Diversity of Phytoplanktons in Narmada River, Jabalpur Region (M.P) India

Deepika Saini¹ and K.K Dube²

¹Department of Natural Sciences, Ex-Adjunct Faculty Member, University of Maryland Eastern Shore, MD (USA)

²Department of Zoology, Retired Professor, Govt. Auto. Science College, Jabalpur (M.P) India

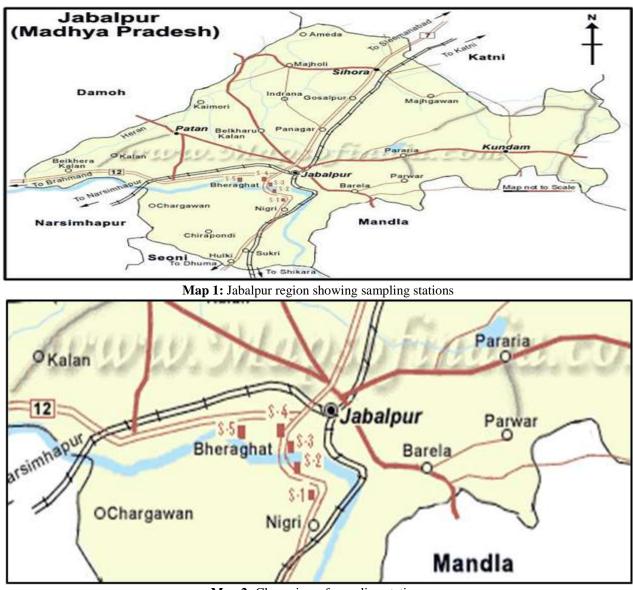
Abstract: The aim of the present study is to find out the seasonal diversity of Phytoplanktons in the year October 2010 to september 2011. The studies are carried out in 5 different sampling stations in Jabalpur(M.P)India and months are categorized as October-January as winter, February-May as summer, June-September as rainy. A total of 19 genera belonging to four different groups (Bacillariophyceea, Chlorophyceae, Cyanophyceae and Euglenophyceae) were recorded during the study period. The Planktons were collected, counted and identified by using the methods suggested by APHA and Prescott[1]. From the recorded data, quantitatively and qualitatively, Chlorophyceae is the most dominant group followed by Bacillariophyceae as the second dominant group and Cyanophyceae and Euglenophyceae.

Keywords: Phytoplankton Diversity, Narmada River, Jabalpur region, Madhya - Pradesh

1. Introduction

Rivers are the main source of drinking water, besides their usage in agriculture, washing etc. Water pollution in India has come to a critical point. Domestic waste, industrial waste and other household wastes are directly discharged into the river. Major constituents of aquatic organisms is the plankton- Zooplankton and Phytoplankton. Plankton population is greatly affected by physical and chemical properties of water, Sharma and Diwan[2]. Rivers play a major role in assimilating or carrying industrial and municipal waste water, manure discharge and run off which are responsible for river pollution, Toman et al.,[3].Many co-workers have connected their studies on ecology of Phytoplankton and important work in this field is investigated by Goel et.al., [4] Ramkrishna et.al., [5] Fouzia Ishaq et.al., [6]. The Narmada is the fifth longest river in India and largest west flowing river of Indian peninsula originating from Maikal ranges at Amarkantak in Madhya-Pradesh at an elevation of 900 meter. It flows over a length of 1312 km before draining in to the Gulf of Cambay, 50 km west of Bharuch. The river is also known as "Life line of Madhya -Pradesh". It runs about 160 kms in Madhya -

Pradesh . Jabalpur city is also called Mahakoushal and is situated almost in the centre of


India (between the coordinates of 23 10' Latitude and 79 57'E longitude with a general elevation of about 393 meters above MSL.)

2. Materials and Methods

2.1 Study Area

The present studies are carried out from October 2010 to September 2011 in 5 different sampling stations of river Narmada at Jabalpur region(M.P), India, namely (S-1) Lamhetaghat (16 km away from the city headquarters, (S-2) Laxminarayanghat $(17^{1/2}$ km away from the city headquarters), (S-3) Gograghat (19 km away from the city headquarters), (S-4) Saraswatighat (20 km away from the city headquarters) and the last one (S-5) Bhedaghat (21 km away from the city headquarters). These all sampling sites are situated at the bank of river Naramada and are surrounded by large number of small villages. Hence, dumping wastes and ritual performances can be seen here frequently.

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Map 2: Close view of sampling stations

