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Abstract: Statistical fluctuations of nuclear energy spectra in 32A (32S, 32P and 32Si) nuclei are probed by the framework of the nuclear 

shell model. Energy levels of considered nuclei are evaluated via performing sd-shell model calculations using the OXBASH computer 

code with the realistic effective interaction of WPN in the proton-neutron formalism. Here, we assume the 32A nuclei consists of an inert 
16O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian calculations of 32A nuclei, we have found an 

intermediate behavior between Wigner and Poisson limits for both the )(sP  distributions and  statistics as a result of the absence of 

mixing and repulsion between levels with different isospin. Further, they transfer gradually toward the GOE limit when going over 

PS 3232 ,  and Si32
 nuclei, individually (i.e. through changing the numbers of valence protons and neutrons in 32A). Moreover, they 

are independent of the spin J  (universal for different spins). For unperturbed hamiltonian (the non-interacting particles case) 

calculations, we have found a regular behavior for both the )(sP  distributions and  statistics due to the absence of mixing and 

repulsion between levels with different isospin (as a result of using the proton-neutron formalism interaction) and also due to the 

nonexistence of the off-diagonal residual interaction. 
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1. Introduction 
   

Chaotic properties of many body quantum systems were 

probed deeply during the previous three decades [1]. 

Bohigas et al. [2] proposed a relation between chaos in a 

classical system and the spectral fluctuations of the 

analogous quantum system, where an analytical proof of the 

Bohigas et al. conjecture is found in [3]. It is now typically 

known that quantum analogs of most classically chaotic 

systems demonstrate spectral fluctuations that agree with the 

random matrix theory (RMT) [4,5] while quantum analogs 

of classically regular systems reveal spectral fluctuations 

that agree with a Poisson distribution. For time-reversal-

invariant systems, the suitable form of RMT is the Gaussian 

orthogonal ensemble (GOE). RMT was firstly utilized to 

characterize the statistical fluctuations of neutron resonances 

in compound nuclei [6]. RMT has become a standard tool 

for analyzing the universal statistical fluctuations in chaotic 

systems [7-10]. 

 

The chaotic manners of the single particle dynamics in the 

atomic nuclei can be investigated via the mean field 

approximation. On the other hand, the nuclear residual 

interaction mixes different mean field configurations and 

affects the statistical fluctuations of the many particle 

spectrum and wave functions. These fluctuations may be 

investigated with different nuclear structure models. The 

statistics of the low-lying collective part of the nuclear 

spectrum were studied in the framework of the interacting 

boson model [11, 12], in which the nuclear fermionic space 

is mapped onto a much smaller space of bosonic degrees of 

freedom. Because of the relatively small number of degrees 

of freedom in this model, it was also possible to relate the 

statistics to the underlying mean field collective dynamic. At 

higher excitations, additional degrees of freedom (such as 

broken pair) become important [13], and the effects of 

interactions on the statistics must be studied in larger model 

spaces. The nuclear shell model offers an attractive 

framework for such studies. In this model, realistic effective 

interactions are available and the basis states are labeled by 

exact quantum numbers of angular momentum ( J ), isospin 

(T ) and parity ( ) [14]. 

 

In the articles [15-19], the distribution of eigenvector 

components was studied by the context of the shell model. 

Brown and Bertsch [17] found that the basis vector 

amplitudes are consistent with Gaussian distribution (which 

is the GOE prediction) in regions of high level density but 

deviated from Gaussian behavior in other regions unless the 

calculation employs degenerate single particle energies. 

Later studies [19] also suggested that calculations with 

degenerate single particle energies are chaotic at lower 

energies than more realistic calculations. 

