Stability and Data Dependence Results for the Jungck-T-CR Iterative Scheme

Jamil-Zeana, Zaki¹, Abdulateef-Assma, Khaldoon²

University of Baghdad-College of Science-Department of Math-Baghdad-Iraq
¹ zeana.zaki[at]scbaghdad.edu.iq ² asmakaldi[at]yahoo.com

Abstract: In this paper, we establish improved results about stability and data dependence for the Jungck-T-CR iterative scheme.

Keywords: Jungck-T-CR iterative scheme, stability, data dependency

1. Introduction and Preliminaries

In [8], we define Jungck-T-CR iteration as follows:

Definition (1, 1)[8]:

Let B be a Banach space and C be a nonempty subset of B. Let $T, S : C \to C$ be two self mappings such that $T(C) \subseteq S(C)$. For $u_0 \in C$ the Jungck-T-CR iterative scheme is the sequence $\{S_{n+1}\}_{n=1}^{\infty}$ is defined by:

\[
\begin{align*}
S_{n+1} &= T[(1 - \alpha_n)Su_n + \alpha_nTv_n] \\
S_n &= T[(1 - \beta_n)Tu_n + \beta_nTw_n] \\
Sw_n &= T[(1 - \gamma_n)Su_n + \gamma_nTu_n], n \in \mathbb{N}
\end{align*}
\] (1.1)

where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are real sequences in $[0, 1]$ such that $\sum_{n=1}^{\infty} \alpha_n = \sum_{n=1}^{\infty} \beta_n = \sum_{n=1}^{\infty} \gamma_n y_n = \infty$.

Thus in 1996 Jungck et. al. [6] introduced the concept of coincidence point and depending on it, in 1998, Jungck and Rhoades [7] defined the notion of weakly compatible and showed that compatible mappings are weakly compatible but the converse is not true.

Definition (1.2) [7]:

Let B be a Banach space and , $T, S : B \to B$. A point $u^* \in B$ is called a coincidence point of a pair of self mappings T, S if there exists a point x (called a point of coincidence) in B such that $x = Su^* = Tu^*$. Two self mappings S and T are weakly compatible if they commute at their coincidence points, that is if $Su^* = Tu^*$ for some $u^* \in B$ then $STu^* = TSu^*$. And the point $u^* \in B$ is called common fixed point of S and T if $u^* = Su^* = Tu^*$.

$C(S, T)$ denotes the set of coincidence points of S and T.

In 2005, Singh et. al. [5] significantly improved on the result of Jungck [2] when he proved the following result which is now called Jungck-contraction principle.

Theorem (1.3) [5]:

Let (X, d) be a metric space. Let $T, S : X \to X$ satisfying $d(Tx, Ty) \leq \delta d(Sx, Sy), 0 \leq \delta < 1$, for all $x, y \in X$. $T(X) \subseteq S(X)$ and $S(X)$ or $T(X)$ is a complete subspace of X, then S and T have a coincidence. Indeed, for any $x_i \in X$, there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in X such that

1. $Sx_{n+1} = Tx_n, n = 1, 2, ...$
2. $\{Sx_n\}_{n=1}^{\infty}$ converges to Su^*, for some $u^* \in X$, and $Su^* = Tu^*$ that is S and T have a coincidence at u^*.

Further, if S, T commute (just) at u^* then S and T have a unique common fixed point.

Remark (1.4):

If $S = id$ (identity mapping), then the Jungck-contraction mapping

\[
d(Tx, Ty) \leq \delta d(Sx, Sy), 0 \leq \delta < 1\] (1.2)

Volume 6 Issue 8, August 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
is the same as the well known the contraction mapping.

The following definition will be needed in the sequel.

Definition (1.5), [1]:

Let X be a Banach space, C be a nonempty closed convex subset of X. A self mapping $T : C \to C$ is said to be **nonexpansive** if for all x, y in C, we have

$$
\|Tx - Ty\| \leq \|x - y\|
$$

(1.3)

Furthermore T is called **quasi-nonexpansive** if $y = u^*$ provided T has a fixed point in C and if $u^* \in C$ is a fixed point of T, then

$$
\|Tx - Tu^*\| \leq \|x - u^*\|
$$

(1.4)

is true for all $x \in C$.