- S-1 LAMHETAGHAT
- S-2 LAXMI NARAYAN GHAT
- S-3 GOGRAGHAT
- S-4 SARASWATI GHAT
- S-5 BHEDAGHAT

Photographs

(A) STATION -1: LAMHETAGHATGHAT

(B) STATION-2: LAXMI NARAYAN GHAT

(C) STATION-3: GOGRAGHAT

(E) STATION-5: BHEDAGHAT

2.2 Sample Collection and Analysis

Phytoplanktons were collected from all the sampling stations (S-1, S-2, S-3, S-4, S-5) of river Narmada for qualitative and quantitative analysis. For this methods, plankton net was used as planktonic sampling device. The plankton net is cone shaped having a circular metal ring at one end and collecting graduated tube on the other end. For qualitative and quantitative analysis of planktons, 50 lit. of water sample was pass out from the plankton net and filter is collected in the graduated tube attached to the lower end of plankton net. Filter is than collected in 25 ml of vial and kept for sedimentation by the addition of lugol's iodine for phytoplanktons and preserved with 5% formaldehyde solution. The supernatant liquid is taken out with the help of pipette without disturbing the setteled planktons and the remaining sample is further concentrated upto 5 ml depending upon the number of planktons present. For qualitative and quantitative analysis of planktons ,Drop count method is preferred. This method involves plankton enumeration in one drop of concentrated sample taken on aside with coverslip using standard caliberated dropper. This slide is then put under the inverted research microscope (Leincamake DMIL) with 10×10 magnification. Planktons are counted specieswise identification of plankton was done by using standard literature of Needham and Needham [7] and Adoni et, al., [8]. Keeping in view, everyday the water quality is changing, which in turn changes the abundance and succession of phytoplanktons in a set of samples collected from 5 ghats of river Narmada, Jabalpur region(M.P)India.

(D) STATION-4: SARASWATI GHAT

(F) SAMPLE COLLECTION (GOGRAGHAT)

3. Results and Discussion

During the study period from October 2010 to September 2011, the phytoplankton species observed, belonging to 5 main groups. Total 19 species are observed out of which 05 species belong to Cyanophyceae, 08 species belong to Chlorophyceae, 04 species belong to Bacillariophyceae and 2 species of Euglenophyceae. Plankton species were collected from the surface(S) and bottom(B) of all prefix sampling stations(Table 1,2,3,4)

1. Chlorophyceae

Chlorophyceae is the first main dominant group of phytoplanktons. This group is represented by species *Ankistrodesmus, Chlorella, Eudorina, Pediastrum, Scendesmus, Spiroogyra, Ulothrix and Volvox.* During my study period in the year from October 2010 to September 2011, maximum density recorded for **Chlorophyceae** at different stations was observed as-

S-1	= S =	2525 nos/l,	B = 1951 nos/l
S-2	= S =	2523 nos/l,	B = 2030 nos/l
S-3	= S =	2473 nos/l,	B = 2002 nos/l
S-4	= S =	2478 nos/l,	B = 2111 nos/l
S-5	= S =	2280 nos/l,	B = 2034 nos/l

Chlorella species was dominant throughout the year with maximum range of 52 organism per litre in the month of March 2011 at station (S-2) on the surface while *Volvox* was observed to be maximum with lower range of 05 organisms per litre in the month of Oct. 2010 at S-4 in the bottom and absent at some places. Tripathi and Pandey [9] have reported a strong correlation between Chlorophyceae and various physico-chemicals parameters such as temperature turbidity, chloride, hardness etc.

2. Bacillariophyceae-

During my study period, **Bacillariophyceae** was the second dominant group. The group density observed for this group for the year 2010-11 was-

S-1	= S =	2523 nos/l,	B = 991 nos/l
S- 2	= S =	2277 nos/l,	B = 1006 nos/l
S-3	= S =	2320 nos/l,	B = 1002 nos/l
S-4	=S =	2205 nos/l,	B = 818 nos/l
S-5	= S =	2263 nos/l,	B = 984 nos/l

The number of species was maximum in summers and declined gradually during monsoon. Out of all the observed species *Diatoma* was dominating throughout the years with the maximum range of 84 organisms per litre in the month of Oct. 2010 at S-3 on the surface whereas *Nitzchia* was observed in lesser amount within the maximum range of 06 in the month of August 2011 at station S-5 at the bottom. Nitzchia was absent in some months. Venkatesh Warlu [10] expresses that increase in average number of **Bacillariophyceae** reflects bad water quality.

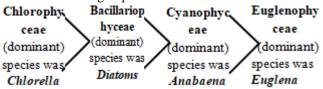
3. Cyanophyceae- The species observed in the group are – Anabaena, Merismopedia, Microcystis, Oscillatoria, Nostoc.

The maximum density recorded in year 2010-11 was-

S-1	= S =	1300	nos/l,	B = 1127 nos/l
S-2	= S =	1264	nos/l,	B = 1128 nos/l
S-3	= S =	1306	nos/l,	B = 1148 nos/l
S-4	= S =	1137	nos/l,	B = 1094 nos/l
S-5	= S =	1210	nos/l,	$B=\ 940\ nos/l$

In the research period, *Anabaena* species was dominating with the maximum range of 34 organisms per litre in S-5(surface)in the month of April 2011 and in S-3(Surface)in the month of March 2011. *Nostoc* was observed in lesser amount and observed to be absent in many months. According to Kumar [11] excessive growth of certain algae like *Anabaena, Microcystis* is known to indicate nutrient enrichment in water.

4. Euglenophyceae- It forms a large and diverse group but few species are truly planktonic. During the study period, 02 species of Euglenophyceae were observed and identified. Maximum density in the first year Oct. 2010 to Sept. 2011 was observed as-


S-1	= S =	791 nos/l,	B = 569 nos/l
S-2	= S =	839 nos/l,	B = 521 nos/l
S-3	= S =	822 nos/l,	B = 498 nos/l
S-4	= S =	874 nos/l,	B = 519 nos/l
S-5	= S =	853 nos/l,	B = 528 nos/l

In **Euglenophyceae**, *Euglena* was found to be dominant with the maximum range of 64 organism per litre in the month of April 2011 at S-2 on the surface, *Phacus* was absent during some months and showed minimum range of 07 organisms per litre at S-5 in the bottom in the month of October 2010. Devidas et. al.,[12] observed Euglenoid species and Cyanophyceae species in the water bodies of Shimoga district, Karnataka.

