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Abstract: In this paper, we consider a coefficient-based least squares regression problem with indefinite kernels from non-identical
unbounded sampling processes. Here non-identical unbounded sampling means the samples are drawn independently but not identically
from unbounded sampling processes. And except for continuity and boundedness, the kernel function is not necessary to satisfy any
further regularity conditions. This leads to additional difficulty. By introducing a suitable reproducing kernel Hilbert space (RKHS) and
a suitable intermediate integral operator, and by the error decomposition procedure the sample error is divided into two parts. We deduce
the error bound .Last we yield satisfactory results by proper choice of the regularization parameter.
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1. Introduction

The aim of this paper is to study coefficient-based least
squares regression with indefinite kernels from non-identical
unbounded sampling processes.

Let (X,d) be a compact metric space (input space), p be a
probability distribution on Z =XxY with Y =R (out
space). po(y/x) is the conditional distribution according
to p .The generalization error for function : f: X - Y is
defined as
£,(f)=L(y-f(0)dp

The regression function which minimizes the generalization
error is given by

f,00 =1, yd(y/x)
In most regression learning, the distribution p(X,y) is
unknown and what one can known is a set of samples
z={z,}, ={(x,y)l, €Z" are available. The aim of
regression learning is to find a good estimator that describes
the relationship between the input data x and output data
y best through random sampling. This is ill-posed problem
and the regularization technique is needed. The well-known
regularized least square regression algorithm is conducted by a
scheme in a reproducing kernel Hilbert
space(RKHS)[1]associated ~ with a  Mercer  kernel
K:XxX —R ,which is defined to be a continuous,
symmetric, and positive semi-definite (p.s.d) function. RKHS
H, is defined to be the completion of the linear span

of {K =K(,x):xeX} with the product
(K,.K,) =K(xy) .Define k=sup, .,
then the regularized regression problem is given by

f., :argmin{ii(f(xi)_yi)z+ﬂ“”f i}
. feHk | m ia

inner

K(x, y)|<oo;

It has been well understood due to lots of the literature ([2,3]).

In recent years, coefficient based regularization kernel
network (CRKN) attract more attentions:

f —arg min {ii(f{l(xi)—yi)z+AQZ(f)},/1>O
v feHk,x | m 2

Where a=(a,,...,,)eR" and f =>7 o K(X,x). The
Penalty Q,(f) is imposed on the coefficients of
function f eH,,.In this setting, the hypothesis space H, is
replaced by a finite dimension function space:

H,, =f.(x)= ialK(x, x):a=(a,..a,)eR" me N}

The application of H,  and the coefficient regularization was

first introduced by Vapnik [4] to design programming support
vector machines. And it has some advantages what we can see
in [5].

In this article, we consider the general Kkernel,
i.e. K: X x X — Ris continuous and bounded function. This
kind of kernel scheme has been studied due to a lot of
literature([6-8]).The learning algorithm we are interested in
this paper takes the following form:

f.= faz,

wherea, = argmiﬂ{%i(f (x)-Vy,) +/Imiai2},,1 >0
aeR i=1 i=1

1.1)
By using the integral operator technique from [9],in [7] Wu
gave the capacity independent estimate for the convergence
rate for the indefinite kernels. Sun and Guo conducted error
analysis for the Mercer kernels but uniform bounded non-i.i.d.
sampling[5]. In this paper, we study learning algorithm (1.1)
by non-identical unbounded sampling processes with
indefinite kernels.
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2. Assumption and Main Results

We study coefficient-based least squares regression with
indefinite kernels from non-identical unbounded sampling

processes. In our setting, a sample z ={z, = (x,, y,)}., = Z"is
drawn independently from different Borel probability
measures p'(t=1...,T),p'(/X) = p(/X). Let p,“ be the
marginal distribution of p“ on X and p, the marginal

distribution of p on X. We assume that the
sequence {p‘X }converges exponentially fast in the dual of the
Holder space C°(X). Here the Holder space

C*(X)(0<s<1is defined as the space of all continuous
functions on X with the following norm finite[5]:

“f S :"f"x +‘f c*
Where
‘f - f(y)
s =SUp ——————.
C>(x) x#yeX (d(XyY))

Definition 1. Let 0<s<1 ;we say that the
sequence {p;‘)}convergence exponentially fast in (C* (X)) to
a probability measure p, on X or convergence exponentially
in short if there exist C, > 0 and 0 < o <1such that

"pi‘) - Py <C.a',VteN. (2.1)

@S xy*

By the definition of the dual space (C°(X))" the decay
condition (2.1) can be expressed as

I, f(0dpl —J, f(X)dp, |<C,ar’

For the bounded indefinite kernel K(x,y),we consider the
Mercer kernel

K(u,v) = [, K(u, x)K (v, X)dp, (X).
For more introduction about learning with indefinite kernels,
please see [6-8 ].

fH . ,Vf eC*(X),teN.
cS(x)

For all xe X , we can
define Ly F(X) = [ K(x,u)f (Wdpy (1) and
since X is compact

Loy FO0 =1 K u)dpl (u),
X

and K is continuous, L, . and its adjoint L . are both
compact operators.
Hence L. =L L . .L =L L' ..

