International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Common Fixed Point in Cone Banach Space

Buthainah A.A. Ahmed¹, Essraa A.Hasan²

Department of Mathematics -College of Science -University of Baghdad

Absitract: In this paper we prove that if A and B are two mappings defined on a closed subset G of a cone Banach space $(X, ||.||_c)$ and A,B satisfied either the condition $||Ax - By|| \le a_1 ||x - Ax|| + a_2 ||y - By|| + a_3 ||x - y|| + a_4 ||x - By||$ for all $x, y \in G$ or A and B satisfied condition B then A and B have common fixed point

Keywords: Condition B

1. Introduction

In(2007) Huang and Zhang introduced cone metric space be means of partial ordering $((\leq))$ on real Banach space (E, ||.||) also they proved some fixed point theorems, while [5] gave the definition of cone Banach space . In [3]Golubovic', Zorana and Kadelburg, Zoran and Radenovic', Stojan proved common fixed point theorem of weak contractive mapping in cone metric space while [2] Akbar Azam, Muhammad Arshad, and Ismat Beg, gave the sufficient conditions for existence of points of coincidence and common fixed point of three self mapping satisfying a contractive type conditions in cone metric space To defined the cone Banach space [4] define the partial ordering \leq with respect to p by $x \leq y$ if and only if $y - x \in p$. We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in intp$ (interior of p)

The following definitions and result will be needed in the sequel.

Definition 1.1 *Let E be a real Banach space. A subset p of E is called cone if*

(1)p is closed, nonempty and $p \neq \{0\}$ (2) $a, b \in R, a, b \ge 0$ and $a, y \in pimply + by \in p$

 $(3)p \cap (-p) = \{0\}$

Definition 1.2 [4] Let X be a vector space over \mathbb{R} , suppose the mapping $||.||_p: X \to E$ satisfies

(1) $||x||_p > 0$ for all $x \in X$

(2) $||x||_p = 0$ if and only if x = 0

(3) $||x + y||_p \le ||x||_p + ||y||_p$ for all $x, y \in X$

(4) $||kx||_p = |k|||x||_p$ for all $k \in \mathbb{R}$

then $||.||_p$ is called a cone norm on X and the pair $(X, ||.||_p)$ is called a cone normed space .(CNS).

Definition 1.3 [4] Let $(X, ||.||_p)$ be a cone normed space $x \in X$ and $\{x_n\}_{n\geq 1}$ a sequence in X, then

- 1) $\{x_n\}_{n\geq 1}$ converge to x whenever for each $c\in E$ with $0\ll c$ there is natural number n such that $||x_n\to x||_p\ll c$ for all $n\in N$ it is denoted by $\lim_{n\to\infty}x_n=xorx_n\to x$
- 2) $\{x_n\}_{n\geq 1}$ is a Cauchy sequence whenever for every $c\in E$ with $0 \ll c$ there is a natural number n, such that $||x_n x_m||_p \ll c$ for all $n, m \in N$
- 3) $(X, ||.||_p)$ is complete cone normed space if every Cauchy sequence is convergent. Complete cone normed space will be called cone Banach space.

Definition 1.4 [1] Let A, B be self mapping on a cone metric space (X, d) a point $z \in X$ is called a common fixed point of A, B if Az = z = Bz moreover a pair of self mapping (A, B) is called weakly compatible on X if they commute at their coincidence point, in other words

$$z \in X$$
, $Az = Bz \Leftarrow ABz = BAz$

Definition 1.5 Let (X, ||.||) be a cone Banach space a map $B: X \to X$ is said to be satisfy condition B if there exists $0 < \delta < 1$ and L > 0 such that for all $x, y \in X$ we have

$$||Bx - By|| < \delta ||x - y|| + L. uwhereu$$

 $\in \{||x - Bx||, ||y - By||, ||x - By||, ||y - Bx||\}$

2. Main Result

Now we give the first main result

Theorem 2.1 Let G be a closed subset of cone Banach space (X.||.||) and let A, B be a mapping on G into it self satisfying $||Ax - By|| \le a_1 ||x - Ax|| + a_2 ||y - By|| + a_3 ||x - y|| + a_4 ||x - By||$ for all $x.y \in G$ where a_1, a_2, a_3, a_4 are non-negative real with $a_1, a_2, a_3 < 1$ then A and B have a unique common fixed point in G.

