
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 9, September 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation on Automated Bugs Triage System

with Software Data Reduction Techniques

Iffat Tanveer Ansari
1
, Mirza Moiz Baig

2

1Department of CSE, JD College of Engineering & Management, Nagpur, India

2Professor, Department of CSE, JD College of Engineering & Management, Nagpur, India

Abstract: Software companies spend over 45 percent of cost in dealing with software bugs. An inevitable step of fixing bugs is bug

triage, which aims to correctly assign a developer to a new bug. To decrease the time cost in manual work, text classification techniques

are applied to conduct automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e., how to reduce

the scale and improve the quality of bug data. We combine instance selection with feature selection to simultaneously reduce data scale

on the bug dimension and the word dimension. To determine the order of applying instance selection and feature selection, we extract

attributes from historical bug data sets and build a predictive model for a new bug data set. We empirically investigate the performance

of data reduction on totally 600,000 bug reports of two large open source projects, namely Eclipse and Mozilla. The results show that

our data reduction can effectively reduce the data scale and improve the accuracy of bug triage. Our work provides an approach to

leveraging techniques on data processing to form reduced and high-quality bug data in software development and maintenance.

Keywords: Instance Selection, Data reduction, System Testing, System Design, Module description, Input and Output Design

1. Introduction

Mining software repositories is an interdisciplinary domain,

which aims to employ data mining to deal with software

engineering problems. In modern software development,

software repositories are large-scale databases for storing the

output of software development, e.g., source code, bugs,

emails, and specifications. Traditional software analysis is

not completely suitable for the large-scale and complex data

in software repositories. Data mining has emerged as a

promising means to handle software data. By leveraging

data mining techniques, mining software repositories can

uncover interesting information in software repositories and

solve real world software problems.

A bug repository (a typical software repository, for storing

details of bugs), plays an important role in managing

software bugs. Software bugs are inevitable and fixing bugs

is expensive in software development. Software companies

spend over 45 percent of cost in fixing bugs. Large software

projects deploy bug repositories (also called bug tracking

systems) to support information collection and to assist

developers to handle bugs. In a bug repository, a bug is

maintained as a bug report, which records the textual

description of reproducing the bug and updates according to

the status of bug fixing. A bug repository provides a data

platform to support many types of tasks on bugs, e.g., fault

prediction, bug localization , and reopened bug analysis. In

this paper, bug reports in a bug repository are called bug

data.

2. Input and Output Design

Input Design

The input design is the link between the information system

and the user. It comprises the developing specification and

procedures for data preparation and those steps are necessary

to put transaction data in to a usable form for processing can

be achieved by inspecting the computer to read data from a

written or printed document or it can occur by having people

keying the data directly into the system. The design of input

focuses on controlling the amount of input required,

controlling the errors, avoiding delay, avoiding extra steps

and keeping the process simple. The input is designed in

such a way so that it provides security and ease of use with

retaining the privacy. Input Design considered the following

things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel in providing

input.

 Methods for preparing input validations and steps to

follow when error occur.

 Objectives

1. Input Design is the process of converting a user-oriented

description of the input into a computer-based system. This

design is important to avoid errors in the data input process

and show the correct direction to the management for getting

correct information from the computerized system.

2. It is achieved by creating user-friendly screens for the

data entry to handle large volume of data. The goal of

designing input is to make data entry easier and to be free

from errors. The data entry screen is designed in such a way

that all the data manipulates can be performed. It also

provides record viewing facilities.

3. When the data is entered it will check for its validity. Data

can be entered with the help of screens. Appropriate

messages are provided as when needed so that the user will

not be in maize of instant. Thus the objective of input design

is to create an input layout that is easy to follow

Output Design:

A quality output is one, which meets the requirements of the

end user and presents the information clearly. In any system

Paper ID: ART20176499 223

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 9, September 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

results of processing are communicated to the users and to

other system through outputs. In output design it is

determined how the information is to be displaced for

immediate need and also the hard copy output. It is the most

important and direct source information to the user. Efficient

and intelligent output design improves the system’s

relationship to help user decision-making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output must be

developed while ensuring that each output element is

designed so that people will find the system can use easily

and effectively. When analysis design computer output, they

should Identify the specific output that is needed to meet the

requirements.

