Differentiation of Renal Oncocytoma from Renal Cell Carcinoma - A Mini-Review

Lan Mo¹, Muhammad Yousaf², Fang-Ming Deng³

¹Division of Hematology and Oncology, Assistant Professor of Medicine, Weill Cornell Medical College
New York Presbyterian University Hospital, 156 William Street, 7th Floor, New York, NY 10038

²Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 420 East Superior Street,
Chicago, IL 60611

³Department of Pathology, NYU Medical Center, 550 Frist Avenue, New York, NY 10016

Abstract: Renal oncocytomas (RO) are the small renal lesions that shared similar histological features with chromophobe renal cell carcinoma (chRCC). There are some hybrid tumors, renal oncocytosis and Brit-Hogg-Dube (BHD) syndrome that have shown the coexistence of both ROs and chRCCs. Presently, most of sporadic cases of ROs and chRCCs have been reported. The majority of ROs and chRCCs patients are asymptomatic, with no significant risk of metastatic ROs compared to chRCCs. However, incidental detection of small renal masses by cross section imaging has constituted an important diagnostic dilemma for their management. Therefore, it is important to differentiation ROs from chRCCs and other subtypes of RCCs for appropriate management. RO is a benign tumor and should be monitored and treated conservatively. For ROs more conservative treatment like nephron-sparing surgery should be considered but we are still on consistent effort of differentiating RO from chRCC. The more accurate diagnosis of ROs remained elusive until modern molecular biomarkers are determined. Even now the standard treatment for small renal tumors remained surgical resection. But recent studies of Cytochrome C oxidase subunit 1 (CCO1) and Tc-MIBI SPECT/CT is appearing valuable in differentiating between these two entities. We suspect that in future the results of these experimental studies will favor us more towards conservative treatment of ROs. This review is focused on the differentiation of renal oncocytoma (RO) from renal cell carcinoma (RCC). It summarizes the introduction, epidemiology, clinical presentation of the renal neoplasms and describes the diagnostic dilemma, pathology, radiology, treatment of the renal neoplasms.

Keywords: Renal Oncocytoma, Renal Cell Carcinoma

1. Introduction

First scientist to introduce renal oncocytoma (RO) as a neoplasm was Zippel [1]. RO is composed of eosinophilic granular cells called oncocyes. It is said that RO has its origin most likely from intercalated cells of collecting ducts [2]. It is also said that RO is a benign tumor and can be monitored and treated conservatively [3]. But a decade later, Theones et al. described chromophobe renal cell carcinoma (chRCC) as a distinct subtype from eosinophilic clear-cell renal cell carcinoma (ccRCC) and marked a question on the ROs, previously described as benign [4]. Both ROs and chRCCs shared similar morphological features and proper differentiation between two entities relies on H&E histochemistry of section, and experienced histopathologist to discern the characteristic histomorphological spectrum [5]. There are some hybrid tumors, renal oncocytosis and Brit-Hogg-Dube (BHD) syndrome that have shown the coexistence of ROs with chRCCs. Both ROs and chRCCs are small renal lesions that may also defer surgical treatment. Although it is said that chRCCs have good prognosis than others RCCs subtypes and active surveillance rather than surgical intervention should be considered, death can result from metastases due to its malignant nature. From past three decades incidence of renal tumors has been increasing in USA, Europe and Australia [6]. Same as, from decades widespread use of cross section imaging has been resulted in increase detection of incidental smaller renal tumors (lesions <4cm), with relatively constant incidence of advanced tumors [7, 8]. Therefore, it has become important to differentiation small renal masses like, ROs and chRCCs from other subtypes of RCCs, especially ccRCCs for appropriate management.

2. Epidemiology

Up to now, we know 16 subtypes of renal tumors. The four most common subtypes are ccRCC, papillary RCC, chRCC and collecting duct RCC [9, 10]. CcRCCs constituted 70-80% of RCC arising from proximal tubular epithelial cells, followed by papillary 10-15%, chRCCs 5% and collecting duct RCC <1% [11, 12]. RO accounts for 3-7% of all renal tumors. The peak age of incidence for detecting ROs is in the seventh decade of life and men seem to affect twice than women. In contrast, peak age of incidence for detecting chRCCs is in sixth decade and both gender are affected equally [13]. So far, most of sporadic cases of ROs and chRCCs have been reported [14, 15]. Occasionally occurrence of familial renal cancers of oncocytoma with BHD syndrome has also been reported. Familial oncocytoma resulted from partial or complete loss of multiple chromosomes. Whereas Autosomal Dominant BHD syndrome is due to BHD gene locus located in the short arm of chromosome 17 [16, 17]. This syndrome is characterized by fibrofolliculomas, lung cysts leading to spontaneous pneumothoraxes and various subtypes of renal tumors including hybrid tumors, ROs, chRCCs and ccRCCs. Sometime in rare cases, patients can present with renal oncocytosis that is described as multiple and bilateral oncycytic nodules found diffusely throughout the renal parenchyma [18]. Hybrid development of ROs and chRCCs
was most commonly shown by a large series investigating renal oncocytosis [19].

