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Abstract: In this paper, we consider a coefficient-based least squares regression problem with indefinite kernels from non-identical 

unbounded sampling processes. Here non-identical unbounded sampling means the samples are drawn independently but not identically 

from unbounded sampling processes. And except for continuity and boundedness, the kernel function is not necessary to satisfy any 

further regularity conditions. This leads to additional difficulty. By introducing a suitable reproducing kernel Hilbert space (RKHS) and 

a suitable intermediate integral operator, and by the error decomposition procedure the sample error is divided into two parts. We deduce 

the error bound .Last we yield satisfactory results by proper choice of the regularization parameter. 
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1. Introduction 
 

The aim of this paper is to study coefficient-based least 

squares regression with indefinite kernels from non-identical 

unbounded sampling processes. 

 

Let ),( dX be a compact metric space (input space),  be a 

probability distribution on YXZ  with RY  (out 

space). )( xy is the conditional distribution according 

to  .The generalization error for function : YXf : is 

defined as 
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Z

2
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The regression function which minimizes the generalization 

error is given by 
                  

)()( xydyxf
Y

 

In most regression learning, the distribution ),( yx is 

unknown and what one can known is a set of samples 

    TT

ttt

T
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Zyxzz 
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),( are available. The aim of 

regression learning is to find a good estimator that describes 

the relationship between the input data x and output data 

y best through random sampling. This is ill-posed problem 

and the regularization technique is needed. The well-known 

regularized least square regression algorithm is conducted by a 

scheme in a reproducing kernel Hilbert 

space(RKHS)[1]associated with a Mercer kernel 

RXXK : ,which is defined to be a continuous, 

symmetric, and positive semi-definite (p.s.d) function. RKHS 

k
H is defined to be the completion of the linear span 

of  XxxKK
x

 :),( with the inner product 

),(, yxKKK
K
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,
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then the regularized regression problem is given by 
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It has been well understood due to lots of the literature ([2,3]). 

 

In recent years, coefficient based regularization kernel 

network (CRKN) attract more attentions: 
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Where m

m
R ),...,(

1
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The 

Penalty )( f
Z

 is imposed on the coefficients of 

function .
,xK

f  In this setting, the hypothesis space
k

 is 

replaced by a finite dimension function space: 
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The application of
xK ,

 and the coefficient regularization was 

first introduced by Vapnik [4] to design programming support 

vector machines. And it has some advantages what we can see 

in [5]. 

 

In this article, we consider the general kernel, 

i.e. RXXK : is continuous and bounded function. This 

kind of kernel scheme has been studied due to a lot of 

literature([6-8]).The learning algorithm we are interested in 

this paper takes the following form:    
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(1.1) 

By using the integral operator technique from [9],in [7] Wu 

gave the capacity independent estimate for the convergence 

rate for the indefinite kernels. Sun and Guo conducted error 

analysis for the Mercer kernels but uniform bounded non-i.i.d. 

sampling[5]. In this paper, we study learning algorithm (1.1) 

by non-identical unbounded sampling processes with 

indefinite kernels. 
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2. Assumption and Main Results 
 

We study coefficient-based least squares regression with 

indefinite kernels from non-identical unbounded sampling 

processes. In our setting, a sample   TT

tttt
Zyxzz 

1
),( is 

drawn independently from different Borel probability 

measures ).()(),,...,1( xxTt tt   Let
)(t

X
 be the 

marginal distribution of )(t on X and
X

 the marginal 

distribution of  on X. We assume that the 

sequence t

X
 converges exponentially fast in the dual of the 

Holder space ).(XC s Here the Holder space 

)10)((  sXC s is defined as the space of all continuous 

functions on X with the following norm finite[5]:  
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Definition 1. Let 10  s ;we say that the 

sequence )(t

X
 convergence exponentially fast in ))(( XC s to 

a probability measure 
X

 on X or convergence exponentially 

in short if there exist 0
1
C and 10  such that 

                
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By the definition of the dual space ))(( XC s ,the decay 

condition (2.1) can be expressed as 
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For the bounded indefinite kernel K(x,y),we consider the 

Mercer kernel 
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For more introduction about learning with indefinite kernels, 

please see [6-8 ]. 

 

For all Xx , we can 

define )()(),()(
,


 XX

dufuxKxfL
XK   and 

),()(),()( )(

, )(
udufuxKxfL t

XXK t
X


   since X  is compact 

and K  is continuous,
XK

L
,

and its adjoint 

XX
L

,
are both 

compact operators. 

Hence .,
)()()(

,,,
~,,,

~
 

t
X

t
X

t
X

XXX
KKK

KKK
LLLLLL




 

 
If K  is a Mercer kernel, from [10] we know that 

k
 is in the 

range of .2

1

K
L For an indefinite kernel K, 

recall


XXX KKK
LLL

 ,,,
~ .Based on the polar decomposition 

of compact operators ([11]). 

 

Lemma 2. Let H be a separable Hilbert space and T a compact 

operator on H; then T can be factored as 

                    AT                                             

Where 2
1

)( TTA  and  is a partial isometry on 

H with  being orthogonal projection onto )(A . 

