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Abstract: This paper concerns with the convergence and rate of convergence of Jungck-T-CR iterative procedure. We show that the
previous iteration converges to a unique common fixed point when applied to a pair of Jungck-contraction mappings under certain
condition. Also, we compare the speed of various Jungck-iterative schemes with Jungck-T-CR iterative procedure for a pair of Jungck-

contraction mappings under certain condition.
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1. Introduction and Preliminaries

In 1976, Jungck [4] generalized Banach's contraction
principle using the concept of commuting mappings which
was given by Pfeffer [9] but Jungck has introduced it in
more general context.

Proposition (1.1) [4]:

Let S be a mapping on a set X into itself. Thus S has a fixed
point if and only if there is a constant mapping T: X — X
which commutes with
(i. e.,T(S(x)) = S(T(x)) forallx € X) .

Hence Jungck [4] has used this proposition and produced his
theorem of common fixed point.

Theorem (1.2) [4]:

Let S be a continuous mapping of a complete metric space
(X, d) into itself. Then S has a fixed point in X if and only if
there exists 6 € (0,1) and a mapping T:X —» X which
commutes with S and satisfies

T(X) c S(X) and d(Tx, Ty) < 6d(Sx,Sy) *)

For all x,y € X. Indeed S and T have common fixed point if
(*) holds.

And in 1986, Jungck [5], introduced more generalized
commuting mappings, called compatible mappings which
are useful for obtaining common fixed points of mappings.

Definition (1.3) [5]:

Let (X,d) be a metric space, T,S:X — X are said to be
compatible if

lim,, Lo, d(TS(x,),ST(x,)) = 0

where {x,}7—, is a sequence such that lim,_. Tx, =
lim, ., Sx, =t forsome t € X.

Thus in 1996 Jungck et. al. [6] introduced the concept of
coincidence point and depending on it , in 1998, Jungck and
Rhoades [7] defined the notion of weakly compatible and
showed that compatible mappings are weakly compatible
but the converse is not true.

Definition (1.4) [7]:

Let B be a Banach space and , T,S:B — B. A pointu® € B
is called a coincidence point of a pair of self mappings T, S
if there exists a point z (called a point of coincidence) in B
such that z = Su* = Tu*. Two self mappings S and T are
weakly compatible if they commute at there coincidence
points, that is if Su* = Tu" for some u* € B then STu* =
TSu*. And the point u* € B is called common fixed point of
Sand T ifu™ = Su* = Tu".

C(S,T) denotes the set of coincidence points of S and T.

In 2005, Singh et. al. [10] significantly improved on the
result of Jungck [4] when he proved the following result
which is now called Jungck-contraction principle.

Theorem (1.5) [10]:

Let (X,d) be a metric space. Let T,S:X — X satisfying

d(Tx,Ty) < 6d(Sx,Sy), 0<6<1, for all x,yeX.

T(X) € S(X) and S(X) or T(X) is a complete subspace of

X, then S and T have a coincidence. Indeed, for any x; € X,

there exists a sequence {x,, }o—; in X such that

1 Sx1=Tx,,n=12,-

2. {Sx,}¥_; converges to Su* for some u* in X, and
Su* = Tu" thatis S and T have a coincidence at u*.

Further, if S,T commute (just) at u* then S and T have a

unique common fixed point.

Remark (1.6):
If S =id (identity mapping), then the Jungck-contraction

mapping
d(Tx,Ty) < 8d(Sx,Sy),0<5 <1
is the same as the well known the contraction mapping.

(1.1)

Olatinwo et. al. [8] introduced Jungck-Ishikawa iterative
scheme and proved its convergence of the coincidence point
of a pair of certain mappings with the assumption that one of
the pair of mappings is injective. Its iterative scheme is
defined as follows:

Definition (1.7) [8]:

Let B be a Banach space and C be a nonempty subset of B.
Let T,S:C — C be two self mappings such that T(C) €
S(C). For g, € C the Jungck-Ishikawa iterative scheme is
the sequence {Sq, };>—; defined by

Sqns1 = (1 — @,)Sq, + a,Tr,
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Srn = (1 - Bn)sqn + .Bannl neN (12)
where {a, }—; and {8, };>—, are real sequences in [0,1) such
that Y'»°_; a,, = co.

Hussain et. al. [3] introduced the Jungck-CR iterative
scheme and proved its convergence to a unique common
fixed point of a pair of certain mappings without assuming
the injectivity of any of the mappings but rather they proved
their results for a pair of weakly compatible mappings S,T.

