leq (1-a_n)\|T_nx_n - p\|^2$
 $+ a_n \|(x_n - p) - \frac{r_n}{a_n}(hx_n - hp)\|^2$
 $\leq (1-a_n)\|T_nx_n - p\|^2 + a_n\|x_n - p\|^2$
 $- 2r_n \langle x_n - p, hx_n - hp \rangle$

 $+\frac{r_n^2}{a_n}\|hx_n-hp\|^2$ Now, by definition of szl – widering then we get, for each $s_n, l_n \in (0,1)$ then there exist $z_n > 0$ (shortly we write them s, z and l respectively) such that

$$\begin{aligned} \|y_n - p\|^2 &\leq (1 - a_n)\{(1 - s)\|x_n - p\|^2 \\ &+ l\|p - T_n p\|.\|x_n - T_n x_n - (p - T_n p)\| \\ &+ z|\langle x_n - T_n x_n, p - T_n p\rangle|\} \\ &+ a_n\|x_n - p\|^2 - 2r_n \alpha\|h \, x_n - hp\|^2 \\ &+ \frac{r_n^2}{a_n}\|h \, x_n - hp\|^2 \\ \|y_n - p\|^2 &\leq (1 - a_n)(1 - s)\|x_n - p\|^2 + a_n\|x_n - p\|^2 \\ &- \frac{(2a_n \alpha - r_n)r_n}{a_n}\|h \, x_n - hp\|^2 \\ &\leq (1 - a_n)\|x_n - p\|^2 + a_n\|x_n - p\|^2 \\ &- \frac{(2a_n \alpha - r_n)r_n}{a_n}\|h \, x_n - hp\|^2 \\ &\leq \|x_n - p\|^2 \\ \|x_{n+1} - p\|^2 &\leq a_n\|x_n - p\|^2 + b_n\|T_n x_n - p\|^2 \\ &+ c_n\|f_n(x_n) - p\|^2 + d_n\|T_n y_n - p\|^2 \\ &+ b_nl\|p - T_np\|.\|x_n - T_n x_n - p\|^2 \\ &+ b_nl\|p - T_np\|.\|x_n - T_n x_n - (p - T_n p)\| + b_nz|\langle x_n - T_n x_n, p - T_n p\rangle| \\ &+ c_n\|x_n - p\|^2 + d_n(1 - s)\|y_n - p\|^2 \\ &+ d_nl\|p - T_np\|.\|y_n - T_n y_n - (p - T_n p)\| + d_nz|\langle y_n - T_n y_n, p - T_n p\rangle| \\ \|x_{n+1} - p\|^2 &\leq a_n\|x_n - p\|^2 + b_n(1 - s_n)\|x_n - p\|^2 \\ &+ A_n\|x_n - p\|^2 + d_n(1 - s)\|y_n - p\|^2 \\ &\leq (1 - d_n)\|x_n - p\|^2 + d_n\|x_n - p\|^2 \end{aligned}$$

By lemma (1.2), we get $\lim_{n\to\infty} ||x_n - p||$ exists (14)

So, $\langle x_n \rangle$ is bounded sequence, and hence $\langle J_{r_n} \rangle$, $\langle f_n \rangle$ and $\langle w_n \rangle$ also bounded.

Since
$$||x_{n+1} - p|| \le ||x_n - p|| + ||T_n x_n - x_n||$$
 therefore, by (14)
 $-||T_n x_n - x_n|| \le ||x_n - p|| - ||x_{n+1} - p|| \to 0 \text{ as } n \to \infty$
 $||T_n x_n - x_n|| \to 0 \text{ as } n \to \infty$ (15)

Since $\langle x_n \rangle$ is bounded sequence. Then there exists subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ such that $x_{nk} \to \tilde{x}$. By (15)we get \tilde{x} is an asymptotic common fixed poin of T_n .

References

- [1] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, 2011.
- [2] J.M. Borwein and J.D. Vanderwerff, Convex Functions, Cambridge University Press, 2010.
- [3] R.S. Burachik and A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer-Verlag, 24, 2008.
- [4] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
- [5] C. Z 'alinescu , Convex Analysis in General Vector Spaces, world Scientific Publishing, 2002.
- [6] H.K.Xu," Another Control Condition In An Iterative Method for NonexpansiveMappings, Bull ,Austral. Math .Soc ,65 (2002) ,109-113.
- [7] H.K.Xu, "Iterative Algorithm for Nonlinear Operators", J.london Math.Soc .66(2002) 240-256
- [8] A.Moudafi, Viscosity Approximation Method for Fixed Point Problems, Journal of Mathematical Analysis and Applications, 241(2000) 46-55.
- [9] H.K.Xu, "Viscosity Approximation Methods for NonexpansiveMapping ",J. Math .Anal.Appl..298(2004)279-291.
- [10] S. Kamimura, W. Takahashi, Approximating Solutions of Maximal Monotone OperatorsIn Hilbert spaces, J. Approx. Theory 106 (2000) 226–240.
- [11] S.S. Abed ,Z .H. Maibed, Convergence Theorems of Iterative Schemes For Nonexpansive Mappings, Journal of Advances in Mathematics , 12(2016)6845-6851.
- [12] S.S. Abed ,Z.H. Maibed ,Convergence Theorems for Maximal Montone Operators By Family of Nonspreading Mappings,(IJSR) , 2015,(2017)2319_7064.
- [13] F. Kohsaka and W. Takahashi, "Fixed Point Theorems For a Class Of Nonlinear Mappings Relate To Maximal Monotone Operators In Banach Spaces", Arch. Math (Basel), 91 (2008) 166 177.
- [14] H.Piri,, Solution of Varaitional Inequalities on Fixed Points of Nonexpansive Mappings, Bulletin of The Iranian Mathematical Society vol.39 no 4(2013)743-764.
- [15] U. Singthong and S. SuonTal, "Equilibrium Problems and Fixed Point Problems For Non-spreading Type Mapping In Hilbert Space", J. Nonlinear, Anal. Appl, 2(2011), 51-61.
- [16] H. Manaka and W.Takahashi, Weak Convergence Theorems for Maximall Monotone Operators With Nonspreading Mappings in Hilbert Space, CUBO, A. Math. journal, Vol 13, NO.01, 2011.(11-24).
- [17] D.A.Ruiz,G.L.Acedo and V.M.Marquez,"Firmly nonexpansie mappings",J. Nonlineaanalysis,vol 15(2014)1.
- [18] M. Eslamian, "Rockafellars Proximal Point Algorithm For *A* Finite Family Of Monotone Operators", U. P. B. sci. Bull. vol 76 ISS 1 (2014).

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 10111702 DOI: 10.21275/10111702 10

ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

[19] W. Takahashi and M. Toyoda, "Weak Convergence Theorem For Non-expansive Mappings and Monotone Mappings", J. optim theory Appl. 118 (2003) 417-428.

Mappings", J. optim theory Appl. 118 (2003) 417-428. [20] S.S. Abed ,Z .H. Maibed, "Theorems for Proximal Point Schemes by Sequences of *szl* – Widering Mappings" ,Global Journal of Math Sciences :Theory and Practical(GJMS).

Volume 7 Issue 1, January 2018 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 10111702 DOI: 10.21275/10111702 11