 

We immediately have the following proposition[12]. 
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In order to estimate ,
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Where  

T

t

t

X

T

X T 1

)()( )1(  .Then we can decompose the error 

term into the following three parts:              
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where the first term on the right hand side is sample error , the 

second term is measure error and the third one is regularization 

error. 

 

We will conduct the error analysis in several steps. The first 

major contribution we make is on the sample error estimate; 

the main difficulty is the non-identical unbounded sampling of 

the samples; we overcome that by introducing a suitable 

intermediate operator. The second one we    make is on the 

measure error estimate, there we get a sharp error bound by a 

new method. 

 

In order to give the error analysis, we assume that the 

kernel K
~

satisfies the following kernel condition [5]. 

 

Definition 4. We say that the Mercer kernel K
~

satisfies the 

kernel condition of order s, if for some 

constant ),(
~

,0 XXCKk s

s
 and for all ,, Xvu   

           .)),((
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~
s

sKvu
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Since sample Z  is drawn from unbounded sampling 

processes, we will assume the following unbounded 

hypothesis[13]: 

 

Unbounded hypothesis: There exists some constant 0M  

such that 

           22 Mdy
Z

                                     (2.5)   
Remark 1.Theoretical study of learning algorithms for 

regression is mostly based on the standard assumption 
that My  almost surely for some constant M>0.In [14] the 

author consider a general setting satisfying the moment 

hypothesis: 
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Moment hypothesis: There exist constants 0M  and 0
2
C  

such that 

           
ll

Y
MlCxydy !)(

2
      ., Xxl   

  One of the main purposes of this paper is to improve the 

moment hypothesis to unbounded hypothesis and consider 

coefficient regularization algorithms with non-identical 

sampling, and the other is to deduced the measure error by a 

new method (In section 3.2).  

 

By a simple computation, it follows that 
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Therefore, the regression function


f is square integral with 

respect to the marginal distribution
X

 and the variance of  is 

finite, i.e., )(2 XLf
X

 and  22 ))(( xfy


  . Now, 

we can state our general results on learning rates for algorithm 

(2). 

 

Theorem 5. Assume unbounded hypothesis condition 

(2.5); )(t

X
 satisfies condition(2.1)and K

~
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condition(2.4); 2
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where ''

k
C is a constant depending on sk, and ,but not on T  

or ,and will be given explicitly in Section 3.3.    

 

Remark 6.The proof of Theorem 5 will be conducted in 

Section 3, where the error term is decomposed into three parts. 

In [5], the authors consider the coefficient-based regression 

with the Mercer kernels by uniform bounded non-i.i.d 

sampling; the best rate of order )( )21(2 rrT  was obtained. 

 

When the samples are drawn i.i.d from measure


, we have 

the following result. 
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Here we get the same learning rate as one in [8].But our rate is 

derived under a relaxation condition of the sampling output.  

 

3. Error Analysis 
 

In this section, we will state the error analysis in several steps. 

 

3.1 Regularization Error Estimation 

 

In this subsection, we address a bound for the regularization 

error 
ff

X


,
.The error estimate for regularization error 

has been investigated in lots of the literature in learning theory 

([9] and the references therein); we will omit the poof and 

quote it directly. 
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3.2. Estimate for the Measure Error 

 

This subsection is devoted to the analysis of the 
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KXT

X

ff ~
,

,
)( 
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 caused by the difference of measures, 

which we called measure error. The ideas of proof are 

from[5].Before giving the result, let us state two lemmas . 

 

Firstly, we need the following lemma which can be proved by 

easy computation. 
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Taking these estimates into(3.3),we have 
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Putting the estimates (3.2)and(3.4)into(3.1) 
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plays an intermediate role in the estimates, and the definition 

of it will be given later. 
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This together with(3.6)yields the conclusion. 

   Now we are in a position to give the proofs of Theorems 5 

and 7. 

Proof of Theorem 5.Theorem 12 ensures that 
.

2123

'

,
, )( T

C
ffE k

Z T
X 





  

  For ,2321  r Proposition11 tells that 

T

C
ff

r

K

XT
X

2/3

3

~

,
,

)(









, 

and Proposition 8 shows that 

,2/1
~

,

 r

rK
Cff

X



 

Since 

., ~~
KK

ffkff 


 

Combining all bound together and noting 

that  T with ,310  we can get the conclusion of 

Theorem 5 by taking .)( '

3

''

krk
CkCCC   

Proof of Theorem 7.When the samples are drawn i.i.d from 

measure  ,then .
,

,
)( XT

X

ff




 Hence 

           






ffEffEffE

XXZZ


,,,,
 

                                 q

q

k C
T

C





2123

'

                                    

  

Let ; T then 

},)23(21min{

,

~ 



q

kZ
TCffE 

 

The conclusion follows by discussion the relationship between 

r and 1. 

 

4.Discussion 
 

In this paper, we considered the learning performance of 

coefficient regularized least square regression based on 

non-identical and unbounded sampling. The only conditions 

we impose on the kernel function are the continuity and 

bounded. Capacity independent error bounds are derived by 

the integral operator technique. 

 

From our results we can make the following observations. 

 First, we deduced the error bound by deducing the measure 

error. And the measure error is much smaller than the one 

in[15].  

 Second, we have reduced the Moment Hypothesis, it made 

we get satisfactory results under mild conditions. 
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