Definition (1.8) [3]:
Let B be a Banach space and C be a nonempty subset of B.
Let T,S:C — C be two self mappings such that T(C) <
S(C). For ay € C, the Jungck-CR iterative scheme is the
sequence {Sa, }»_, defined by
Sa,;1 =1 —a,)Sbh, + a,Th,
Sbn = (1 - .Bn)Tan + .BnTCn

Sc, =(1—-v,)Sa, +y,Ta, n €N (1.3)
where {a,}—1, {Bu}o=q and {y, }o-, are real sequences in
[0,1) such that }'>°_; a,, = 0.
Recently, Badri [1] defined the following Jungck-Picard-S
iterative scheme.

Definition (1.9) [1]:
Let B be a Banach space and C be a nonempty subset of B.
Let T,S:C — C be two self mappings such that T(C) <
S(C). For x; € C, the Jungck-Picard-S iterative scheme is
the sequence {Sx, }=—, defined by
an+1 = Tyn
Syn = (1= B)Txy + BTz,

Sz, =1 —y,)Sx, +y,Tx, n €N (1.4)
where {8,}>_; and {y, }>_; are real sequences in [0,1) such
that Z‘;.lo=1 ﬂnyn = .

In [12], we define T-CR iteration as follows:

Definition (1.10) [12]:

Let C be a nonempty closed convex subset of a Banach
space X and T:C—»C be a self-mapping with
{a, Yo, {B )= and {y, 3>, are real sequences in [0,1]
such that Y»°_; @, = oo. The T-CR iterative scheme {u, }i—,
is defined by:

u €C

Unt1 = T[(l - 0_’”)17” + anTvn]

vy = T[(1 = BTy + B TW,]

Wy = T[(l - Vn)un + VnTunL n €N

In this section, we define Jungck-T-CR iteration as follows:

Definition (1.11):
Let B be a Banach space and C be a nonempty subset of B.
Let T,S:C — C be two self mappings such that T(C) <
S(C). Foruy € C the Jungck- T-CR iterative scheme is the
sequence {Su, };_; is defined by:
Sun+1 = T[(l - an)Svn + anTvn]
Svp, = T[(l - ﬂn)Tun + .BnTWn]
SWn = T[(l - Vn)sun + ynTun]n

neN (1.5)
where {a,}r_1, {Bn)r=1 and {y, }o—; are real sequences in
[011] SUCh that Z‘;?=1 an = 2:10:1 .Bn = Z:LO:I .Bn)/n = .
The following definition will be needed in the sequel.

Definition (1.12), [2]:
Let X be a Banach space, C be a nonempty closed convex
subset of X . A self mapping T:C — C is said to be
nonexpansive if for all x,y in C, we have

ITx — Tyll < llx = yll
Furthermore T is called quasi-nonexpansive if y =u"
provided T has a fixed point in € and if u* € C is a fixed
point of T, then

ITx — Tu*ll < [lx —w’l (1.6)
is true for all x € C.
2. Convergence of Jungck-T-CR Iterative

Procedure

In this section, we study the convergence of Jungck-T-CR
iteration (1.5) when applied to Jungck-contraction mapping
(1.1) under certain condition.

Theorem (2.1):

Let C be a nonempty closed convex subset of a Banach
space B, S,T:C — C be two self-mappings satisfying
Jungck-contraction condition (1.1) provided that S is quasi-
nonexpansive mapping (1.6) as well, assume T(C) < S(C)
and S, T are weakly compatible, suppose that there exists a
z € C(S,T) be the coincidence points of S,T such that
Sz =Tz =u". Let {Su,};—; be the Jungck- T-CR iterative
scheme generated by (1.5), where {a,}r-;, {B.}=1 and
{va}7-, are real sequences in [0,1] satisfying Yo ; a, =
n=1c0fn=n=I1cofnyn=c0.Then the Jungck- 7:CR
iterative scheme {Su, }7_; converges to a unique common
fixed point u* of S, T.

Proof:
It follows from (1.1) and (1.2) that:
”Sun+l - u*” = “T[(1 - an)svn + anTUn] - u*”
<6|IS[(1 — a,)Sv, + a,, Tv,] —u’||
<J|(d - a,)Sv, +a,Tv, —u*||
<61 - a)lSv, — Wl + a6l Tv, —u’l|
<81 - a)lISv, — W'l + @, 8ISy, — u’l
=[1-a,(1—=8]lSv, —u'll (2.1)
”Svn - u*” = “T[(1 - .Bn)Tun + ,BnTWn] - u*”
< 6“5[(1 - .Bn)Tun + ,BnTWn] - u*”
< 6”(1 - ﬁn)Tun + .BnTWn - ‘Ll*”
<81 - BIITuy — ull + Bu6lITW, — u’l|

< 8% = BlISu, — W'l + B, 8% 1ISw,, — u*l (2.2)
ISw, —u’ll = IT[(1 = y)Su, + v, Tup ] — 'l
< SISIA = y)Sup + ¥ T, ] — u'||
< 6”(1 - yn)Sun + ynTun - u*”
< 6(1 - Yn)llsun - u*” + yn(S”Tun - 'Ll*”
<61 -y, (1 = OISu, —u”ll (2.3)