 

Hamoudi et al [20] performed the fp-shell model 

calculations to analyze the statistical fluctuations of energy 

spectrum and electromagnetic transition intensities in A=60 

nuclei using the F5P [21] interaction. The calculated results 

were in agreement with RMT and with the previous finding 

of a Gaussian distribution for the eigenvector components 

[15-19]. Hamoudi [22] investigated the effect of the one-

body hamiltonian on the fluctuation properties of energy 

spectrum and electromagnetic transition intensities in 
136

Xe 

using a realistic effective interaction for the N82-model 

space defined by 2/12/112/72/5 3,11,2 shgd and 2/32d  

orbitals. A clear quantum signature of breaking the 

chaoticity was observed as the values of the single particle 

energies are increased. Later, Hamoudi et al [23] carried out 

full fp-shell model calculations to investigate the regular to 
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chaos transition of the energy spectrum and electromagnetic 

transition intensities in 
44

V using the interaction of FPD6 

[24] as a realistic interaction in the isospin formalism. The 

spectral fluctuations and the distribution of electromagnetic 

transition intensities were found to have a regular dynamic 

at ,0  (  is the strength of the off-diagonal residual 

interaction), a chaotic dynamic at 3.0  and intermediate 

situations at .30    Recently, Hamoudi et al [25] have 

carried out sd-shell model calculations to analyze the chaotic 

properties of energy spectra in 
32

A nuclei using the 

interaction of W [26] as a realistic interaction in the isospin 

formalism. The results have been well described by the 

Gaussian orthogonal ensemble of random matrices and they 

show no dependency on the spin J  and isospin .T   

 

All above studies performed shell model calculations using 

interactions in the isospin formalism for nuclei have no more 

than 12 valence nucleons. There has been no detailed study 

for spectral fluctuations through performing shell model 

calculations using interaction in the proton-neutron 

formalism for nuclei have more than 12 valence nucleons. 

We thus, in this study, perform sd-shell model calculations 

using the realistic effective interaction of WPN [26] in the 

proton-neutron formalism to investigate the statistical 

fluctuations of nuclear energy spectra in 
32

A (
32

S, 
32

P and 
32

Si) nuclei. For full hamiltonian calculations, the )(sP  and 

 statistics are found to have an intermediate behavior 

between Wigner and Poisson limits. Besides, they move 

gradually toward the GOE limit when going over PS 3232 ,  

and Si32
 nuclei, individually. Moreover, they are 

independent of the spin .J  For unperturbed hamiltonian 

calculations, the )(sP  and  statistics are found to have a 

regular behavior (in agreement with the Poisson 

distribution). 

 

2. Theory 
   The many-body system can be described by an effective 

shell-model hamiltonian [14] 

,0 HHH                                        (1) 

where 0H  and H   are the independent particle (one body) 

part and the residual two-body interaction of .H  The 

unperturbed hamiltonian 

 


 aaeH 0                                      (2) 

characterizes non-interacting fermions in the mean field of 

the appropriate spherical core. The single-particle orbitals 

  have quantum numbers )(  ljm  of orbital ( l ) and 

total angular momentum ( j ), projection mjz   and 

isospin projection .  The antisymmetrized two-body 

interaction H   of the valence particles is written as 

  .
4

1
;  aaaaVH                              (3) 

The many-body wave functions with good spin J  and 

isospin T  quantum numbers are constructed via the 

m scheme determinants which have, for given J  and ,T  

the maximum spin and isospin projection [14], 

        ,;, 3 mTTJM                                    (4) 

where m  span the m scheme subspace of states with 

JM   and .3 TT   

The matrix of the many-body hamiltonian 

 

k

JT

kk kJTHkJTH ;;                                  (5) 

is eventually diagonalized to obtain the eigenvalues E  and 

the eigenvectors 

   
k

k kJTCJT ;;                                  (6) 

Here, the eigenvalues E  are considered as the main object 

of the present investigation. 