Clinical presentation
The majority of ROs and chRCCs patients are asymptomatic. Rarely, chRCCs patients can present with symptoms of loin and flank pain, hematuria, weight loss and decrease appetite [14]. Occasionally, chRCCs patients can also present with paraneoplastic syndrome and metastatic disease to liver, but with better prognosis compared to other RCCs [20]. In contrast, ROs with no significant risk of metastases almost always follow benign clinical course. A few cases of metastatic ROs with initial presentation or following resection of ROs have been reported with no proper histopathological confirmation of metastatic deposits, except for one metastatic liver disease [3, 9, and 21]. Therefore, distinction of benign ROs from metastatic chRCCs is needed to guide management. If there is a suspicion of renal mass either clinically or via ultrasound, 4-phase CT scan should be performed immediately to describe its nature. Multiphase CT scans can outline the renal tumor with its extension to surrounding tissues and can also reveal metastases to other organs or regional lymph nodes. But generally speaking, we cannot differentiate benign renal lesions from malignant on CT scans. Similarly, a largest pool of biopsies have proven the growth rate of benign ROs similar to that of other subtypes of RCCs, highlighting the insignificance of growth velocity to differentiate between the benign or malignant renal lesions [12]. That why, percutaneous biopsy of small renal masses has limited role in the clinical practice these days. The locality and size of tumors may also vary. An average size of ROs reported is around 4.9 ±2.7 cm, with one exception of large RO (25×15×12 cm) [22, 23]. ROs can be multifocal and bilateral, respectively, in 6-11% and 3-5% cases [24-26]. By comparison, size of chRCCs is larger than any other subtype of RCCs, of about 6.0 cm [14, 27]. Multifocality of chRCCs is around 10-12% [28].

Diagnostic dilemma
The increase use of CT scans has actually led to diagnostic dilemma for characterizing the nature of small renal masses and their treatment. RCCs such as ccRCCs, papillary and collecting ducts RCCs demonstrate heterogeneous or peripheral contrast enhancement on CT scans. Whereas chRCCs reveal homogenous contrast enhancement on CT scans. ChRCCs also demonstrate calcification on CT scans [29]. In contrast ROs demonstrate smooth, well defined, relative homogeneous enhancement with central stellate scarring on CT scans. Same as when renal angiography is performed on RO, it highlights the peripheral hypervascular area with relatively hypovascular central area, demonstrating the spoke-wheel pattern. Central stellate scar is said to be non-diagnostic hypoattenuated central area seems on CT scan in less than one-third of ROs [10, 16]. The 18-FDG PET/CT scan has limited role in detecting renal tumors [30]. Benign ROs are FDG-avid but has failed to separate them from other subtypes of RCCs due to high false negative rate [31]. So far, there are no consistently reliable pathognomeric CT or alternative imaging technique features that can distinguish between ROs and chRCCs [32, 33]. Therefore, most ROs patients are treated by surgical resection due to suspicion of RCCs based on imaging. Recently, multiphasic multidetector CT scans with different enhancements at various phases of scan have been used to discriminate between RCCs subtypes [34]. This aids to distinguish ccRCCs from ROs but not ROs from chRCCs. Arterial phase enhancements >500% and washout values >50% in Hounsfield units obtained from multiphasic CT scans have been seen in ROs and aided to discriminate them from other subtypes of RCCs [35].

Pathology
As said above that renal mass biopsy is not widely used these days because pathologists have to face difficulty to diagnose renal tumor subtype from limited tissue biopsy samples, as an entire range of cytoarchitectural features is required to be examined for diagnosis [36]. Generally, the lesion looks like chRCCs on biopsy is declared with confidently as such. But lesion looks like RO may be incomplete sampled, merging with eosiophobic variant of chRCCs as a hybrid tumor or oncocytoma-like areas in a chRCC. Therefore, most pathologists did not diagnose RO on needle biopsy, and make a comment of having chRCCs elsewhere in the tumor. It is important to differentiate ROs from chRCCs based on histological characteristics. Below table 1 demonstrates the differences between these two entities.