K.pX KipX TKpX }vagg) K,p(;) ngp

If K isa Mercer kernel, from [10] we know that H, is in the

kernel K,
.Based on the polar decomposition

1
range of L2. For an indefinite

recall L}vaX =L L

K.pX ~K.pX

of compact operators ([11]).

Lemma 2. Let H be a separable Hilbert space and T a compact
operator on H; then T can be factored as

T=TA
Where A= (T*T)% and T is a partial isometry on
H withT""T being orthogonal projection onto R(A) .

We immediately have the following proposition[12].

Proposition3.Consider H . as a subspace of szx ;then

L, =ULZand L =L, *U" where U is a partial isometry

onL®, with U'U being the orthogonal projection onto H,.
We use the RKHS H to approximate f  hence define

f.x =arg {ng{t (F(0) -, (x))°dp(x, )+ ,1” f ||2K}
(2.2)
In order to estimate f, , — fp,we construct
= -1
f o=@ Laﬁ(XT)) LR,E(XU f, (2.3)

A.p

X
Where p|" = (%)ZL1 o . Then we can decompose the error

term into the following three parts:

[f.. -1,

==t

+|| f

—f
M,&I') 1pX

P Vd

f f

| ox = T

P
where the first term on the right hand side is sample error , the
second term is measure error and the third one is regularization
error.

We will conduct the error analysis in several steps. The first
major contribution we make is on the sample error estimate;
the main difficulty is the non-identical unbounded sampling of
the samples; we overcome that by introducing a suitable
intermediate operator. The second one we  make is on the
measure error estimate, there we get a sharp error bound by a
new method.

In order to give the error analysis, we assume that the
kernel K satisfies the following kernel condition [5].

Definition 4. We say that the Mercer kernel K satisfies the
kernel  condition of order s, if for some

constantk_ > 0, K e C*(X x X),and for allu,v e X,
K, =K.J« <k.@@w)y. (2.4)

Since sample Z is drawn from unbounded sampling
processes, we will assume the following unbounded
hypothesis[13]:

Unbounded hypothesis: There exists some constant M >0
such that

Ly'dp<m? (2.5)
Remark 1.Theoretical study of learning algorithms for
regression is mostly based on the standard assumption
that|y| < M almost surely for some constant M>0.In [14] the

author consider a general setting satisfying the moment
hypothesis:
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Moment hypothesis: There exist constantsM >0 and C, >0
such that
Lyde(ypy<CtM' - VleN,xeX.

One of the main purposes of this paper is to improve the
moment hypothesis to unbounded hypothesis and consider
coefficient regularization algorithms with non-identical
sampling, and the other is to deduced the measure error by a
new method (In section 3.2).

By a simple computation, it follows that
J 12 00dp, <[ ydp(yp) Mo, <[y do<M?

Therefore, the regression function f is square integral with
respect to the marginal distribution p, and the variance of p is
finite, i.e., f, e’ (X)and o® =E(y—f,(x))* <o .
we can state our general results on learning rates for algorithm

).

Now,

Theorem 5. Assume unbounded hypothesis condition
(25); pY satisfies condition(2.1)and K  satisfies
condition(2.4); Ly . f, e L, forl/2<r<3/2;take
A=Twith0< 0 <1/3; then

E f f < CkT —mm{],/zf(3/2)9,(r—1/2)0}’

z.2 ell, =

where C, is a constant depending onk,s and & ,but not on T
or ¢ ,and will be given explicitly in Section 3.3.

Remark 6.The proof of Theorem 5 will be conducted in
Section 3, where the error term is decomposed into three parts.
In [5], the authors consider the coefficient-based regression
with the Mercer kernels by uniform bounded non-i.i.d

sampling; the best rate of order o(T *7**") was obtained.

When the samples are drawn i.i.d from measure P , we have
the following result.

Theorem 7. Assume unbounded hypothesis condition
K iofi it ST 2
(2.5); K satisfies condition(2.4); levpx f,el
then if 0<r <1 take A =T ¥®*9: one see that
_ —r/(2r+3)
f = o(T ),
And if r>1take0<r <1, 1 =T*;we have
f =o(T ™).