 

The fluctuation properties of nuclear energy spectrum are 

obtained via two statistical measures: the nearest-neighbors 

level spacing distribution )(sP  and the Dyson-Mehta or 

3  statistics [4, 27]. The staircase function of the nuclear 

shell model spectrum )(EN  is firstly build. Here, )(EN  

is defined as the number of levels with excitation energies 

less than or equal to .E  In this study, a smooth fit to the 

staircase function is performed with polynomial fit. The 

unfolded spectrum is then defined by the mapping [12] 

)(
~~

ii ENE  .                                                (7) 

The real spacings reveal strong fluctuations whereas the 

unfolded levels iE
~

 have a constant average spacing. The 

level spacing distribution (which exemplifies the 

fluctuations of the short-range correlations between energy 

levels) is defined as the probability of two neighboring 

levels to be a distance s  apart. The spacings is  are 

determined from the unfolded levels by .
~~

1 iii EEs    A 

regular system is forecasted to perform by the Poisson 

statistics 

 

)exp()( ssP  .                                   (8) 

 

If the system is classically chaotic, we foresee to get the 

Wigner distribution 

),4/exp()2/()( 2sssP                    (9) 

 

which is consistent with the GOE statistics. 

   The 3  statistic (which characterizes the fluctuations of 

the long-range correlations between energy levels) is utilized 

to measure the rigidity of the nuclear spectrum and defined 

by [4] 

        




L

BA EdBEAEN
L

L






~

)
~

()
~

(
1

min),(
2

,3 .                                    

(10) 

It measures the deviation of the staircase function (of the 

unfolded spectrum) from a straight line. A rigid spectrum 

corresponds to smaller values of 3  whereas a soft 
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spectrum has a larger .3  To get a smoother function 

),(3 L  we average )(3 L  over several n  intervals 

( L, ) 

).,(
1

)( 33 L
n

L 


                                      (11) 

The successive intervals are taken to overlap by .2/L  

In the Poisson limit, .15/)(3 LL   In the GOE limit, 

15/3 L  for small ,L  while Lln2

3

   for large 

.L  

 

3. Results and Discussion 
 

Calculations of the shell model are performed, via the 

OXBASH code [28], for 
32

A ( S32
, P32

 and Si32
) nuclei. 

These nuclei are assumed to have an inert core of 
16

O with 

16 valence nucleons move in the sd-shell (1d5/2, 2s1/2 and 

1d3/2 orbitals) model space. 

 

To exemplify the role of hidden integrals of motion in the 

spectral fluctuations, we provide in the following some 

samples of calculations in the proton-neutron formalism. 

Here we do not discriminate the states by isospin, i.e. they 

are only discriminated by its spin J  and parity .  The 

interaction of proton-neutron formalism of Wildenthal 

(WPN) [26] is taken in this study as a realistic effective 

interaction together with realistic single particle energies.  

 

The spectral fluctuations in 
32

A nuclei are investigated for 

states, which have the same parity ( ) and good spin ( J ). 

These fluctuations are analyzed by two statistical measures: 

the nearest neighbor level spacing distribution )(sP  and the 

Dyson-Mehta statistics (  statistics). 

 

Table 1 shows the dimensions of all 
J  states considered in 

this study for S32
, P32

 and Si32
 nuclei. 

 

Fig. 1 exhibits the calculated )(sP  distributions 

(histograms), obtained with full hamiltonian calculations, for 

unfolded even 
 6,4,2,0J  and 

8 states in 

S32
 (left column), P32

 (middle column) and Si32
 (right 

column) nuclei. The GOE distribution (which characterizes 

chaotic systems) is presented by the solid line. The Poisson 

distribution (which corresponds to a random sequence of 

levels and characterizes regular systems) is presented by the 

dashed line. The calculated histograms in S32
 (left column) 