Proof. Let $z_0 \in G$ we define a sequence $\{z_n\}$ as follows $z_{2n+1} = Az_{2n}$

$$z_{2n+2} = Bz_{2n+1}n = 0,1,2,...$$

we have

we have
$$\begin{aligned} ||z_{2n+1} - z_{2n}|| &= ||Az_{2n} - Bz_{2n-1}|| \\ &\leq a_1 ||z_{2n} - Az_{2n}|| + a_2 ||z_{2n-1}| \\ &- Bz_{2n-1}|| + a_3 ||z_{2n} - z_{2n-1}||2 \\ &+ a_4 ||z_{2n} - Bz_{2n-1}|| \\ &\leq a_1 ||z_{2n} - z_{2n+1}|| + a_2 ||z_{2n-1} - z_{2n}|| \\ &+ a_3 ||z_{2n} - z_{2n-1}|| + a_4 ||z_{2n} - z_{2n}|| \end{aligned}$$

hence
$$||z_{2n+1} - z_{2n}|| \le \frac{a_2 + a_3}{1 - a_1} ||z_{2n} - z_{2n-1}||$$

let
$$m = \frac{a_2 + a_3}{(1 - a_1)} < 1$$

we have
$$||z_{2n+1} - z_{2n}||^2 \le m||z_{2n} - z_{2n-1}||$$

processing in this way

$$||z_{2n+1} - z_{2n}|| \le m^n ||z_1 - z_0||$$
 for any positive integer k we get

Volume 6 Issue 9, September 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20176412 DOI: 10.21275/ART20176412 654

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

$$\begin{split} ||z_{n} - z_{n+k}|| &\leq ||z_{n} - z_{n+1}|| + ||z_{n+1} - z_{n+2}|| + \dots + \\ &\leq (m^{n} + m^{n+1} \\ &+ m^{n+2} + \dots + m^{n+k-1})||z_{0} - z_{1}|| \\ ||z_{n} - z_{n+k}|| &\leq \frac{\alpha^{n}}{1-\alpha}||z_{0} - z_{1}|| \end{split}$$

thus $||z_n - z_{n+k}|| \to 0$ $asn \to \infty$ hence $\{z_n\}$ is Cauchy sequence in G so it is a Cauchy sequence in X but X is cone Banach space so $\{z_n\}$ converge to Z but G is closed subset of X so $f \in G$ such that

$$z_n \to f$$
 we have

$$||f - Bf|| \le a_1 ||z_{2n} - z_{2n+1}|| + a_2 ||f - Bf||^2 + a_3 ||z_{2n} - f||^2 + a_4 ||z_{2n} - Bf||$$

as
$$n \to \infty$$
, $z_{2n} \to f$, $z_{2n+1} \to f$

we have

 $||f - Bf|| \le ||a_2||f - Bf||$ then implies that f, Bf, since $a_2 < 1$

similarly we get f = Af then f is a Common fixed point of A and B let $p \neq f$ then ||p - f|| = ||Af - Bp|| $a_1||f - Af|| + a_2||p - Bp|| + a_3||p - f|| + a_4||f - Bf||$ since $a_1 + a_2 + a_3 < 1$ then p = f that is Common fixed point is unique.

Theorem 2.2 LetG be a closed and convex subset of a cone Banach space (X, ||.||) with a cone p and let A and B are self mapping, satisfy condition B and $B(G) \subseteq A(G), A(G)$ is complete subspace, then A and B have common coincidence point furthermore, if A and B are weakly compatible, then they have unique common fixed point in G

Proof. Let $y_0 \in G$ be arbitrary ,by $(B(G) \subset A(G))$ we can fixed a point in G . say y_n such that $By_0 = Ay_1$ since A, B are self mapping there exists a point z_0 in G such that $z_0 = By_0 = Ay_1$ inductively we can define a sequence $\{z_n\}$ and a sequence $\{y_n\} \subset G$ in the following way

$$z_n = Ay_{n+1} = By_n$$

$$z_{n-1} = Ay_n = By_{n-1}$$

$$z_{n+1} = Ay_{n+2} = By_{n+1}$$

$$\begin{split} z_{n+2} &= Ax_{n+3} = By_{n+2} \\ \text{Let } ||z_n - z_{n+1}|| &\leq \delta ||Ay_n - Ay_{n+1}|| + L.U \text{ when } \\ u &\in \{||Ay_n - By_n||, ||Ay_{n+1} - By_{n+1}||, ||Ay_n - By_{n+1}||, ||Ay_{n+1} - By_n|| \\ \text{then} \end{split}$$

$$(1) ||z_{n} - z_{n+1}|| \le \delta ||Ay_{n} - Ay_{n+1}|| + L||Ay_{n} - By_{n}||$$

$$\le \delta ||z_{n-1} - z_{n}|| = L||z_{n-1} - z_{n}||$$

$$\le (\delta + L)||z_{n-1} - z_{n}||......(1)$$

$$||z_{n-1} - z_{n}|| \le \alpha ||z_{n-2} - z_{n-1}||.....(2)$$
where $\alpha = (\delta + l)$