Here we get the same learning rate as one in [8].But our rate is
derived under a relaxation condition of the sampling output.

Z,A - fp

za f/) »

3. Error Analysis
In this section, we will state the error analysis in several steps.
3.1 Regularization Error Estimation

In this subsection, we address a bound for the regularization

X~ fp|| .The error estimate for regularization error

has been investigated in lots of the literature in learning theory
([9] and the references therein); we will omit the poof and
quote it directly.

Proposition 8. Assume L f, e Ly

bound for approximation error holds:

and r>0; the following

fox =T <CA
" P
where C, =@+k* )L  f, A= min{r, 1} ,and
whenl/2<r<3/2,
fox—fle <CAT,
whereC, =IL f|,.

3.2. Estimate for the Measure Error

This subsection is devoted to the analysis of the

f —f

term|f = f, <
A‘px

caused by the difference of measures,

which we called measure error. The ideas of proof are
from[5].Before giving the result, let us state two lemmas .

Firstly, we need the following lemma which can be proved by
easy computation.

Lemma 9.For any f,g e C*(X), we have

" fg"c(s)(x) S”f"cs(x) ><"g”oc +||f||% ><|g|cs(x)'

Lemma 10. Assume K satisfies condition (12);then

It 20T Py’ pH(CS(X»*

Proof. For any h e C*(X), we see that

2

(Lk.ﬁu) —Leh

= [ X AWK WA (B - o, )W (B - 2, )(U)
S HOIIGINCRICICEEYS I AN

< llhles o 4 POOK @A (L7 = )+,

W) ] |

©Sxy*

[, h(K (u,v)

=@

Px ~ Px

xd(py” = py))| 3.1)

©Se*”
Denote
=], hK ) (B - p, ). .
—(T) _
"= Jx h(V)K(U V)d( pX)cs(x)

Now we need to estimate | and Il respectively. For the term I,it
is easy to see that

I—max X

cS(x)

WK uv)d( - py)

(T)

< rggx”h(-)ﬁ(u,.)

"'D Px "(cs(x))*

< max(fh]s,,, <k +[n], x K

xeX

] "p(T) ~ Px

€Sy

Volume 6 Issue 9, September 2017

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20176857

DOI: 10.21275/ART20176857

1130


www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

<[k?|h + kK. ||h 0 _ . (3.2)
[ " "c S(x) ” " Ix "p Px ||(CS(><)) =[(a+L T )) (L . L. x)(fﬂ_ fz,px)
In order to estimate 11, we consider Kpx KPX ’ P
h(v)[K (u,,V Ku,vd_(”—
J hWIK (U, ) - K (0, VI (B - p, ) et
WP ~
<K, v) - K], LN X .
_ ot Applying Lemma 10 to the caseh=f —f, e get
< hlls p, K (W, 0) - K (0| . .,
f —f
”'D(T) ~Px ||<c5<x)>*' 33) ap) X ]
Since " ¢
‘ K 2072 10 Y2 20V 10 V1 Sk:ds(ul’uz)ds(vpv) ox @00 lPX 7l
then By the defmltlon of p{" and noticing (2.1),we can see
_ C.a
m _ == ® _ < 1 .
21 11 11 Y2 21 19 |px px CS(X) T tz pX pX (CS(X))* T(l—OC)

<k-k.d*(u,u,).
Taking these estimates into(3.3),we have
I =|[, h(\K (U, (B - p,)

(T)

S0
cSx) ~Px ”
Putting the estimates (3.2)and(3.4)|nto(3.1)

Soot (3.4)

2
(Lﬁ,ﬁ(l) ~Lgx
X K
S{1|h"cs(><)[kznh"cs(x) cSx)
"pm ~Px "(cS(X»
(T)
e TRIL) Hp ~Px H(c (X))

When condition (2.4)is satisfied, it was proved in[5]that H  is
included in C*(X) with the inclusion bounded
[lesqs < kK, vh e He.

Then we obtain

(T)
(Lo ~L
X

K.pX ) ~ Px "(CS(X))*'

K

Proppstidepletes e proofissume

somel/2<r<3/2 K satisfies condition (2.4); the following
bound for measure error holds:

L’I{PX f e szx for

C3lr_3/2
T
where C, =k(k+2k,),andC, =C,C,C.a/(1-«).

f —f

A <
LEQ) rX .

Proof From(2.2), simple calculation shows that
fx =@+ L- )’1 L}vaX f .Recalling (2.3), we can see that
fzﬁ;r( B fﬂ’px z

-1

At

This in connection with Proposition 8 yields the conclusion.
3.3. Sample Error Estimation.