Lemma (1.6), [6]:

Let $\{a_n\}_{n=1}^\infty$ be a nonnegative sequence for which one assumes there exists $n_1 \in \mathbb{N}$, such that for all $n \geq n_1$ one has satisfied the inequality

$$
a_{n+1} \leq (1 - \lambda_n)a_n + \lambda_n\rho_n
$$

where $\lambda_n \in (0,1)$, for all $n \in \mathbb{N}$, $\sum_{n=1}^\infty \lambda_n = \infty$ and $\rho_n \geq 0$, for all $n \in \mathbb{N}$. Then the following inequality holds

$$
\lim \sup a_n \leq \lim \sup \rho_n
$$

The following lemma will be needed in the next theorem.

Lemma (1.7), [7]:

Let $\{\tau_n\}_{n=1}^\infty$ and $\{\rho_n\}_{n=1}^\infty$ be nonnegative real sequences satisfying the following inequality:

$$
\tau_{n+1} \leq (1 - \lambda_n)\tau_n + \rho_n,
$$

where $\lambda_n \in (0,1)$ for all $n \geq n_1$, $\sum_{n=1}^\infty \lambda_n = \infty$ and $\rho_n \to 0$ as $n \to \infty$. Then $\lim_{n \to \infty} \tau_n = 0$.

2. **Stability**

In the next theorem, we prove that the Jungck-T-CR (1.1) is stable with respect to (S,T).

Theorem (2.1):

Let C be a nonempty closed convex subset of a Banach space B, $S, T : C \to C$ be two self-mappings satisfying Jungck-contraction condition (1.2) provided that S is quasi-nonexpansive mapping (1.4) as well, assume $T(C) \subseteq S(C)$, let $\{Su_n\}_{n=1}^\infty$ be the Jungck-T-CR iterative scheme (1.1) converges to u^* such that $\sum_{n=1}^\infty \alpha_n = \sum_{n=1}^\infty \beta_n = \sum_{n=1}^\infty \gamma_n = \infty$. Then the Jungck-$T$-CR iterative scheme is stable with respect to (S,T).

Proof:

Let $\{Su_n\}_{n=1}^\infty$ converges to u^* and $\{Sa_n\}_{n=1}^\infty$ be an arbitrary sequence in C.

Define $\varepsilon_n = \|Sa_{n+1} - T[(1 - \alpha_n)Sb_n + \alpha_n Tb_n]\|$ where

$$
Sb_n = T[(1 - \beta_n)Ta_n + \beta_n Tc_n]
$$

$$
Sc_n = T[(1 - \gamma_n)Sa_n + \gamma_n Ta_n]
$$

Now for some $0 \leq \delta < 1$ such that

$$
\|Tx - Ty\| \leq \delta\|x - y\|
$$

then

Put $q_n = T[(1 - \alpha_n)Sb_n + \alpha_n Tb_n]$ we get
We have that

Now suppose that By hypothesis we have

Substituting

(2.1)

On the other hand

Also, we get

(2.2)

Substituting (2.1) and (2.2) in (2.3), we have:

(2.3)

By hypothesis we have \(\lim_{n \to x} \epsilon_n = 0 \) and \(\alpha_n, \beta_n, \gamma_n, \delta \in [0,1) \) then using Lemma (1.7) we get \(\lim_{n \to x} \| S_{a_n} - u^* \| = 0 \).

Hence, we get \(\lim_{n \to x} S_{a_n} = u^* \).

Now suppose that \(\lim_{n \to x} S_{a_n} = u^* \) and we have to show that \(\lim_{n \to x} \epsilon_n = 0 \).

We have that

\[
\epsilon_n = \| S_{a_{n+1}} - u^* \| = \| S_{a_{n+1}} - q_n + q_n - u^* \| \\
\leq \| S_{a_{n+1}} - q_n \| + \| q_n - u^* \| \\
= \| S_{a_{n+1}} - T[(1 - \alpha_n)Sb_n + \alpha_n Tb_n] \| \\
+ \| T[(1 - \alpha_n)Sb_n + \alpha_n Tb_n] - u^* \| \\
\leq \epsilon_n + \| T[(1 - \alpha_n)Sb_n + \alpha_n Tb_n] - u^* \| \\
\leq \epsilon_n + \delta \| S[(1 - \alpha_n)Sb_n + \alpha_n Tb_n] - u^* \| \\
\leq \epsilon_n + \delta \| (1 - \alpha_n)Sb_n + \alpha_n Tb_n - u^* \| \\
\leq \epsilon_n + \delta (1 - \alpha_n)\| Sb_n - u^* \| + \alpha_n \delta \| Tb_n - u^* \| \\
\leq \epsilon_n + \delta (1 - \alpha_n)\| Sb_n - u^* \| + \alpha_n \delta \| Tb_n - u^* \| \\
\leq \epsilon_n + \delta (1 - \alpha_n(1 - \delta))\| Sb_n - u^* \| \\
\text{(2.1)}
\]