take in (1) and (2) we have

$$||z_n-z_{n+1}|| \le \alpha ||z_{n-1}-z_n|| \le \alpha^2 ||z_{n-2}-z_{n-1}||$$
 by routine calculation

$$||z_n - z_{n+1}|| \le \alpha^n ||z_0 - z_1||$$

By routine calculation

$$||z_n - z_{n+1}|| \le \alpha^n ||z_0 - z_1||$$

$$(2) ||z_n - z_{n+1}|| \le \delta ||Ay_n - Ay_{n+1}|| + L||Ay_{n+1}| - By_{n+1}||$$

$$\leq \delta ||z_{n-1}-z_n|| + L||z_n-z_{n-1}|| + L||z_{n-1}-z_{n+1}||$$

$$\leq (\delta + L)||z_{n-1} - z_n|| + L||z_{n-1} - z_n|| + L||z_n - z_{n+1}||$$

$$\leq (\delta + 2L)||z_{n-1} - z_n|| + L||z_n - z_{n-1}||$$

$$\leq \frac{(\delta + 2L)}{1 - L}||z_{n-1} - z_n||.........(1)$$
one cannotice that
$$||z_{n-1} - z_n|| \leq \alpha ||z_{n-2} - z_{n-1}||.......(2) \text{ where } \alpha$$

$$= \frac{(\delta + 2L)}{(1 + L)}$$

take in (1) and (2) we have

 $||z_n - z_{n+w1}|| \le K||z_{n-1} - z_n|| \le K^2||z_{n-2} - z_{n-1}||$ by routine calculation

$$||z_n - z_{n+1}|| \le \alpha^n ||z_0 - z_1||$$

(3)
$$||z_{n} - z_{n+1}| \le \delta ||Ay_{n} - Ay_{n+1}|| + L||Ay_{n} - By_{n+1}||$$

 $\le \delta ||z_{n-1} - z_{n}|| + L||z_{n-1} - z_{n+1}||$
 $\le \delta ||z_{n-1} - z_{n}|| + L||z_{n-1} - z_{n}|| + L||z_{n} - z_{n-1}||$
 $\le (\delta + L)||z_{n-1} - z_{n}|| + L||z_{n} - z_{n+1}||$
 $||z_{n} - z_{n+1}|| \le \frac{\delta + L}{1 - L}||z_{n-1} - z_{n}||......(1)$
one cannotice that

$$||z_{n-1} - z_n|| \le \alpha ||z_{n-2} - z_{n-1}|| \dots (2)$$
 where α

$$= \frac{\delta + L}{1 - L}$$

take in (1) and (2) we have

 $||z_n - z_{n-1}|| \le \alpha ||z_{n-1} - z_n|| \le \alpha^2 ||z_{n-2} - z_{n-1}||$ by routine calculations

$$||z_n - z_{n+1}|| \le \alpha^n ||z_0 - z_1||$$

(4)
$$||z_n - z_{n+1}|| \le \delta ||Ay_n - Ay_{n+1}|| + L||Ay_0 - By_n||$$

 $\le \delta ||z_{n-1} - z_n|| + L||z_n - z_n||$
 $\le \delta ||z_{n-1} - z_n||.....(1)$
one cannotice that

$$||z_{n-1}-z_n|| \le \alpha ||z_{n-2}-z_{n-1}||.....(2)$$
 where $\alpha = \delta$ take in (1)and(2) we have

$$||z_n - z_{n-1}|| \le \alpha ||z_{n-1} - z_n|| \le \alpha^2 ||z_{n-2} - z_{n-1}||$$
 by routine calculations

$$||z_n-z_{n+1}|| \leq \alpha^n ||z_0-z_1||$$
 to show $\{z_n\}$ is Cauchy sequence let $n>m$ then by $|||z_n-z_{n+1}|| \leq \alpha^n ||z_0-z_1||$ and triangle inequality one can obtain

$$\begin{split} &||z_{n}-z_{m}|| \leq ||z_{n}-z_{n-1}|| = \\ &||z_{n-1}-z_{n-2}||+\ldots+||z_{m+1}-z_{m}|| \\ &\leq \alpha^{n-1}||z_{0}-z_{1}|| = \alpha^{n-2}||z_{0}-z_{1}||+\ldots+\alpha^{m}||z_{0}-z_{1}|| \\ &\leq \frac{\alpha^{m}}{1-\alpha}||z_{0}-z_{1}|| \end{split}$$

with concludes the proof that $\{z_n\}$ is Cauchy sequence since A(z) is complete then $\{z_n = Ay_{n+1} = By_n\}$ converge to some point in A(z), say y in other words there is point $q \in G$ such that Aq = y now by replacing y with q and z with y_{n+1} in the condition B we get