It follows from (2.1), (2.2) and (2.3) that

ISun 1 —wll < 8%[1 — a, (1 = )IA = B)lISw, — |l
+68*B,[1 — @, (1 = OI[1 =y, A = O]lISu, — u’ll
<61 -a,(1-98)]

A1 =By (1 = 8) = Buyn6(1 = O]lISu, — |l

And so on, we get:
ISun 41 — w'll < 83CHD ISy — u||
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] - wa - o -pa -6 - s - o)
= 2.3)

< 830 +D||Sy, — u*”e—(l—ﬁ)Zf:l ag=1=8) =1 Br—(1=8) X1 Bivk

Since0 <8 <1,Y% a, =00,32 B, =oc0and X2, By ¥ = 0050 §30+D e~ (1=0) Xy ag=(1-8) Tizy B~ (1=0) B Buvke -
0 asn — oo. Which implies that lim,, ., ||Su,, — u*|| = 0.

Therefore, {Su, };—; converges to u*.
Now, we will prove u* is the unique fixed point of S, T.

Suppose that there exist two points of coincidence z; ,
z, € C(S,T) such that Sz; =Tz =uj and Sz, =Tz, =
u.

Using condition (1.1), we have
0 <lluj —wsll = ITz, — Tzl

< 615z — Szl
0 < [luf —usll = é8llui —usl
which leads (1 — &)|luj —u3|l < 0,since0 <6 <1
from which it follows that ||uj — u3|| = 0, that is uj = uj.
Now, since S, T are weakly compatible and u* =Tz = Sz
then Tu* = TTz = TSz = STz. Hence Tu* = Su”.
Therefore, Tu* is a point of coincidence of S,T but the
coincidence point is unique, so u* =Tu*. Thus Tu" =
Su* = u*. Therefore u* is the unique common fixed point of
S,T.

3. Rate of Convergence
Iterative Procedure

of Jungck-T-CR

We now compare the speed of Jungck- T -CR iterative
scheme (1.5) and the speed of Jungck-CR (1.3), Jungck-
Ishikawa (1.2) and Jungck-Picard-S (1.4) iterative schemes
by the following theorem.

Theorem (3.1):

Let C be a nonempty closed convex subset of a Banach
space B, S,T:C —» C be two self-mappings satisfying
Jungck-contraction condition (1.1) provided that S is quasi-
nonexpansive mapping (1.6) as well, assume T(C) € S(C),
let {Sun}z):l’ {San};ozlr {Sqn};.lozl and {an};ozl be the
Jungck- T -CR iterative scheme (1.5) and the speed of
Jungck-CR (1.3), Jungck-Ishikawa (1.2) and Jungck-
Picard-S (1.4) iterative schemes respectively satisfying
1imn—>oo an = limn—mo ﬂn = limn—mo anﬁn = gl_)rgﬁnyn =0.
Then {Su,};—, converges to u* faster than {Sa,};—;,
{Sqn}7=1 and {Sx, }7-, do.

Proof:
From inequality (2.3), we have

1Sty 4y — w'll < 83O D)ISuy — W[ Tl [1 — @ (1 — $][1 -

Lr1—0—=Fhykd1—0(3.1)
From Jungck-CR iteration (1.3) and Jungck-contraction
condition (1.1), it is easy to get that:
IS@p 1 — wll < §@DITE_[1 — (1 = $][1 -
Lhykl—dSal—u* (3.2)
Using (3.1) and (3.2), we obtain:
1Supn 41 —u"ll
[ISap 41 —u*ll =
§3 D 1 -a (1=8)I[1-B) (1-8) —Bieysc 8 (1=6)]lISus —u”|
SOV [1-ay (1-8)I1-Bryr 1-O)]lISar—u"|

= §2@+0 [ [1—a (1=8)1[1-B) (1-8)—Biyk S 1-8)lISus —u*|
k=1 [1—05k(%—5)][(1—ﬁk)1]’f(1—5()]”5(1)1—71*” ]
. — 2(n+1) n 1—ay 1-6 l—ﬁk 1-6 —ﬁk}/k5 1-6
Define 6, = & M= [1-a(1-&)[1-B v (1-6)]

By the assumption

lim,, 0, 92“ =

limn—ood2(n+2)k=1n+11—akl—J01—Lk1—0—LFrykd1

—J1—akl—J01-Lfhyk1—002(n+1k=1nl—akl—51—/(%k

1—-0—fhykd1—S81—akl—01-Frykl—JS

S[1-Pn+1(1=8)=8Bn+17n+1(1=9)]
[1-Bn+1¥Yn+1(1-8)]

= lim
n—00
=i<1
Thus it follows from ratio test that };_, 6,, < c0. Hence,
we have lim, ., 6, = 0 which implies that the iterative
sequence defined by Jungck- T-CR (1.5) converges to u*
faster than the iterative sequence defined by Jungck-CR
iteration method (1.3).