From the data recorded in this research duration of October 2010 to September 2011, it is clear that the Chlorophyceae is the most dominating group with *chlorella* as the most

dominating species in river Narmada. The total plankton count/ml is minimum in rainy season whereas higher in summers. This data is further supported by taking a reference of data collected by Jyoti Sharma et. al., [13] Tayor and Deepti[14] also reported that phytoplankton grows and multiply best during months, when the temperature is high and having longer photoperiod. High summer growth of phytoplanktons may also be due to progressively increasing water temperature and nutrients in water that are responsible for high amount of phytoplankton growth during summer season. Similar studies are reported by Sudha Summarwar [15] and Manoj kumar and P.K Khare [16] they also observed highest planktonic concentration in summer whereas lower in rainy season (Graph 1, 2, 3, 4)

4. Conclusion

Based on the present studies, the phytoplanktonic composition of the river Narmada at Jabalpur region in 5 different sampling stations indicated that change of seasons affect the phytoplankton abundance in selected stations. *Chlorophyceae* was observed to be the most dominating group followed by *Bacillariophyceae*, *Cyanophyceae* an lastly *Euglenophyceae*. Higher density of phytoplanktons is observed in summers whereas it was observed to be declined during the rainy season.

5. Acknowledgement

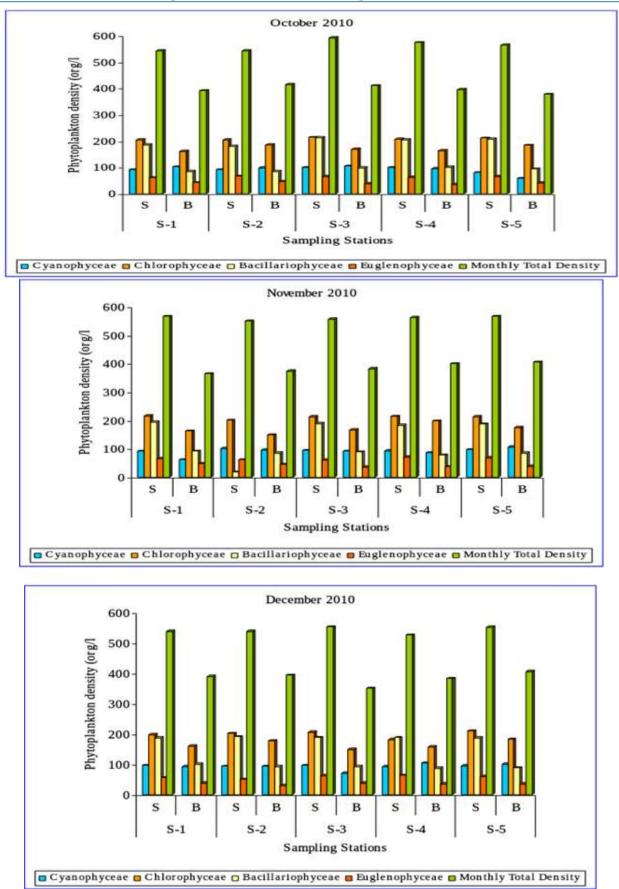
Authors are highly obliged to the principal Govt. M.H college of Home Science and Science for Women, Jabalpur (M.P) for providing laboratory facilities in the college.

References

- [1] AAPHA, AWWA, 2012: Standard methods for the examination of water and waste water, 22th ED., AAPHA, Washington, D.c.
- Sharma, R and Diwan, A.P. 1997: limnological studies of Yashwant reservoir. Plankton population dynamics. In recent Advances in freshwater Biology. Vol., (1) PP. 199-211.
- [3] Toman, M.J., 2009: physico-chemical characteristics and seasonal changes of plankton communities in a river, lakes and reservoirs Res. Managt. 2(1&2): 71-76.
- [4] Goel, P.K., R.K. Trivedi and S.V. Bhave ,1985: studies on the Limnology of a few fresh water bodies in southern Maharashtra, *Indian journal of Env. Prot.* 5(1) : 19-25
- [5] Ramkrishna and Siddique, S.Z.,2002: Macrophytic vegetation of zool. Series 5, fauna of kabar lake : 39-45.
- [6] Fouzia Ishaq and Khan Aamir.(2013):Aquatic biodiversity as an ecological indicators for water quality criteria of river Yamuna ,Uttarakhand, India. *World*

Journal Of Fish And Marine Sciences.5(3) :pp. 322-334.