$$\begin{array}{l} (1) ||Bq - By_{n+1}|| \leq \delta ||Aq - Ay_{n+1}|| + L||Aq - Bq|| \\ (2) ||Bq - By_{n+1}|| \leq \delta ||Aq - Ay_{n+1}|| + L||Ay_{n+1} - By_{n+1}|| \\ (3) ||Bq - By_{n+1}|| \leq \delta ||Aq - Ay_{n+1}|| + L||Aq - By_{n+1}|| \\ (4) ||Bq - By_{n+1}|| \leq \delta ||Aq - Ay_{n+1}|| + L||Ay_{n+1} - Bq|| \end{array}$$

|Bq||which is equivalent to (1) $|Bq - z_{n+1}|| \le \delta ||y - z_n|| + \delta ||y -$

655

L||y - Bq||(2) $||Bq - z_{n+1}|| \le \delta||y - z_n|| + L||z_n - z_{n+1}||$

Volume 6 Issue 9, September 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20176412

DOI: 10.21275/ART20176412

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

(3)
$$||Bq - z_{n+1}|| \le \delta ||y - z_n|| + L||y - z_{n+1}||$$

(4) $||Bq - z_{n+1}|| \le \delta ||y - z_n|| + L||z_n - Bq||$
as $n \to \infty$ it becomes
 $||Bq - y|| \le L\{||y - Bq||, ||y - Bq||\} \le 0$

$$||Bq - y|| - L||y - Bq||$$

then Bq = y hence Bq = y = Aq another word, q is a coincidence point of A and B. If A and B are weakly compatible then they commute at coincidence point, then for $Bq = y = Aq \Rightarrow ABq = BAq$

$$Bq = y = Aq \Rightarrow ABq = BAq$$

for some $q \in G$ that is $By = Ay$

Claim that X is common fixed point of A and B, to show this, substitute y = q and z = Bq = z in the ((condition B)) to give

$$(1) ||Bq - BBq|| \le \delta ||Aq - ABq|| + L||Aq - Bq||$$

$$(2) ||Bq - BBq|| \le \delta ||Aq - ABq|| + L||ABq - BBq||$$

$$(3) ||Bq - BBq|| \le \delta ||Aq - ABq|| + L||Aq - BBq||$$

(4) $||Bq - BBq|| \le \delta ||Aq - ABq|| + L||ABq - Bq||$ whichisequivalentto(1) ||x - Bx||

$$\leq \delta||x - Bx|| + L||x - x||$$

$$(2) ||x - Bx|| \le \delta ||x - Bx|| + L||Ax - Bx||$$

$$(3) ||x - Bx|| \le \delta ||x - Bx|| + L||x - Bx||$$

$$(4) ||x - Bx|| \le \delta ||x - Bx|| + L||Ax - x||$$

so we have

$$||x - Bx|| \le 0 \text{ then } x = Bx = Ax$$

we use reduction and absurdum to prove uniqueness, suppose the contrary, that u is another common fixed point of A and B substituting y by x and z by u in the contrition B we get

$$||Bx - Bu|| \le \delta ||Ax - Au|| + L||Ax - Bx||$$

 $\le \delta ||Ax - Au|| + L||Au - Bu||$
 $\le \delta ||Ax - Au|| + L||Ax - Bu|| \le \delta ||Ax - Au|| + L||Au - Bx||$
which is equivalent to
 $||x - u|| \le \delta ||x - u|| \leftarrow ||x - u|| \le 0$
which is contradiction, therefore the common fixed point of

References

A and B is unique

- [1] Thabet Abdeljawad, Erdal Karapinar, and Kenan Tas, *Common fixed point theorems in cone banach spaces*, Hacet. J. Math. Stat **40** (2011), no. 2, 211–217.
- [2] Akbar Azam, Muhammad Arshad, and Ismat Beg, Common fixed point theorems in cone metric spaces., Journal of Nonlinear Sciences & Applications (JNSA) 2 (2009), no. 4.
- [3] Zorana Golubovi c', Zoran Kadelburg, and Stojan Radenovic', Common fixed points of weak contractions in cone metric spaces, Abstract and Applied Analysis, vol. 2012, Hindawi Publishing Corporation, 2012, p. 18.
- [4] Erdal Karapnar and Juan Jose Nieto, *Fixed point theorems* in cone banach spaces, Fixed Point Theory and Applications **2009** (2009), 18.
- [5] Duran Turkoglu, Muhib Abuloha, and Thabet Abdeljawad, *Some theorems in cone metric spaces*, Journal of Concrete and Applicable matheatics **10** (2012), no. 1-2, 106–116.

Volume 6 Issue 9, September 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

656

Paper ID: ART20176412 DOI: 10.21275/ART20176412