2. Select methods for presenting information.

3. Create document, report, or other formats that contain

information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities, current status or

projections of the

 Future.

 Signal important events, opportunities, problems, or

warnings.

 Trigger an action.

 Confirm an action.

In this paper, we address the problem of data reduction for

bug triage, i.e., how to reduce the bug data to save the labor

cost of developers and improve the quality to facilitate the

process of bug triage. Data reduction for bug triage aims to

build a small-scale and high-quality set of bug data by

removing bug reports and words, which are redundant or

non-informative. In our work, we combine existing

techniques of instance selection and feature selection to

simultaneously reduce the bug dimension and the word

dimension. The reduced bug data contain fewer bug reports

and fewer words than the original bug data and provide

similar information over the original bug data. We evaluate

the reduced bug data according to two criteria: the scale of a

data set and the accuracy of bug triage. To avoid the bias of

a single algorithm, we empirically examine the results of

four instance selection algorithms and four feature selection

algorithm.

3. Module Description

Instance Selection

Instance selection and feature selection are widely used

techniques in data processing. For a given data set in a

certain application, instance selection is to obtain a subset of

relevant instances (i.e., bug reports in bug data) while

feature selection aims to obtain a subset of relevant features

(i.e., words in bug data). In our work, we employ the

combination of instance selection and feature selection.

Data Reduction:

 In our work, to save the labor cost of developers, the data

reduction for bug triage has two goals.

1) Reducing the data scale.

2) Improving the accuracy of bug triage.

 In contrast to modelling the textual content of bug reports

in existing work, we aim to augment the data set to build a

preprocessing approach, which can be applied before an

existing bug triage approach. We explain the two goals of

data reduction as follows.

4. System Design

Data Flow Diagram / Use Case Diagram / Flow Diagram:

The DFD is also called as bubble chart. It is a simple

graphical formalism that can be used to represent a system in

terms of the input data to the system, various processing

carried out on these data, and the output data is generated by

the system.

Data Flow Diagram:

(Admin):

(TPA):

(User):

Admin

Check

Report

Graph
Unauthorised

User

End Process

YES NO

TPA

Check

Bug

View
Unauthorised

User

End Process

YES NO

Data Reduction

User

Check

View

Rectify
Unauthorised

User

End Process

YES NO

Paper ID: ART20176499 224

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 9, September 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Component Diagram:

(Admin):

(TPA):

(User):

Use case Diagram:

(Admin):

(TPA):

(User):

Activity Diagram:
(Admin):

(TPA):

(User):

Admin

Report Graph

YES

TPA

Bug View Data Reduction

YES

User

View Rectify

YES

Login

Bug Report Graph

YES

Admin

Login

Bug View
Data

Reduction

YES

TPA

Login

View Rectify

YES

User

Admin

Bug Report Graph

TPA

Bug
Data ReductionView

User

View Rectify

Paper ID: ART20176499 225

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 9, September 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Sequence Diagram:
(Admin):

(TPA):

(User):

5. System Testing

The purpose of testing is to discover errors. Testing is the

process of trying to discover every conceivable fault or

weakness in a work product. It provides a way to check the

functionality of components, sub assemblies, assemblies

and/or a finished product It is the process of exercising

software with the intent of ensuring that the Software system

meets its requirements and user expectations and does not

fail in an unacceptable manner. There are various types of

test. Each test type addresses a specific testing requirement.

Unit testing:
Unit testing involves the design of test cases that validate

that the internal program logic is functioning properly, and

that program inputs produce valid outputs. All decision

branches and internal code flow should be validated. It is the

testing of individual software units of the application .it is

done after the completion of an individual unit before

integration. This is a structural testing, that relies on

knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific

business process, application, and/or system configuration.

Unit tests ensure that each unique path of a business process

performs accurately to the documented specifications and

contains clearly defined inputs and expected results.

Integration testing:

Integration tests are designed to test integrated software

components to determine if they actually run as one

program. Testing is event driven and is more concerned

with the basic outcome of screens or fields. Integration tests

demonstrate that although the components were individually

satisfaction, as shown by successfully unit testing, the

combination of components is correct and consistent.

Integration testing is specifically aimed at exposing the

problems that arise from the combination of components

Functional test:

Functional tests provide systematic demonstrations that

functions tested are available as specified by the business

and technical requirements, system documentation, and user

manuals.