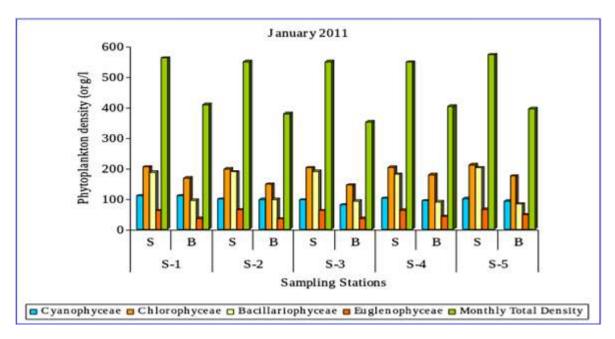
- [7] Needham, J.G. and Needham, P..,1972: A guide to the study of fresh water biology. *Vth Edh., springfield.*
- [8] Adoni, A.d.,1985: Work book of Limnology, Indian Map committee, Deptt. Of Environment, Govt. of India.
- [9] Tripathi, A.K. and S.N. Pandey.1995: Water pollution. *Ashish Publ. House*, New Delhi.
- [10] Venkatesh warlu,(1986). Ecological studies on the rivers of Andhra Pradesh with special reference to water quality and pollution ,*Proc. Indian Acad. Sci.(Plant Science)*, Vol.
- [11] Kumar. K..1990: Limnology of Kunswar Pond with reference to plankton and macrophytes. M.phil. Disser. Univ. of Jammu ,India.
- [12] Devidas Kamath, Vijay Kumara, Kiran.B.R., Tirumalas and pultarah. E.T(2006): Phytoplankton for


biomonitoring of organic pollution in two tanks of Shimora District Karnataka, *J.Aqua.Biolo*: Vol.21(1)7-9

- [13] Jyoti et. al., 2014: Phytoplanktonic Diversity and its relation to physico-chemical parameters of water at Dogarwadaghat of river Narmada (International Research Journal of Environment Studies).
- [14] Tyor, A.K and Deepti C.2012: Survey and study of phytoplankton ecology in sukhna lake, Chandigarh, (India) International JournalOof Applied Biology and Pharmaceutical Technology. 3(2): 22 9-238.
- [15] Sudha Summarwar, (2012): Studies on plankton diversity in Bisalpur reservoir ,*Int. J. Life Sc. Bt and Pharm. Res.*, Vol.1, No.4, pp.65-72.
- [16] Manoj Kumar and P.K Khare,(2015):Diversity of plankton and their seasonal variation of density in the Yamuna River at Kalpi,,District Jalaun (U.P)India. *Journal of Global Biosciences*, Vol.4, No.7, pp.2720-2729.

 Table 1: Seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (Oct. 2010 to Dec. 2010)

Phytoplankton					Oct.	2010	<u> </u>					-	ec. 4		Nov.	201	0								Dec.	2010				
Гпуторіанктоп	e	1	e			-		-4	F	-5	e	-1	G	-2		-3	-	-4	C	-5	e	-1	e	-2		-3		-4	S	5
Date		S-1 S-2 S-3 10 th 11 th 12 th						-4 3 th	~~	-5 1 th	~~	-1 0 th		-2 1 th		-3 2 th	~	3 th		-5 1 th		-1 0 th		-2 1 th		-5 2 th	~~	-4 3 th	- 3- 14	-
Cvanophyceae	S	B	S.	B	S	B	S	B	S	• B	S	B	S	B	S	B	S	B	S	+ B	S	B	S	B	S	B	S	B	S	+ B
Anabaena	22	D 20	22	D 21	22	D 21	23	D 23	20	15	18	D 10	20	B 22	19	D 21	22	23	20	D 23	20	D 21	18	D 20	20	12	18	D 23	20	18
Merismopedia	19	20	19	20	18	20	20	15	18	10	17	10	18	10	19	20	17	20	19	23	19	17	21	18	20	20	20	23	19	23
Microcvstis	20	22	17	20	19	20	19	17	15	7	20	14	24	22	20	20	19	20	21	20	20	18	17	18	18	15	19	21	18	23
Oscillatoria	19	23	18	20	21	23	18	20	16	12	19	10	22	20	17	10		21	18	20	18	16	20	22	17	14	17	18	-	20
Nostoc	12	14	15	17	20	21	20	20	12	15	18	15	17	20	19	20	18	-	19	20	19	20	18	16	19	10	18	20	17	18
Total	92	103		98	100		-	<u>95</u>	81	59	92	61	101	96	94	<u>91</u>	93	86	97	107	96	<u>92</u>	94	94	96	71	92	104		
Chlorophyceae		100	~ 1	20	200	100	100	10	01			•1	101	20			20	00		107	20				20			10.		100
Ankistrodesmus	28	26	29	30	29	20	27	20	29	28	28	22	25	20	27	20	27	23	29	28	26	22	25	22	28	22	30	24	30	31
Chlorella	38	28	39	23	37	32	36	28	37	32	37	28	32	22	36	24	38	28	37	32	32	24	30	28	35	22	34	28	37	32
Eudorina	29	24	24	20	27	22	25	20	26	24	26	18	29	21	25	23	26	28	28	23	27	20	28	25	24	20	20	18	28	25
Pediastrum	28	26	29	26	29	24	26	23	28	23	29	21	33	22	34	24	36	30	34	24	33	26	32	24	22	16	18	15	30	28
Scendesmus	26	20	25	20	28	23	30	25	29	22	24	19	20	15	20	23	22	20	25	22	26	20	23	20	29	21	24	18	24	23
Spirogyra	22	22	20	23	24	21	28	17	20	24	26	23	24	20	24	20	27	23	19	20	19	15	22	21	25	20	20	24	26	26
Ulothrix	25	23	27	20	25	17	27	26	27	23	27	18	25	21	29	23	28	32	27	18	25	20	28	25	28	18	25	22	24	20
Volvox	08	12	12	24	15	10	08	05	15	08	18	14	12	08	18	10	10	14	14	08	10	12	14	12	14	10	10	08	10	08
Total	204	161	205	186	214	169	207	164	211	184	215	163	200	149	213	167	214	198	213	175	198	159	202	177	205	149	181	157	209	183
Bacillariophyceae																														
Cyclotella	49	24	50	28	27	30	56	35	54	28	50	24	47	28	55	24	54	24	50	24	55	28	56	32	50	28	52	24	49	20
Diatoma	45	22	62	26	84	26	70	24	76	30	75	26	72	26	73	26	62	26	74	26	65	30	68	26	76	36	70	22	77	30
Navicula	50	26	54	20	60	27	60	32	64	26		30	52	22	64	29	55	20	54	25	60	32	55	28	52	20	54	26	-	28
Nitzchia	12	12	14	10	12	15	18	10	14	10	12	12	10	08	07	10	12	08	09	10	07	10	12	06	10	08	12	14	÷,	10
Total	185	84	180	84	213	98	204	101	208	94	194	92	18	84	189	89	183	78	187	85	187	100	191	92	188	92	188	86	187	88
Euglenophyceae										-				-		-												-		
Englena	38	28	34	20	46	24	43	21	40	24	40	34	45	25	43	21	47	27	46	24	40	24	32	20	43	21	47	20		-
Phacus	24	15	28	20	19	14	20	14	25	7	25	17	22	20	17	14	24	10	23	14	16	14	18	10	20	17	17	15	18	15
Total	62	43	67	46	65	38	63	35	65	41	65	48	61	45	60	35	71	37	69	38	56	38	50	30	63	38	64	35	60	35
Monthly Total Density	543	391	543	414	592	410	574	395	565	378	566	364	549	374	556	382	561	399	566	405	537	389	537	393	552	350	525	382	551	406