<table>
<thead>
<tr>
<th>Features</th>
<th>RO</th>
<th>ChRCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroscopic</td>
<td>Well circumscribed, mahogany brown with a central stellate scar [25].</td>
<td>Usually circumscribed, light brown or yellow color [37].</td>
</tr>
<tr>
<td>Microscopic</td>
<td>Cells arranged in a nested or organoid pattern, but tubular, trabecular or solid structure can also be seen [38]. Granular eosinophilic cytoplasm round, uniform nuclei [39].</td>
<td>Cells arranged in sheets, with distinct or accentuated cell borders [40]. Granular eosinophilic variant or pale, reticular and transparent appearing classic variant. Presence of perinuclear halos, wrinkled nuclei [41].</td>
</tr>
<tr>
<td>Ultrastructural</td>
<td>Many mitochondria with lamellar or focally stacked cristae but with absent or sparse microvesicles [39].</td>
<td>Less mitochondria with tubule-vesicular cristae but with abundant microvesicles [37].</td>
</tr>
</tbody>
</table>

Despite of distinguish histological features, there is also need to use histochemical and immunohistochemical (IHC) stains to differentiate between RO, chRCC and ccRCC subtypes. Up to now, none of the histochemical, IHC or cyogenetic features has been proven to be reliable and specific [42]. However, it is said that IHC markers may be helpful and cost-effective for disease monitoring, prognosis and treatment-plan regimen. Below table 2 demonstrates the difference between these three entities.
differentiate it from chRCCs [49 antigens (CTAs), MAGE
E3 ligase, has Biomarker such as BCA2, a RING H2 finger protein RING
ROS, but the results of these studies are oncogene have been used to
cadherin, CK7, EMA, CD10, RCC, c
other studies with IHC markers, including kidney specific
IHC markers for S100 histologic, cytologic features, ROS and chRCCs also shared
marker for
perinuclear h
CCO1. This
the predominance of a perinuclear halo when stained for
chRCCs these
overexpresion and CCND1 rearrangements,
Whereas cyclin D1 overexpression and CCND1 gene rearrangements
chRCCs and positive staining for vimentin is used to
distinguish positive (pos) and neg
Colloidal iron and CK7 positivity is used to discriminate chRCs from ROs. Negative staining for vimentin and positive staining for CK7 versus negative staining for CK7 and positive staining for vimentin is used to distinguish chRCs from ccRCs [43]. All chRCs are negative for cyclin D1 overexpression and CCND1 gene rearrangements. Whereas a large number of ROs are positive for cyclin D1 overexpression and CCND1 rearrangements, suggesting that these two IHCs may be helpful to differentiate ROs from chRCs [44]. A feature found in chRC but not in RO is the predominance of a perinuclear halo when stained for CCO1. This describes for first time the formation of a perinuclear halo in CCO1 and suggests it as a highly specific marker for chRC [45]. Apart from sharing similar histologic, cytologic features, ROs and chRCs also shared IHC markers for S100A1 and CD117 (KIT) [46]. Several other studies with IHC markers, including kidney specific cadherin, CK7, EMA, CD10, RCC, c-KIT, and RON proto-oncogene have been used to discriminate chRCs from ROs, but the results of these studies are not satisfactory [47].

Biomarker such as BCA2, a RING H2 finger protein RING E3 ligase, has potential to discriminate ROs from chRCs [48]. Additionally, ROs also expressed higher cancer-testis antigens (CTAs), MAGE-A3/4 and NY-ESO-1, used to differentiate it from chRCs [49].