\[
\| S_{b_n} - u^* \| = \| T[(1 - \beta_n)Ta_n + \beta_n Tc_n] - u^* \| \\
\leq \| T[(1 - \beta_n)Ta_n + \beta_n Tc_n] - u^* \| \\
\leq \| (1 - \beta_n)Ta_n + \beta_n Tc_n - u^* \| \\
\leq \| (1 - \beta_n)Ta_n - u^* \| + \beta_n \delta \| Tc_n - u^* \| \\
\leq \| (1 - \beta_n)Ta_n - u^* \| + \beta_n \delta \| Tc_n - u^* \| \\
\text{(2.2)}
\]

\[
\| S_{c_n} - u^* \| = \| T[(1 - \gamma_n)Sa_n + \gamma_n Ta_n] - u^* \| \\
\leq \| T[(1 - \gamma_n)Sa_n + \gamma_n Ta_n] - u^* \| \\
\leq \| (1 - \gamma_n)Sa_n + \gamma_n Ta_n - u^* \| \\
\leq \| (1 - \gamma_n)Sa_n - u^* \| + \gamma_n \delta \| Ta_n - u^* \| \\
\leq \| (1 - \gamma_n)Sa_n - u^* \| + \gamma_n \delta \| Ta_n - u^* \| \\
\leq \| (1 - \gamma_n(1 - \delta))\| Sa_n - u^* \| \\
\text{(2.3)}
\]

By hypothesis we have \(\lim_{n \to x} \epsilon_n = 0 \) and \(\alpha_n, \beta_n, \gamma_n, \delta \in [0,1) \) then using Lemma (1.7) we get \(\lim_{n \to x} \| S_{a_n} - u^* \| = 0 \).

Hence, we get \(\lim_{n \to x} S_{a_n} = u^* \).

Now suppose that \(\lim_{n \to x} S_{a_n} = u^* \) and we have to show that \(\lim_{n \to x} \epsilon_n = 0 \).

We have that
Proof: Let $\epsilon_n = \lim_{n \to \infty} \epsilon_n = \lim_{n \to \infty} \|S_{a_{n+1}} - T[(1 - \alpha_n)Sb_n + \alpha_n Tb_n]\| = 0$. Then the Jungck-T-CR iterative scheme (1.1) is stable with respect to (S, T).

3. Data Dependence Result

In the following theorem, we establish the data dependence result of Jungck-T-CR iterative scheme (1.1).

Theorem (3.1):

Let X be a Banach space, C be a nonempty closed convex subset of X and $(S, T): C \to C$, be an approximate mapping of the pair $(S, T): C \to C$ satisfying Jungck-contraction condition (1.2) provided S is a nonexpansive mapping (1.3). Suppose that $T(C) \subseteq S(C)$ and $T(C) \subseteq S(C)$ such that

$$\|Tx - \tilde{T}x\| \leq \epsilon_1, \|Sx - \tilde{S}x\| \leq \epsilon_2 \text{ for all } x \in C \quad (3.1)$$

Let $z \in C(S, T)$ and $\tilde{x} \in C(S, \tilde{T})$ be the coincidence points of S, T and \tilde{S}, \tilde{T} respectively that is $Sz = Tx = u^*$ and $\tilde{S}z = \tilde{T}z = \tilde{u}^*$. Let $(S_{u_n})_{n=1}^\infty$ be the Jungck-T-CR iterative scheme generated by (1.1) with

1. $\frac{1}{2} < \beta_n \gamma_n \text{ for all } n \in N$.
2. $\sum_{n=1}^\infty \beta_n \gamma_n = \infty$.