International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

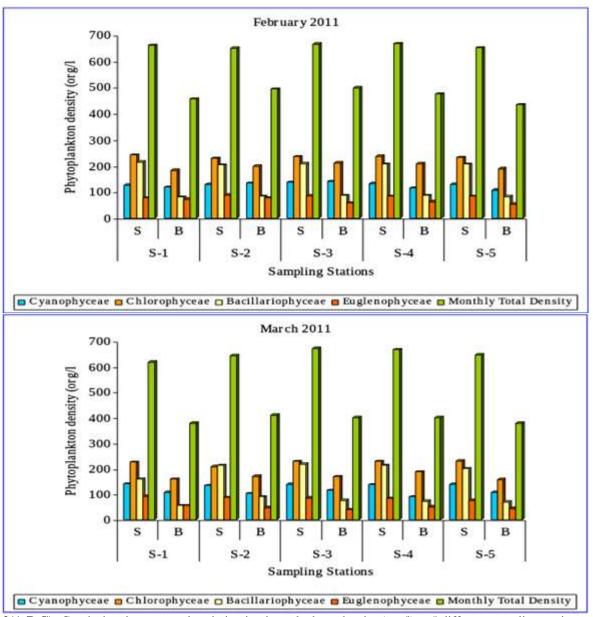
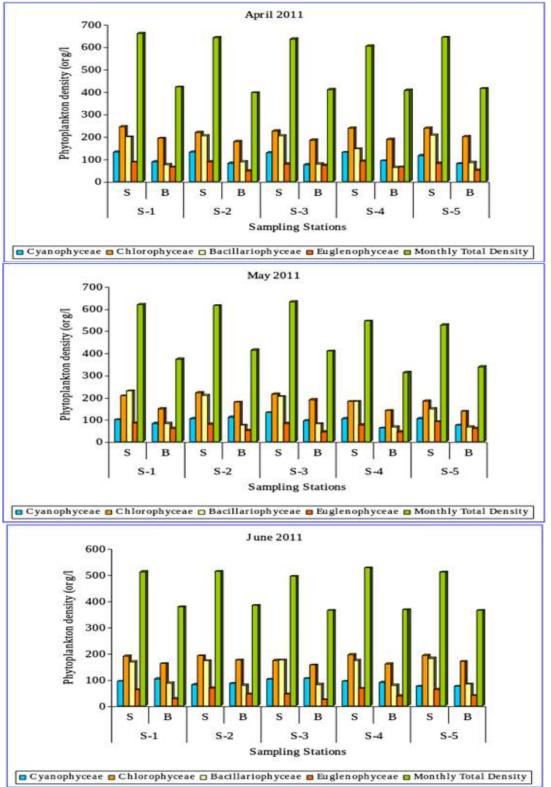

Graph 1(A, B, C): Graph showing seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (Oct. 2010 to Dec. 2010)

 Table 2: Seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (Jan. 2011 to March 2011)