**Table 2: Histochemistry and immunohistochemistry (IHC) to differentiate clear cell renal cell carcinoma (ccRC), chromophobe renal cell carcinoma (chRC) and renal oncocytoma (RO)

<table>
<thead>
<tr>
<th>Cancer Cell Type</th>
<th>Vimentin</th>
<th>Cytokeratin (CK)</th>
<th>CD10 and RCC Marker (RCCma)</th>
<th>Cyclin D1 Over-Expression</th>
<th>Cytochrome C, Oxidase Subunit 1 (CCO1)</th>
<th>Hale’s Colloidal Iron Stain</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccRC</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
<td>not tested</td>
<td>not tested</td>
<td>neg</td>
</tr>
<tr>
<td>chRC</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
<td>not tested</td>
<td>perinuclear halo formation</td>
<td>diffuse reticular pattern with perinuclear halo[41]</td>
</tr>
<tr>
<td>RO</td>
<td>neg</td>
<td>neg or focal pos</td>
<td>neg</td>
<td>pos, mostly</td>
<td>neg</td>
<td>neg</td>
</tr>
</tbody>
</table>

differential from ROs. (B) H&E stained section of an example of renal oncocytoma, showing large oncocyes with densely granular eosinophilic cytoplasm. Cells are round to polygonal and nuclei are round and monotonous. Nucleoli are small and inconspicuous.

Figure 1. (A) H&E-stained section of an example of eosinophilic variant of chromophobe renal cell carcinoma, showing typical large, pale, polygonal cells with prominent cell membranes. Nuclei tend to be irregular and wrinkled, and cells are sometimes binniecinated (asterisks). Perinuclear clearing can be prominent. (B) H&E stained section of an example of renal oncocytoma, showing large oncocyes with densely granular eosinophilic cytoplasm. Cells are round to polygonal and nuclei are round and monotonous. Nucleoli are small and inconspicuous.

Colloidal iron and CK7 positivity is used to discriminate chRCs from ROs. Negative staining for vimentin and positive staining for CK7 versus negative staining for CK7 and positive staining for vimentin is used to distinguish chRCs from ccRCs [43]. All chRCs are negative for cyclin D1 overexpression and CCND1 gene rearrangements. Whereas a large number of ROs are positive for cyclin D1 overexpression and CCND1 rearrangements, suggesting that these two IHCs may be helpful to differentiate ROs from chRCs [44]. A feature found in chRC but not in RO is the predominance of a perinuclear halo when stained for CCO1. This describes for first time the formation of a perinuclear halo in CCO1 and suggests it as a highly specific marker for chRC [45]. Apart from sharing similar histologic, cytologic features, ROs and chRCs also shared IHC markers for S100A1 and CD117 (KIT) [46]. Several other studies with IHC markers, including kidney specific cadherin, CK7, EMA, CD10, RCC, c-KIT, and RON proto-oncogene have been used to discriminate chRCs from ROs, but the results of these studies are not satisfactory [47].

Caderhins comprise of a transmembrane glycoprotein family that function as calcium-dependent homotypic adhesion molecules and are expressed by the epithelium. Currently, over 20 different tissue-specific cadherins have been identified [50], of which Kidney-specific cadherin (Ksp-cad), N & E-Cadherin, and Ep-CAM (epithelial cell adhesion molecule) have shown their promising evidence in differentiating chRCs from ROs.

CKs are from intermediate filament family, the markers of epithelium differentiation. Currently, 20 distinct CKs have been identified. The CKs that have been tested to differentiate chRCs from other RCCs and ROs, CK7 8 18 19 and 20, have not shown any major promising evidence. In contrast, Caveolin-1 encoded by the Cav-1 protein has shown better result in differentiating chRCs from ROs than CK7 [51].