In this subsection we will conduct the estimation of the
term f, , — f . At first, we give some notions. Let C(X)

280
be the space of bounded continuous functions on X with
supremum  norm |||~ .Define  the  sampling
operator S=S, associated to the sampling
points X ={x, ..., X, } as follows:
S:C(X) >R

f o (F 00, F(X,).
Let U and U” be operators from R" to C(X) defined

asfora = (..., ),

1=
a:?ZaiK(X,Xi)

1z
U'a==aK(,X)
T i=1

It is easy to see that both U andU "are bounded operator.
From[8],we have
f,, =Ul+SU'SU)"sSU"y.

where y=(Y,,..., y;) .
Employing the
in[8].Letg, , = (Al + L

method as shown

) UsUY.

than we can decompose the sample error into two parts:

fz,z - f} Yo (fz/. _gz,l)_"(gz,/l -f

7] wg))

={U (A1 +SUSU)*SU y (Al +L_ 1 ))"USU"y}+
Koy

-1 * -
{(ZI+LM§(T)) usu y—(ﬂI+LRvﬁ§(T)) th(

=1+1l

Now, let us estimate the sample error. The estimates are more
involved since the sample is drawn by non-identical
unbounded sampling processes. We overcome the difficulty

by introducing a stepping integral operator L D which
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plays an intermediate role in the estimates, and the definition
of it will be given later.

Theorem 12. Let f,, be given by(1.1),assume unbounded
hypothesis condition(2.5),and the marginal
sequence p{’,t e N ,satisfies condition(2.1);then
C,
ZS/ZTM !

distribution

E|f f

Z,2 L[,g) ) =

Where
C, =aCkM?(k +2|k|cs(m))(k +1),

C, = 2/6MK? + 2J10Mk* +C, /(1-a).
Proof. We will estimate | and I1, respectively.
I =(Al+L )y (Al +L YyxU (Al +SU*SU)*SU "y —
g5 g
X X

(Al+L  ~)"U(Al +SU"SU)x (Al +SU"SU)*SU"y

)

=AUl +L (L
(L o)L

=+l ) VU -UsU'sU)Ta, ,.
Kf

’1(L
KX

Wherea, , = ?(ll +SU'SU)*SU"y .

Then

i <A*T|L ., -USUSU
P

T x
K,ﬁg)

o, ,
" Z.Al2

L,z 7(T)U - LK A7)

U "C(Z All2

where  K(x,t) = [ KGWKEWAPT (v) and e, |, is

the 1> norm on R', for |e,[  :noticing
2
—argmln{— (fa(xl)—yi) +ﬂTiaf},
(IER i=1
We can have
2 1
ATa, |, _?Z
This means
2
g 2y . y
E1], < 2°T (Bl [y CE]L. gu-ususu) 2y
2
ElL. mY-L oY)}
Y
1 2
]
< AT EEE Y HEL, gV -UsU'su| )"+
i=1 Kﬁx
2
ElL u-L Ul
}Z,;&T) K’Eg)
2
<A*TM{(E|L ,U-USU'SU| ) +
Koy
2
ElL u-L Ul
}Z.Eg) K‘;&r)

U ~USU"SU)x (A1 +SU"SU)*SU "y

definition  of
Ual, <GNTel,; s
that|U | < k/T . Therefor

According to  the Ufor any

aeR', implies

L ,U-L U
D kD)

L5 (R (x,0) — R (%, 1) < K (u,% )45 (u)

i=1

=sup

lalp=y

P

S =, K (0 0)d @)

([ IK (6 u) = KOG u)F xdp™ )|,

< %”jx K(x,V)K(u,v)d(@" - p, )W),

(T)

-

€S xy* "lleS x)
aC k?(k + 2|K|
< cS(xx x)

T (1-a)

cS(xx x)

T"1-a)

P aCki(k+2K]|
V2 <

' 35)

L qU-Usu'sul,

For the term <X let
7,50 (X) = KX, X)) KX, XK (X, X, ) =

[l KOG VK (U, v)K (U, %, )do (V)dpy (u) ’
and & (x) = /T*)3] .7, ,- Then|, ;| < 2k*and

L U -USUSU| = sup|l(L -USU"SU)a
k) g %A i
1=
=sup|l—> ¢,
lalpf| T 1 ,

1 T 2 )
SF(IX é(th:lnx,j,l) )1/

1 I 2
= F (J.x m%:” i (X)Uw,n (X)dpx )1/

4.JnpdRAeetharsaacethadtnbe e HHORNI €a8 brb oY, efendrhaia
pairwise different, there holds (E, (7, (X)n,., (X)) =0; and
we have

) <

(E||L U -Usu’'suU

k()

This together with(4.5)yields
2J10k*  aCk (k+2K| s, )
ATV T (1-a) )
The term Il is more involved;recall that

W=+l ) UsU'y-L of)
K.y Y

2410k?
T

Ef1], <m(

(3.6)

(T))

=+l ) UsUTy-L (T)fp+L f-L ..f)
Px K.,p .