Phytoplankton	Ion	2011	1								Eab	201		201	11)						Mar	ah 20)11							
Phytopiankton	Jan. S-		S	2	S	2	S	4	S		red.	-	I S	2	S	2	S	4	S		S-		511 S	2	S	2	S	4	S	5
Date		-1) th		-2 1 th	12		13		- 3- - 14			-1) th	5. 11			-5 2 th	13		- 3· - 14			-1) th		- <u>2</u> l th		-5 2 th	13		- 5· - 14	
Cvanophyceae	S	B	S	B	S	В	S	B	S	B	S	B	S	В	S	В	S	B	S	В	S	B	S	В	S	В	S	B	S	B
Anabaena	20	21	20	15	20	12	23	15	20	22	28	32	29	22	32	24	32	28	29	24	30	20	32	24	34	28	32	18	30	24
Merismopedia	22	24	20	20	21	18	20	21	24	22	26	26	24	28	27	32	25	22	25	21	27	22	26	20	28	23	29	17	29	20
Microcystis	21	24	19	23	19	15	22	15	18	10	24	18	27	24	26	32	25	23	26	22	28	22	27	23	27	24	26	18	28	20
Oscillatoria	19	18	21	20	18	20	17	22	20	22	25	20	26	26	24	26	24	20	26	21	29	24	25	18	28	22	26	17	27	18
Nostoc	21	23	19	20	18	15	19	20	18	16	23	22	24	34	28	26	27	22	23	20	26	20	24	18	22	18	25	20	25	21
Total	109	110	99	98	96	80	101	93	100	92	126	118	130	134	137	140	133	115	129	108	140	108	134	103	139	115	138	90	139	108
Chlorophyceae																														
Ankistrodesmus	28	23	28	22	28	22	25	22	28	24	36	24	37	32	32	28	34	30	33	30	34	28	30	27	37	20	32	28	34	23
Chlorella	36	28	35	21	34	28	38	32	34	28	44	28	46	36	44	30	46	34	44	20	43	22	52	32	46	24	48	26	45	28
Eudorina	26	25	27	18	26	18	27	24	26	22	29	24	28	26	28	24	27	24	27	24	27	20	26	20	25	20	28	24	25	20
Pediastrum	29	28	28	26	24	16	28	24	25	20	36	23	32	25	32	29	34	28	36	25	27	20	26	20	25	20	28	24	25	20
Scendesmus	24	18	18	15	26	18	25	20	27	21	28	20	28	22	24	28	23	21	24	28	25	21	28	20	26	23	28	26	26	15
Spirogyra	26	16	26	18	22	15	20	23	26	20	25	24	28	19	27	24	25	28	25	19	26	20	-	-	22	20	24	28	24	21
Ulothrix	25	20	24	20	28	18	25	20	27	22	29	28	31	28	32	29	30	28	28	24	26	18	26	28	28	18	25	20	26	18
Volvox	10	10	12	08	14	10	15	14	18	17	14	12	08	10	16	20	18	16	15	20	15	12	17	20	12	14	15	10	19	14
Total	204	168	198	148	202	145	203	179	211	174	241	183	228	198	235	212	237	209	232	190	226	159	209	170	229	169	229	188	231	157
Bacillariophyceae																														
Cyclotella	50	20	52	30	48	24	50	25	58	23	62	24	30	20	64	24	66	26	60	24	66	24	64	24	65	24	64	20	65	24
Diatoma	70	34	72	28	78	32	64	24	81	22	80	25	74	24	76	20	72	20	76	24	76	22	75	30	76	20	73	24	75	26
Navicula	59	29	54	32	55	21	54	26	54	25	56	22	54	20	52	23	54	24	58	20	-	-	60	26	60	22	62	21	60	20
Nitzchia	08	12	10	08	08	10	12	14	08	12	17	10	15	20	16	20	15	17	12	14	18	10	14	10	17	10	14	08	-	-
Total	187	95	188	98	189	92	180	89	201	82	215	81	203	84	208	87	207	87	206	82	160	56	213	90	218	76	213	73	200	70
Euglenophyceae																														
Englena	45	21	46	24	43	21	46	24	48	29	54	44	60	46	57	34	52	36	58	34	63	34	60	32	55	24	59	28	50	24
Phacus	16	14	18	10	18	14	17	18	17	18	24	29	28	32	28	25	32	28	26	20	28	22	27	15	30	16	28	22	26	20
Total	61	35	64	34	61	35	63	42	65	47	78	73	88	78	85	59	84	64	84	54	91	56	87	47	85	40	84	50	76	44
Monthly Total Density	561	408	549	378	548	352	547	403	571	395	660	455	649	494	665	498	666	475	651	434	617	379	643	410	671	400	667	401	646	379

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

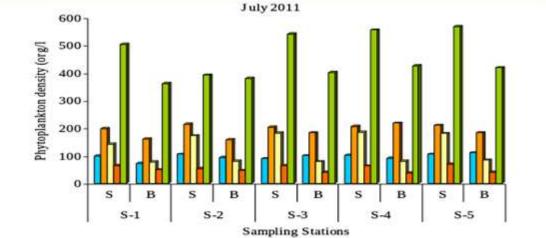
Graph 2(A,B,C): Graph showing seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (Jan. 2011 to March. 2011)

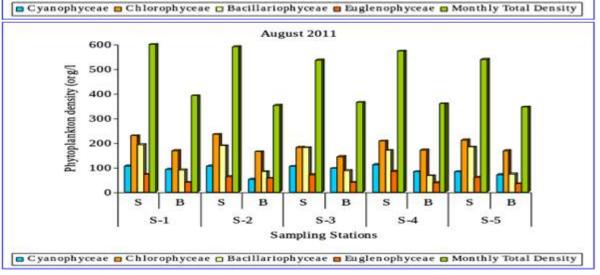

Table 3: Seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (April 2011 toJune 2011)