Functional testing is centered on the following items:

Valid Input: identified classes of valid input must be

accepted.

Invalid Input: identified classes of invalid input must be

rejected.

Functions: identified functions must be exercised.

Output: identified classes of application outputs must be

exercised.

Systems/Procedures: interfacing systems or procedures must

be invoked.

Organization and preparation of functional tests is focused

on requirements, key functions, or special test cases. In

addition, systematic coverage pertaining to identify Business

process flows; data fields, predefined processes, and

successive processes must be considered for testing. Before

functional testing is complete, additional tests are identified

and the effective value of current tests is determined.

System Test:

System testing ensures that the entire integrated software

system meets requirements. It tests a configuration to ensure

known and predictable results. An example of system testing

is the configuration oriented system integration test. System

testing is based on process descriptions and flows,

emphasizing pre-driven process links and integration points.

White Box Testing:

White Box Testing is a testing in which in which the

software tester has knowledge of the inner workings,

structure and language of the software, or at least its

purpose. It is purpose. It is used to test areas that cannot be

reached from a black box level.

Black Box Testing:

Black Box Testing is testing the software without any

knowledge of the inner workings, structure or language of

the module being tested. Black box tests, as most other kinds

of tests, must be written from a definitive source document,

such as specification or requirements document, such as

specification or requirements document. It is a testing in

which the software under test is treated, as a black box .you

cannot “see” into it. The test provides inputs and responds to

outputs without considering how the software works.

Login Bug Report Graph

Admin

Login

Login Bug View

TPA

Login

Data

Reduction

Login View Rectify

User

Login

Paper ID: ART20176499 226

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 9, September 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Unit Testing:

Unit testing is usually conducted as part of a combined code

and unit test phase of the software lifecycle, although it is

not uncommon for coding and unit testing to be conducted

as two distinct phases.

Test strategy and approach:

Field testing will be performed manually and functional tests

will be written in detail.

Test objectives

 All field entries must work properly.

 Pages must be activated from the identified link.

 The entry screen, messages and responses must not be

delayed.

 Features to be tested

 Verify that the entries are of the correct format

 No duplicate entries should be allowed

 All links should take the user to the correct page.

Integration Testing: Software integration testing is the

incremental integration testing of two or more integrated

software components on a single platform to produce

failures caused by interface defects. The task of the

integration test is to check that components or software

applications, e.g. components in a software system or – one

step up – software applications at the company level –

interact without error.

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

Acceptance Testing: User Acceptance Testing is a critical

phase of any project and requires significant participation by

the end user. It also ensures that the system meets the

functional requirements.

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

6. Conclusion

Bug triage is an expensive step of software maintenance in

both labor cost and time cost. In this paper, we combine

feature selection with instance selection to reduce the scale

of bug data sets as well as improve the data quality. To

determine the order of applying instance selection and

feature selection for a new bug data set, we extract attributes

of each bug data set and train a predictive model based on

historical data sets. We empirically investigate the data

reduction for bug triage in bug repositories of two large open

source projects, namely Eclipse and Mozilla. Our work

provides an approach to leveraging techniques on data

processing to form reduced and high-quality bug data in

software development and maintenance. In future work, we

plan on improving the results of data reduction in bug triage

to explore how to prepare a high quality bug data set and

tackle a domain specific software task. For predicting

reduction orders, we plan to pay efforts to find out the

potential relationship between the attributes of bug data sets

and the reduction orders.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix

this bug?” in Proc. 28th Int. Conf. Softw. Eng.,

May 2006, pp. 361–370.

[2] S. Artzi, A. Kie _ zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D. Ernst, “Finding bugs in web

applications using dynamic test generation and

explicit-state model checking,” IEEE Softw., vol. 36,

no. 4, pp. 474–494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of

bug report triage: Recommenders for development-

oriented decisions,” ACM Trans. Soft. Eng. Methodol.,

vol. 20, no. 3, article 10, Aug. 2011.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical

models for text processing,” Knowl. Inform. Syst., vol.

36, no. 1, pp. 1–21, 2013.

[5] Bugzilla, (2014). [Online]. Avaialble:

http://bugzilla.org/

[6] K. Balog, L. Azzopardi, and M. de Rijke, “Formal

models for expert finding in enterprise corpora,” in

Proc. 29th Annu. Int. ACM SIGIR Conf. Res.