show no dependency on the spin J  (universal for different 

spins). Similar notice is found for histograms in P32
 

(middle column) and Si32
 (right column) nuclei. The 

histograms of S32
 (with 8 valence protons and 8 valence 

neutrons), computed in the proton-neutron formalism for the 

above even positive parity states, show the nearest neighbor 

level spacing distributions intermediate between Wigner and 

Poisson distributions due to the nonexistence of mixing and 

repulsion between levels with different isospin. However, 

these histograms (left column) are closer to the Poisson limit 

giving enlarged values of )(sP  at small spacings. The 

picture is qualitatively slightly different for the )(sP  

distributions of P32
 (with 7 valence protons and 9 valence 

neutrons) because of reducing the values of )(sP  at small 

spacings and consequently these histograms begin to grow in 

the direction of the Wigner limit. However, these histograms 

(middle column) are still nearer to the Poisson limit. The 

histograms (right column) of Si32
 (with 6 valence protons 

and 10 valence neutrons) are nearer to the Wigner limit 

giving more reduced values of )(sP  at small spacings. It is 

apparent from this figure that the level repulsion at small 

spacings (which is a distinctive feature of chaotic level 

statistics) increases gradually with going through S32
 (left 

column) to Si32
 (right column) nuclei, consequently the 

)(sP  distributions (histograms) move progressively toward 

the GOE limit. It is found that the level repulsion at small 

spacings is regularly increased with reducing the valence 

protons and rising the valence neutrons in A=32 as seen in 

the histograms of S32
 (left column), P32

 (middle column) 

and Si32
 (right column) nuclei. Similar argument is found 

in Fig. 2 for the unfolded odd 
 7,5,3,1J  and 

9  states. 

 

Fig.3 illustrates the spectral rigidity (Dyson’s 3  statistics), 

obtained with full hamiltonian calculations, in S32
 (left 

column), P32
 (middle column) and Si32

 (right column) 

nuclei. The calculated average )(3 L  statistic (denoted by 

open circles) is plotted as a function of the length of the 

spectrum ( L ) for unfolded even 
 6,4,2,0J  

and 
8 states. The Poisson distribution (denoted by the 

dashed line) and the GOE distribution (denoted by the solid 

line) are also displayed for comparison. It is obvious that the 

calculated 3  statistics (open circles) in S32
 (left column), 

P32
 (middle column) and Si32

 (right column) nuclei have 

no dependency on the spin J  (common for dissimilar 

spins). The open circles in S32
, P32

 and Si32
 nuclei show 

the calculated 3  statistics intermediate between GOE and 

Poisson predictions due to the absence of the isospin. Going 

through left, middle and right columns of this figure shows 

the rigidity (open circles) distributions shift progressively in 

the direction of the GOE limit. This shift is gradually 

increased with reducing the valence protons and rising the 

valence neutrons in A=32 as seen in the distributions of S32
 

(left column), P32
 (middle column) and Si32

 (right 

column) nuclei. It is so clear that the rigidity distributions in 

Si32
, for different spins, are very close to the GOE 

prediction. The same result is obtained in Fig. 4 for the 

unfolded odd 
 7,5,3,1J  and 

9  states. It is 

important to denote that the calculated results for the 3  
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statistics in Figs. 3 and 4 confirm the outcome that we have 

obtained in Figs. 1 and 2 for the )(sP  distributions. 

 

Fig. 5 demonstrates the outcomes of the unperturbed 

hamiltonian (the situation of the non-interacting particles) 

for the  distribution of states with 
 0J  (upper 

panel), 
1  (middle panel) and 

2  (lower panel) in 
32

A 

nuclei. The left, middle and right columns correspond to 

PS 3232 ,   and Si32
 nuclei, respectively. Here, the solid 

and dashed lines are the GOE and Poisson distributions, 

respectively.  It is obvious that all computed  

(histograms) displayed in this figure shows regular behavior 

because of the absence of mixing and repulsion between 

levels with different isospin (due to using the proton-neutron 

formalism of WPN interaction) and also due to the 

nonexistence of the off-diagonal residual interaction. The 

calculated histograms displayed in the left column for S32
 

(with 8 valence protons and 8 valence neutrons) expose 

Poisson-like distribution, where enormous number of  

accumulates at small spacing. However, Changing the 

number of valence protons and neutrons in 
32

A nuclei, as in 

P32
 (with 7 valence protons and 9 valence neutrons) and 

Si32
 (with 6 valence protons and 10 valence neutrons), 

leads to reduce the values of  at small spacing and 

consequently makes the calculated histograms, presented in 

middle and right columns, to be in agreement with the 

Poisson limit. 