Devtoploniton						201	1						ine i		May	2011									June	2011	1			
Phytoplankton	~				-			-	a	_	~		~						a		a		a	_		-				_
					S	-	S		S	-	S	_		-2		-3	S			-5	S		S-			-3	S		S-	-
Date	10) th	11	l th	12	2 th	13	3 th	14	th	10) th	11	l th	12	2 th	13	3 th	14	1 th	10) th	11	1 th	12	2 th	13	th	14	th .
Cyanophyceae	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	В	S	B
Anabaena	30	18	32	18	30	20	30	16	34	20	30	26	32	26	33	15	32	25	30	18	22	21	23	20	24	22	17	22	16	14
Merismopedia	28	15	27	14	27	18	28	20	28	26	I	-	27	30	28	22	26	22	26	18	20	23	20	22	17	21	20	14	17	10
Microcystis	26	18	24	18	23	21	24	16	29	16	25	20	26	15	26	20	-	-	-	-	18	20	18	21	18	22	18	16	14	16
Oscillatoria	25	19	26	17	26	18	25	20	25	18	24	18	28	21	28	18	27	15	28	20	20	24	20	22	20	20	17	19	15	20
Nostoc	23	18	22	15	22	16	23	20	-	-	20	18	18	19	22	20	20	-	21	18	14	15	-	-	22	19	21	18	11	14
Total	132	88	131	82	128	75	130	92	116	80	99	82	105	111	131	95	105	62	105	74	94	103	81	85	101	104	93	89	74	74
Chlorophyceae																														
Ankistrodesmus	39	28	34	30	34	26	35	30	36	28	35	26	30	28	36	26	36	24	36	17	27	24	28	29	27	23	26	20	28	25
Chlorella	47	32	43	28	42	30	46	28	46	36	47	24	48	26	47	36	44	28	28	20	36	27	32	22	38	31	35	24	36	31
Eudorina	28	24	26	24	27	20	29	20	26	18	29	20	27	15	28	28	-	-	25	24	22	18	23	19	24	19	24	19	24	20
Pediastrum	36	26	26	20	30	28	32	28	30	26	28	22	26	28	32	24	30	28	29	20	25	20	25	21	27	20	25	22	26	24
Scendesmus	26	20	24	19	28	22	27	22	28	28	24	18	23	20	26	30	-	-	-	-	26	19	24	19	27	21	22	18	25	21
Spirogyra	25	28	25	20	22	20	25	22	27	26	26	20	25	28	27	25	28	25	24	18	20	18	22	24	25	19	26	19	23	19
Ulothrix	24	20	23	27	24	18	24	18	24	18	-	-	21	18	-	-	26	24	23	20	24	24	23	18	22	15	24	24	20	22
Volvox	18	14	17	15	18	20	19	20	20	20	17	18	20	15	18	20	18	12	18	19	09	11	14	23	10	08	12	14	10	7
Total	243	192	218	178	225	184	237	188	237	200	206	148	220	178	214	189	182	141	183	138	189	161	191	175	173	156	194	160	192	169
Bacillariophyceae																														
Cyclotella	60	20	62	20	63	24	62	24	62	22	69	20	67	22	62	20	60	20	62	24	52	24	50	20	52	24	52	24	54	22

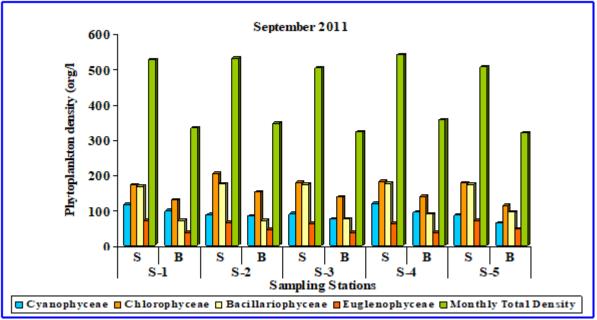
Volume 6 Issue 9, September 2017 <u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY


Diatoma	72	25	69	26	71	20	69	28	69	20	72	22	70	24	70	24	69	22	72	22	60	26	62	26	62	20	61	20	60	24
Navicula	54	23	56	24	59	26	-	-	58	27	66	24	62	20	56	22	52	24	-	-	49	25	50	24	50	25	50	26	51	26
Nitzchia	12	8	17	18	10	08	15	10	18	15	22	16	10	08	12	15	-	-	15	20	07	11	10	08	10	12	10	09	16	10
Total	198	76	204	88	203	78	146	62	207	84	229	82	209	74	203	81	181	66	149	66	167	86	172	78	174	81	173	79	181	82
Euglenophyceae																														
Englena	58	42	64	32	54	44	63	42	58	32	55	36	52	30	55	24	50	26	63	42	39	14	42	24	45	23	42	20	38	23
Phacus	28	22	24	15	24	28	27	22	24	18	29	24	27	20	28	20	26	18	27	18	22	13	26	21	-	-	24	18	24	16
Total	86	64	88	47	78	72	90	64	82	50	84	60	79	50	83	44	76	44	90	60	61	27	68	45	45	23	66	38	62	39
Monthly Total	659	420	641	395	635	409	603	406	642	414	618	372	613	413	631	409	544	313	527	338	511	377	512	383	493	364	526	366	509	364
Density																														