Radiology

Several studies have shown that the degree of enhancement is the most important parameter for discriminating between different subtypes of RCCs [52-55]. Absolute attenuation measurement is considered to be accurate for distinguishing different renal lesions, however, a large number of intrinsic and extrinsic factors such as organ perfusion and the quantity, time and rate of delivery of contrast material to organs like the kidneys, can influence the attenuation values
and the types of contrast enhancement of lesions in different contrast phases [56]. Therefore, An et al., in their study, used a ratio rather than an absolute enhancement in an attempt to correct the differences in each patient’s body habitus and cardiac output. This study was focused on the ratio of lesion-to-cortex attenuation of CT enhancement for discriminating RO from ccRCCs. It has been corroborated that when differentiating benign renal lesions from malignant, on contrast-enhanced CT, ccRCCs and RO are greatly enhanced in the parenchymal phase, whereas chRCCs and angiomylipoma moderately and papillary tumors slightly enhanced in the parenchymal phase [57]. RO can overlap with ccRCCs in terms of imaging features and the degree of enhancement. Therefore, the discrimination between RO and ccRCCs presents the greatest diagnostic challenge. This retrospective study included 46 patients with a solitary renal mass who underwent total or partial nephrectomy [58]. 14 patients were of RO and 32 were of ccRCCs. All patients were examined with contrast-enhanced CT. Area that demonstrates the greatest degree of enhancement, of the renal lesion, in the corticomedullary, nephrographic and excretory phase was selected. The ratios of lesion-to-renal cortex enhancement were calculated for all three phases. The results showed that all ccRCCs masses appeared to be better enhanced than RO on all contrast-enhanced phases of CT imaging, but there was no significant difference in absolute attenuation values between them (P > 0.05) [58]. The ratio of lesion-to-cortex attenuation in the corticomedullary phase revealed significantly different values between RO and ccRCCs. The degree of contrast enhancement in ccRCCs was equal to or greater than that of the normal renal cortex, but it was less than that of the normal cortex in RO in the corticomedullary phase. The ratio of lesion-to-cortex attenuation in the corticomedullary phase was higher than the cut off value of 1.0 in most ccRCCs (84%, 27/32) and lower than 1.0 in most RO (93%, 13/14) (P < 0.05). In the nephrographic phase, the ratio of lesion-to-cortex attenuation was higher than that in the corticomedullary phase in most RO (71%, 10/14), exhibiting a prolonged enhancement pattern and was lower than that in most ccRCCs (97%, 31/32), demonstrating an early washout pattern (P < 0.05) [58]. In the discrimination of RO from ccRCCs, the sensitivity was 93%, specificity 84%, positive predictive value 72%, negative predictive value 84%, and accuracy for RO was 87, if the ratio of lesion-to-cortex attenuation in a cortex phase was lower than the cutoff value of 1.0. The sensitivity was 71%, specificity was 97%, positive predictive value was 91%, negative predictive value was 91%, and accuracy for RO was 89%, if the ratio of lesion-to-cortex attenuation in nephrographic phase was higher than that in the corticomedullary phase. An et al. concluded that ratios of renal lesion-to-cortex attenuation may be helpful in differentiating RO from ccRCCs [58].

Recently, Rowe et al. explored the utility of Tc-MIBI SPECT/CT for the differentiation of renal oncocytoma from other subtypes of RCCs. It is based on the hypothesis that the large number of mitochondria in oncocytomas would lead to increased Tc-MIBI uptake. In this study, 6 patients, 3 with oncyotoma and 3 with RCC, were imaged with Tc-MIBI SPECT/CT [59]. The results of the study showed that all the 3 oncyotomas demonstrated, radiotracer uptake near or above the normal renal parenchymal uptake, whereas, the 3 RCCs were greatly photopenic relative to renal background. Rowe et al. concluded that Tc-MIBI SPECT/CT appears to be valuable in differentiating benign renal oncocytoma from RCC [59].

Treatment

So far, standard treatment of localize renal tumors remained surgical resection via complete or partial nephrectomy. Beniatiya et al. described the management of 6 cases of ROs in their study [60]. The mean age of the patients was 53 ±6.7 years (range 34 to 61 years). At initial presentation, one patient was asymptomatic, 5 patients had flank pain and 2 had hematuria. The tumor was right sided in 4 cases and left sided in 2 cases. All patients underwent CT scan which showed central stellate area of low attenuation, only in 3 cases. The clinical suspicion of RO was made in 3 patients by cross-section imaging, preoperatively, but the suspicion of RCCs persisted and all patients underwent radical nephrectomy. Definitive diagnosis was made postoperatively, corroborating well circumscribed, unencapsulated tumors. Follow-up of patients for 3 years, revealed neither recurrence nor death from RO, with 100% progression free survival (PFS). This showed that RO has a benign clinical course with excellent long-term outcomes. Although, in this study, radical nephrectomy was the usual treatment, a conservative approach should be considered [60]. The precise preoperative or peri-operative diagnosis with signs of clinical and radiological findings, may possibly allow the frequent use of conservative surgery, such as partial nephrectomy or tumor excision. Currently, nephron-sparing surgery has been suggested as the standard care for ROs. These include nephron-sparing surgery with no chemo-radiotherapies afterward, cryoablation and radiofrequency ablation, high intensity focused ultrasound, microwave thermotherapy and interstitial photon irradiation. Actually, cryoablation and radiofrequency ablation have been the most studied. They have been performed laparoscopically and percutaneously [61]. After all, we suggested that benign ROs should be monitored closely and treated surgically or conservatively, if there is the evidence of coexisting RCC or rapidly growing tumor with destruction of the adjacent renal parenchyma [62, 63].