Let $(\tilde{S}_{\tilde{u}})_{n=1}^\infty$ be a sequence defined by

$$\tilde{u}_n = X \quad \tilde{S}_{\tilde{u}_{n+1}} = \tilde{T}[(1 - \alpha_n)\tilde{S}_{\tilde{u}_n} + \alpha_n \tilde{T}_{\tilde{u}_n}]$$
$$\tilde{S}_{\tilde{u}_n} = \tilde{T}[(1 - \beta_n)\tilde{T}_{\tilde{u}_n} + \beta_n \tilde{T}_{\tilde{u}_n}]$$
$$\tilde{S}_{\tilde{u}_n} = \tilde{T}[(1 - \gamma_n)\tilde{S}_{\tilde{u}_n} + \gamma_n \tilde{T}_{\tilde{u}_n}], \quad n \in N \quad (3.2)$$

Assume that $(S_{u_n})_{n=1}^\infty$ and $(\tilde{S}_{\tilde{u}_n})_{n=1}^\infty$ converges to u^* and \tilde{u}^* respectively. Then we have

$$\|u^* - \tilde{u}^*\| \leq \frac{9\epsilon_1 + 4\epsilon_2}{1 - \delta}$$

Proof: It follows from Jungck-T-CR iteration (1.1) and Jungck-contraction condition (1.2), (3.1) and (3.2) that

$$\|S_{u_{n+1}} - \tilde{S}_{\tilde{u}_{n+1}}\| = \|T[(1 - \alpha_n)Sv_n + \alpha_n Tv_n] - \tilde{T}[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]\|$$

Put $q_n = T[(1 - \alpha_n)Sv_n + \alpha_n Tv_n]$ and

$$r_n = \tilde{T}[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]$$

then we have:

$$\|S_{u_{n+1}} - \tilde{S}_{\tilde{u}_{n+1}}\| = \|q_n - r_n + r_n - \tilde{T}[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]\|$$

$$\leq \|q_n - r_n\| + \|r_n - \tilde{T}[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]\|$$

$$+ \|\tilde{T}[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n] - \tilde{T}[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]\|$$

$$\leq \delta \|S[(1 - \alpha_n)Sv_n + \alpha_n Tv_n] - S[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]\| + \epsilon_1$$

$$\leq \epsilon_1$$

$$+ \delta \|S[(1 - \alpha_n)Sv_n + \alpha_n Tv_n] - S[(1 - \alpha_n)S\tilde{v}_n + \alpha_n \tilde{T}\tilde{v}_n]\|$$

Volume 6 Issue 8, August 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2008
\[
\begin{align*}
&\leq \epsilon_1 + \delta(1 - \alpha_n) \| S v_n - S \tilde{v}_n \| + \alpha_n \delta \| T v_n - T \tilde{v}_n \| \\
&+ \alpha_n \delta \| T v_n - T \tilde{v}_n + T \tilde{v}_n - T \tilde{v}_n \|
\end{align*}
\]
Therefore
\[
\| S u_{n+1} - S \tilde{u}_{n+1} \| \leq (1 + \alpha_n \delta) \epsilon_1 + \delta(1 - \alpha_n) \| S v_n - S \tilde{v}_n \|
\]
Also
\[
\| S v_n - S \tilde{v}_n \| = \| T[(1 - \beta_n) T u_n + \beta_n T w_n] - T[(1 - \beta_n) T \tilde{u}_n + \beta_n T \tilde{w}_n] \|
\]
Put \(a_n = T[(1 - \beta_n) T u_n + \beta_n T w_n] \) and
\[
\| S v_n - S \tilde{v}_n \| \leq \| a_n - b_n + b_n - T[(1 - \beta_n) T \tilde{u}_n + \beta_n T \tilde{w}_n] \|
\]
Therefore
\[
\| S v_n - S \tilde{v}_n \| \leq \epsilon_1 + \delta^2(1 - \beta_n) \| S u_n - S \tilde{u}_n \| + \delta(1 - \beta_n) \epsilon_1
\]

\[
\text{International Journal of Science and Research (IJSR)}
\]
\[
\text{www.ijsr.net}
\]
\[
\text{Licensed Under Creative Commons Attribution CC BY}
\]