Graph 3(A, B, C): Graph showing seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (April 2011 to June 2011)


 Table 4: Seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (July 2011 to

											S	epte	emb			,														
Phytoplankton					July										ugus										teml					
	S			-2		-3	S			-5	S			-2	S			-4		-5	S			-2		-3		-4		-5
Date) th		1 th		2 th	-	3 th	-	4 th	_) th	ï	1 th		2 th	í	3 th	-	l th) th	_	1 th		2 th	_	3 th	-	4 th
Cyanophyceae	S	B	S	В	S	B	S	B	S	В	S	В	S	В	S	В	S	В	S	В	S	B	S	В	S	В	S	В	S	B
Anabaena	20	11	22	24	20	22	24	25	22	24	21	23	24	20	22	16	26	20	20	15	24	23	20	18	22	18	23	18	23	15
Merismopedia	18	15	20	12	20	22	19	20	20	24	23	13	17	14	24	19	20	14	22	20	24	21	-	-	-	-	24	18	20	15
Microcystis	22	13	26	24	22	23	21	23	23	21	20	17	24	17	20	22	24	22	-	1	27	18	26	24	27	24	28	24	-	-
Oscillatoria	20	17	22	16	18	12	18	23	20	22	20	14	23	-	19	24	21	24	23	18	22	16	23	20	23	18	24	18	22	16
Nostoc	19	16	16	18	20	18 12 18 23 2 20 21 19 - 2		21	20	21	25	17	-	19	15	20	18	18	18	19	20	18	20	18	14	20	16	20	18	
Total	99	72	106	94	90	100	102	91	106	111	105	92	105	51	104	96	111	83	83	71	116	98	87	82	90	74	119	94	85	64
Chlorophyceae																														
Ankistrodesmus	30	24	26	38	29	26	28	25	31	30	30	24	35	20	27	20	30	26	28	20	27	20	28	18	26	20	-	-	28	26
Chlorella	36	28	38	26	37	25	35	30	38	35	36	28	37	24	36	28	38	28	34	26	35	28	1	26	35	24	36	23	35	26
Eudorina	26	20	29	26	27	25	28	29	27	25	28	23	29	23	26	20	24	21	25	18	-	-	28	25	26	20	27	20	-	-
Pediastrum	28	24	34	24	32	25	31	37	35	25	33	26	27	22	-	-	23	22	29	21	29	20	27	20	28	24	26	25	26	20
Scendesmus	24	20	23	17	22	24	19	22	20	19	31	20	31	20	28	22	26	18	26	20	23	17	25	21	24	18	30	20	23	18
Spirogyra	21	24	27	21	20	22	22	24	21	20	24	15	30	21	25	18	27	20	22	21	20	18	22	19	25	20	2	18	24	18
Ulothrix	24	20	26	22	27	24	29	35	28	20	27	17	30	23	25	20	29	28	28	21	23	15	25	20	-	-	18	20	24	18
Volvox	09	1	12	10	10	12	14	16	10	09	20	15	15	10	16	15	10	8	19	20	15	10	12	10	14	10	16	12	17	14
Total	198	161	215	158	204	183	206	218	210	183	229	168	234	163	181	143	207	171	211	167	172	128	203	150	178	136	181	138	177	11
Bacillariophyceae																														
Cyclotella	50	22	52	24	57	20	56	25	54	25	56	24	56	25	52	24	54	20	54	20	54	26	55	20	55	28	54	28	53	25
Diatoma	62	20	60	25	63	24	62	24	65	26	64	26	66	22	63	20	65	22	64	22	62	25	60	26	64	25	60	26	62	28
Navicula	48	24	49	22	52	23	52	22	52	22	52	25	53	26	50	22	50	24	53	25	51	20	52	24	54	22	50	24	46	26
Nitzchia	10	12	12	10	10	12	15	09	10	12	20	15	13	10	15	20	-	-	12	06	-	-	8	10	-	-	12	10	12	14
Total	142	78	173	81	182	79	185	80	181	85	192	90	188	83	180	86	169	66	183	73	167	71	175	70	173	75	176	88	173	93
Euglenophyceae																														
Englena	45	35	36	27	45	22	50	25	48	25	50	25	52	34	46	26	56	21	44	26	46	20	43	28	40	20	38	15	42	24
Phacus	20	15	18	20	20	18	23	12	22	15	22	15	20	21	24	13	24	17	16	12	24	15	22	16	22	15	25	20	28	22
Total	65	50	54	47	65	40	63	37	70	40	72	40	62	55	70	39	84	38	60	34	70	35	65	44	62	35	63	35	70	40
Monthly Total Density	504	361	392	380	541	402	556	426	567	419	598	390	589	352	535	364	571	358	537	345	525	332	530	346	503	320	539	355	505	31

Volume 6 Issue 9, September 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Graph 4(A, B, C): Graph showing seasonal variation in phytoplankton density (org/l) at 5 different sampling stations of river Narmada (July 2011 to Sept. 2011)