 

Fig. 6 shows the unperturbed hamiltonian results (the non-

interacting particles case) for the calculated 3  statistics 

(open circles) of states with 
 0J  (upper panel), 

1  

(middle panel) and 
2  (lower panel) in 

32
A nuclei. The left, 

middle and right columns exemplify the outcomes for 

PS 3232 ,   and Si32
 nuclei, respectively. The GOE limit 

(which describes disordered systems) is shown by the solid 

line. The Poisson limit (which relates to an arbitrary 

sequence of levels and describes ordered systems) is shown 

by the dashed line. It is apparent that all calculated 3  

statistics (open circles) presented in this figure reveals 

ordered manners as a result of the absence of mixing and 

repulsion between levels with dissimilar isospin and also 

through the nonexistence of the off-diagonal residual 

interaction. Moreover, the calculated 3  statistics (open 

circles) shown in the left column (right column) for S32
 

( Si32
) overestimate (underestimate) slightly the Poisson 

limit at about L 30  while those shown in the middle 

column agree well with Poisson limit throughout all values 

of L. 

 

4. Conclusions 
 

The chaotic properties of energy spectra in 
32

A nuclei are 

investigated through the nuclear shell model. The sd-shell 

model calculations are accomplished by the OXBASH 

computer code using the proton-neutron formalism 

interaction of WPN. For full hamiltonian calculations of 
32

A 

nuclei, we find an intermediate behavior between Wigner 

and Poisson distributions for both the )(sP  distributions 

and  statistics due to the absence of mixing and repulsion 

between levels with different isospin. Besides, they move 

progressively toward the GOE limit with going through 

PS 3232 ,  and Si32
 nuclei (i.e. through changing the 

numbers of valence protons and neutrons in 
32

A). Moreover, 

they have no dependency on the spin J  (universal for 

different spins). For unperturbed hamiltonian (the non-

interacting particles case) calculations, we find a regular 

behavior for both the )(sP  distributions and  statistics 

because of the absence of mixing and repulsion between 

levels with different isospin (due to using the proton-neutron 

formalism interaction) and also due to the nonexistence of 

the off-diagonal residual interaction. 
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Table 1: Dimensions of 
J  states obtained by WPN 

interaction for 
32

S, 
32

P and 
32

Si nuclei. 
J  

32S 32P 32Si 

0+ 
1161 836 355 

1+ 
3096 2317 904 

2+ 
4518 3312 1320 

3+ 
4968 3664 1396 

4+ 
4734 3423 1292 

5+ 
3843 2773 982 

6+ 
2799 1964 671 

7
+ 

1746 1215 372 

8+ 
972 643 183 

9+ 
441 287 65 
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Figure 1: The nearest neighbor level spacing distributions )(sP  in 
32

A [ )1(),0( 3232  TPTS  and )2(32 TSi ] 

nuclei for various even 
 6,4,2,0J  and 

8 states. The histograms are the calculated  with full hamiltonian. 

The solid and dashed lines are the GOE and Poisson distributions, respectively. 

 

           

           

           

           

           

Figure 2: As in figure 1 but for various odd 
 7,5,3,1J  and 

9  states. 
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Figure 3: The average 3  statistics in 
32

A [ )1(),0( 3232  TPTS  and )2(32 TSi ] nuclei for various even 

 6,4,2,0J  and 
8 states. The open circles are the calculated results obtained with full Hamiltonian. The solid 

and dashed lines are the GOE and Poisson distributions, respectively. 
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Figure 4:  As in figure 3 but for various odd 
 7,5,3,1J  and 

9  states. 
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Figure 5: The nearest neighbor level spacing distributions )(sP  for 
 1,0J  and 

2  states in 
32

A nuclei. The 

calculated distributions (histograms) are obtained with the absence of the off-diagonal residual interaction. The solid and 

dashed lines are the GOE and Poisson distributions, respectively. 

 

           

           

           

Figure 6: The average 3  statistics for 
 1,0J  and 

2  states in 
32

A nuclei. The calculated distributions (open 

circles) are obtained with the absence of the off-diagonal residual interaction. The solid and dashed lines are the GOE and 

Poisson distributions, respectively. 
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