3. Conclusion

Small renal masses especially ROs, chRCCs and ccRCCs have revealed the diagnostic and management challenges for us. Ratio of lesion-to-cortex attenuation of CT enhancement for discriminating RO from ccRCCs has shown the results of ccRCCs masses, better enhanced in all contrast-phases of CT imaging than RO but with no significant difference for their absolute attenuation values [62]. Up to now, there are no reliable imaging features that can differentiate ROs from chRCCs and ccRCCs. Therefore, most of RO patients are treated with surgical resection due to suspicion of concurrent RCC subtypes rather than of conservative treatment. The more accurate diagnosis of ROs remained elusive until modern molecular biomarkers are determined. But a high level of confidence to diagnose with an improve use of preoperative diagnostic techniques can reduce the rate of interventions in RO patients. Recently, the use of Tc-MIBI SPECT/CT to distinguish ROs from other subtypes of RCCs.
has shown a good result of differentiation. It demonstrates
the radiotracer uptake nearly above the normal renal parenchymal uptake for ROs patients, with
greatly photopenic relative to renal background for other
RCCs subtype’s patients [59]. Similarly, a feature found in
cchRCC but not in RO is the predominance of a perinuclear
halo when stained for CCO1. This suggests a highly specific
marker for cchRCC that can be helpful to differentiate it from
RO [45]. By these recent studies, we are getting closer to
differentiate ROs from other RCC subtypes like cchRCCs and
ccRCCs. So we suspect that in future more conservative
treatment like nephron-sparing surgery for RO patients
will be considered.

4. Financial Declaration
No author participating in this study has any financial

References
A Pathol Anat 1942;308:360–82.
as a probable source for the development of renal
oncocytoma. Virchows Arch B Cell Pathol Incl Mol
chromophobe cell renal carcinoma. Virchows Arch B
tumour ‘oncocytomachromophobe renal cell carcinoma’
of the kidney: a report of seven sporadic cases. BJU Int
60:615–21.
analysis of a contemporary series. Urology 2003;
[8] Gupta K, Miller JD, Li JZ, et al. Epidemiologic and
socioeconomic burden of metastatic renal cell
carcinoma (mRCC): a literature review. Cancer Treat
case report and review of the literature. Clin Oncol (R
history of observed enhancing renal masses: meta-
analysis and review of the world literature. J Urol
renal oncocytomas appear to grow: observations of
tumor kinetics with active surveillance. J Urol
2011;186:1218–22.
oncocytoma growth rates before intervention. BJU Int
carcinoma: comprehensive analysis of 104 cases
from multicenter European database. Urology
[14] Vera-Badillo FE, Conde E, Duran I. Chromophobe
renal cell carcinoma: a review of an uncommon entity.
WHO classification of the renal tumors of the adults.
syndrome: mapping of a novel hereditary neoplasia
gene to chromosome 17p12-q11.2. Oncogene
2001;20:5239–42.
in a novel gene lead to kidney tumors, lung wall defects,
and benign tumors of the hair follicle in patients with
64.
oncocytosis: management and clinical outcomes. J Urol
Pathobiology and prognosis of chromophobe renal cell
carcinoma. Urol Oncol-Semin Orig Investig
oncocytoma: A clinicopathologic study of 70 cases. Am
oncocytoma: a case report and review of the literature. J
Med Case Rep 2010;4:52.
presentation and evolution of renal oncocytomas:
multicentric experience from a European database. Eur
Urol 2004;45:53–7; discussion 57.
oncocytoma: Multifocality, bilateralism, metachronous
tumor development and coexistent renal cell carcinoma.
revisited: a clinicopathological study of 109 cases with
emphasis on problematic diagnostic features.
Histopathology 2010;57:893–906.
[26] Davis CJ MF, Sesterhenn IA, Ho CK. Renal
oncocytoma. Clinicopathological study of 166 patients.
of outcome and prognostic features among histologic
[28] Yusenko MV. Molecular pathology of chromophobe
600.
subtypes of renal cell carcinoma on helical CT scans.
[18F]FDG PET in characterizing renal cancer and
detecting distant metastases: a comparison with CT.
role of F-18 fluorodeoxyglucose positron emission
transmission tomography. Clin Nucl Med
2006;31:297–8. ISSN (Online): 2319-7064
www.ijsr.net
Paper ID: ART20176903
DOI: 10.21275/ART20176903
1424
Volume 6 Issue 9, September 2017
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