Develop. Inform. Retrieval, Aug. 2006, pp. 43–50.

[7] P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24,

no. 6, pp. 1146–1150, Jun. 2012.

[8] H. Brighton and C. Mellish, “Advances in instance

selection for instance-based learning algorithms,” Data

Mining Knowl. Discovery, vol. 6, no. 2, pp. 153–172,

Apr. 2002.

[9] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Information needs in bug reports: Improving

cooperation between developers and users,” in Proc.

ACM Conf. Comput. Supported Cooperative Work,

Feb. 2010, pp. 301–310.

[10] V. Bolon-Canedo, N. S anchez-Marono, and A.

Alonso-Betanzos, “A review of feature selection

methods on synthetic data,” Knowl. Inform. Syst., vol.

34, no. 3, pp. 483–519, 2013.

[11] Cubrani and G. C. Murphy, “Automatic bug triage

using text categorization,” in Proc. 16th Int. Conf.

Softw. Eng. Know l. Eng., Jun. 2004, pp. 92–97.

[12] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix

this bug?” in Proc. 28th Int. Conf. Softw. Eng., May

2006, pp. 361–370.

[13] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

“Automatic bug triage using semi-supervised text

classification,” in Proc. 22nd Int. Conf. Softw. Eng.

Knowl. Eng., Jul. 2010, pp. 209–214

[14] G. Jeong, S. Kim, and T. Zimmermann, “Improving

bug triage with tossing graphs,” in Proc. Joint Meeting

12th Eur. Softw. Eng. Conf. 17th ACM SIGSOFT

Symp. Found. Softw. Eng., Aug. 2009, pp. 111–120.

[15] T. Zhang, G. Yang, B. Lee, I. Shin “Role Analysis-

based Automatic Bug Triage Algorithm”, 2012.

[16] V.Akila, Dr.G.Zayaraz, Dr.V.Govindasamy “Effective

Bug Triage – A Framework”, International Conference

on Intelligent Computing, Communication &

Convergence, 114 – 120, 2015 .

[17] S. Artzi, A. Kie _ zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D. Ernst, “Finding bugs in web

applications using dynamic test generation and

Paper ID: ART20176499 227

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 9, September 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

explicit-state model checking,” IEEE Softw., vol. 36,

no. 4, pp. 474–494, Jul./Aug. 2010.

[18] J. Anvik and G. C. Murphy, “Reducing the effort of

bug report triage: Recommenders for development-

oriented decisions,” ACM Trans. Soft. Eng. Methodol.,

vol. 20, no. 3, article 10, Aug. 2011.

[19] C. C. Aggarwal and P. Zhao, “Towards graphical

models for text processing,” Knowl. Inform. Syst., vol.

36, no. 1, pp. 1–21, 2013.

[20] Bugzilla, (2014). [Online]. Avaialble:

http://bugzilla.org/

[21] K. Balog, L. Azzopardi, and M. de Rijke, “Formal

models for expert finding in enterprise corpora,” in

Proc. 29th Annu. Int. ACM SIGIR Conf. Res. Develop.

Inform. Retrieval, Aug. 2006, pp. 43–50.

[22] P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24,

no. 6, pp. 1146–1150, Jun. 2012.

[23] H. Brighton and C. Mellish, “Advances in instance

selection for instance-based learning algorithms,” Data

Mining Knowl. Discovery, vol. 6, no. 2, pp. 153–172,

Apr. 2002.

[24] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Information needs in bug reports: Improving

cooperation between developers and users,” in Proc.

ACM Conf. Comput. Supported Cooperative Work,

Feb. 2010, pp. 301–310.

[25] V. Bolon-Canedo, N. S anchez-Marono, and A.

Alonso-Betanzos, “A review of feature selection

methods on synthetic data,” Knowl. Inform. Syst., vol.

34, no. 3, pp. 483–519, 2013.

Sites Referred
[26] http://java.sun.com

[27] http://www.sourcefordgde.com

[28] http://www.networkcomputing.com/

[29] http://www.roseindia.com/

[30] http://www.java2s.com/

Paper ID: ART20176499 228

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://java.sun.com/
http://www.sourcefordgde.com/
http://www.networkcomputing.com/
http://www.roseindia.com/
http://www.java2s.com/