Volume 6 Issue 8, August 2017

78.96 | Impact Factor (2015): 6.391

DOI: 10.21275/ART20176352

2009

But
\[\|S\bar{u}_n - S\tilde{u}_n\| = \|T[(1 - \gamma_n)Su_n + \gamma_n Tu_n] - T[(1 - \gamma_n)\bar{S}u_n + \gamma_n \bar{T}u_n]\| \]
Put \(a_n = T[(1 - \gamma_n)Su_n + \gamma_n Tu_n] \) and
\[b_n = T[(1 - \gamma_n)S\bar{u}_n + \gamma_n \bar{T}u_n] \] we get
\[\|S\bar{u}_n - S\tilde{u}_n\| = \|a_n - b_n + b_n - T[(1 - \gamma_n)\bar{S}u_n + \gamma_n \bar{T}u_n]\| \]
\[+ \|T[(1 - \gamma_n)S\bar{u}_n + \gamma_n \bar{T}u_n] - T[(1 - \gamma_n)S\bar{u}_n + \gamma_n \bar{T}u_n]\| \]
\[\leq \varepsilon_1 + \delta\|S[(1 - \gamma_n)Su_n + \gamma_n Tu_n] - S[(1 - \gamma_n)\bar{S}u_n + \gamma_n \bar{T}u_n]\| \]
\[\leq \varepsilon_1 + \delta\|(1 - \gamma_n)Su_n + \gamma_n Tu_n - (1 - \gamma_n)S\bar{u}_n - \gamma_n \bar{T}u_n\| \]
\[\leq \varepsilon_1 + \delta(1 - \gamma_n)\|Su_n - S\bar{u}_n\| + \delta\gamma_n\|Tu_n - \bar{T}u_n\| \]
\[\leq \varepsilon_1 + \delta(1 - \gamma_n)\|Su_n - S\bar{u}_n\| + \delta\gamma_n\|Tu_n - \bar{T}u_n\| \]
(3.5)
Substituting (3.3) and (3.4) in (3.5), we get:
\[\|S\bar{u}_{n+1} - S\tilde{u}_{n+1}\| \leq \left[(1 + \alpha_n)\varepsilon_1 + \alpha_n\varepsilon_2 + \delta[1 - \alpha_n(1 - \delta)] \right] \]
\[\left[+ (1 + \delta)\varepsilon_1 + \delta^2\varepsilon_2 + \delta^2(1 - \beta_n)\|Su_n - S\bar{u}_n\| \right] \]
\[+ \varepsilon_1[1 + \alpha_n\delta + 1 + \delta + \beta_n\delta^2(1 + \gamma_n\delta)] \]
\[+ \varepsilon_1[2 + (\alpha_n + 1)\delta + \beta_n\delta^2(1 + \gamma_n\delta)] \]
\[+ \varepsilon_1(\alpha_n + 1)\delta^2 + \beta_n\gamma_n\delta^4 \]
\[+ \varepsilon_1[1 - \beta_n(1 - \delta) - \beta_n\gamma_n\delta(1 - \delta)]\|Su_n - S\bar{u}_n\| \]
(3.6)
Since \(\alpha_n, \beta_n, \gamma_n \in [0,1] \) and \(\frac{1}{2} < \beta_n \gamma_n \) for all \(n \in \mathbb{N} \) and using of the fact \(\delta \in (0,1) \) in (3.6)
Yields:
\[\|S\bar{u}_{n+1} - S\tilde{u}_{n+1}\| \leq \|1 - \beta_n\gamma_n(1 - \delta)\|\|Su_n - S\bar{u}_n\| \]
(3.7)
Put
\[a_n = \|Su_n - S\bar{u}_n\| \]
\[\lambda_n = \beta_n\gamma_n(1 - \delta) \in (0,1) \]
\[\rho_n = \frac{9\varepsilon_1 + 4\varepsilon_2}{1 - \delta} \]
Hence, the inequality (3.7) perform all assumptions in lemma (1.6) and thus an application of lemma (1.6) to (3.7) yields
\[0 \leq \lim_{n \to \infty} \sup \|S\bar{u}_n - S\tilde{u}_n\| \]
\[\leq \lim_{n \to \infty} \sup \frac{9\varepsilon_1 + 4\varepsilon_2}{1 - \delta} \]
Since \(\lim_{n \to \infty} S\bar{u}_n = u^* \) and \(\lim_{n \to \infty} S\tilde{u}_n = \bar{u}^* \), then
\[\|u^* - \bar{u}^*\| \leq \frac{9\varepsilon_1 + 4\varepsilon_2}{1 - \delta} \]
References