Hence
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+E

P

L f -L f
R

E"II" <171(E (T) P

‘USU Y=L of

P

Firstly, if we define 7, ; (x) = y,K(x,, x;)K(x, ;) and

& 0 =1, () = [l K, u)K (v, u) f, (v)dp (u)dp (v), (t, j =1...T),

there
2

EjUSU'y-L ) ST"‘Ij%zlEch”(x)éw(x).

(T) °

P

If t, j,w and T are pairwise
thenE, &  (X)é,.(X)=0.If t=jorw=r,

E,n, # [[ K(x,u)K(v,u) f, (v)dpy’ (u)dpy (v)

E, 7 = [[, KUK (v,u) f, (v)dp” (u)dpt” (v)
By the Cauchy-Schwartz inequality, for
any t,j,w,r=1..T,
E, & (06, (0 < (B¢, (0)*(E.&,. ()"

<max{E, &’ (X),E,&,. (0}

Hence we only need to give a bound for EZ(;].Z(X). Simple

distinct,

calculation shows
E, & <E,n;
<[l K2 ( u)K*(v,u) < [, y*do(y/v)dey” (u)dpy’ (v)
<M3*k*, (t=))
By the same, we known that
E. &
= E, 77, — 2E, 7, [[, K(x, u)K (v, u) x [, ydp(y /V)dpy dpy’
+([l, KOG u)K(v,u) f,(v)doy (u)dp (v))?
<[ KWK (V) <, y2d (y/V)do® (v) + Mk —
2] K(v,v)K(x,v)x[, ydo(y/v)dp (W[ K(x,u)K(v,u)f, y

do(y/v)dpy? (u)dpy’ (v)
<4M?k*.

Applying the conclusion as shown in[8]and together with the
above bound, we can see that
T
T8 Y E4(06.()
<ATH(T =TT -D(T —2)(T —3))M *k".
24M *k*
< .
T

Hence
2
E|lUsU’y - L f <2‘/E_Mk,

A0S
, AT

While
L f —L f

Kﬁg;l’) P Kﬁg) ,

P

IX(K(X v)~K(x ) £,z

P

[ K(X, u)K(v wd(a - p )W)

" K (X’.) K (V")";(x)

(™)

<M |px _px

cS(x)

This yields

E|L f —L f

Ii,?&r) I PZ,ZJ(T) I

P

M50 |
aC KK+ 2|K| s S o)
Tl-«)

. |K(x ~)K(v,~)||cs(x)

S

T " 2«/_Mk2 ():Ck(k+2|K|CS(X 0
- AT(-a)

This together with(3.6)yields the conclusion.
Now we are in a position to give the proofs of Theorems 5
and 7.
Proof of TheoreT 5. Th?orem 12<en3D[es that
,(T) - As/zT y2 *
P

For1/2 < r <3/2, Proposition11 tells that

r-3/2
fo =l < CAT ,
w0 < T
and Proposition 8 shows that
fi‘px _ NP S Crlrfllzl

Since

¥l <[l <kl ] vf eHe.
Combining all bound together  and noting
that A =T “with 0<#<1/3, we can get the conclusion of

Theorem 5 by takingC, = (C, +C, )k +C,.
Proof of Theorem 7.When the samples are drawn i.i.d from
measure p ,then fz,;g) = f,,x - Hence
E[f,,-f, C<E[f -] x5,
/13/21_ —7=7 G, A
Let A =T “; then
E fZV;L _ fp ) S CkT—min{l/zf(S/Z)/},q(}}

The conclusion follows by discussion the relationship between
rand 1.

4.Discussion

In this paper, we considered the learning performance of
coefficient regularized least square regression based on
non-identical and unbounded sampling. The only conditions
we impose on the kernel function are the continuity and
bounded. Capacity independent error bounds are derived by
the integral operator technique.

From our results we can make the following observations.

o First, we deduced the error bound by deducing the measure
error. And the measure error is much smaller than the one
in[15].

o Second, we have reduced the Moment Hypothesis, it made
we get satisfactory results under mild conditions.
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