From Jungck-Ishikawa iterative scheme (1.2) and Jungck-
contraction condition (1.1), we obtain:
1Sqn 41 —u'll = 11 — @,)Sqn + @, Tr, — |
<@ =a)llSq, —ull + anlITr, —u”l|
< A= a)llSq, —ull + a,6llSr —u’l
(3.3)
57 —w'll =11 = B.)Sqn + BuTqn — w'll
< (1 _.Bn)“Sqn - u*” + .Bn”an - u*”
< (1 _.Bn)“Sqn - u*” + .Bn6||5qn - u*”
<[1-B.1-0lSq, —ull
(3.4)

Substituting (3.4) in (3.3), we have:
1SGn+1 —uwll <= (1 = @)lISq, — i
+a,6[1 = B, (1 — O)]lISq, — vl
= [1 - an(l - 6) - anﬁn6(1 - 5)]”5% -
U*
Repeating this process n times, we get
1SGns1 — Il < [Tk=1[1 — (1 = &) — B 6(1 —
OSg1—u* (3.5)
Using (3.1) and (3.5), we have
ISun+1—u"|l
ISqni1—ull =
§3CHD MR 1~y (1=8)][1-B1 (1=8) =By 18 (1=O)]lISuq —u "l
H’;:l[l—ak(1—6)—akﬁ[k8(1—(5)lll~)9]q[1—u*ll( ) o)
. _ 1 n 1-a,(1-8)][1-B(1-8)—Bryrd(1-5
Define 6, = 6> [Ty~ o -arprai—o)

By the assumption

lim,, 4 92—“ =
limz—cod3n+2f=1n+11—akl—J51—fk1——frykd1—S
1—akl—0—akfhdl—003n+1k=1nl—akl—561—-Frk1—J
—LhykS1—01—akl—S—akfhd1—J

83 1—ap41(1=8)[1—Frn+1(1=8)—Br+1¥n+18(1-5)]
[1-an41(1-8)—an41Bn+16(1-5)]
=8<1

= lim

n—oo
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Thus it follows from ratio test that >';°_; 6,, < o. Hence,
we have lim,,_, 8,, = 0 which implies that the iterative
sequence defined by Jungck- T-CR (1.5) converges to u*
faster than the iterative sequence defined by Jungck-
Ishikawa iteration method (1.2).

From Jungck-Picard-S iterative scheme (1.4) and Jungck-
contraction condition (1.1), we have obtained the following
inequality:
1% 41 — wll < 82 DR = Beyie (X = &)]NSx; — u”|l
(3.6)
From inequality (3.1) and (3.6), we have:
ISun +1—u”ll
ISy +1—u*ll —
$3 D [1-a) (1=8)I[1-B (1-8) By 8 (1=6)lISu1 —u”||

S20AD T [1-Bpv i A=8)]lISx1—u*||

= 5m+D) I [1-a) (1-8)][1-Bk (1-8) =iy 6 (1=6)]lISui—u”|l
le=1 [;—ﬂky(k(1—)z;%]||5x1(—u*||) .
H - (Tl+1) n 1—ak 1-68 1—ﬁk 1-6 —ﬁk}/kﬁ 1-6
Define 6, = & | DBy e ()]

By the assumption
lim,_,, 2241 =

n-—0o gn
limn—codn+2k=1n+11—akl1—J51—fk1—5—LFhkykd1—J1
—Lhyk1—00n+1k=1nl—akl—J51—LFk1—5—Fhykd1—J1
—Lhyk1—J

=40<1

Thus it follows from ratio test that };°_; 6,, < o. Hence,
we have lim, ., 6, = 0 which implies that the iterative
sequence defined by Jungck- T-CR (1.5) converges to u*
faster than the iterative sequence defined by Jungck-Picard-
S iteration method (1.4).

We now support the result of the above theorem by the
following example using computer programming in java for
comparing the speed of Jungck- T-CR iterative scheme
(1.5) and the speed of Jungck-CR (1.3), Jungck-Ishikawa
(1.2) and Jungck-Picard-S (1.4) iterative schemes.

Example (3.2): Let B=R, € =[0,1], S,T:C - C are
mappings defined as Sx =1 —x and Tx = 24 for all

x € C. Itis easily seen that the mappings S and T satisfying
Jungck-contraction condition (1.1) provided that S is quasi-
nonexpansive mapping (1.6) with the unique common
fixed point 0.5 take a,, = B, =y, = 0.1loralln =1,---,99
with initial value 0.1. The comparison of the rate of
convergence of the speed of Jungck- T-CR iterative scheme
(1.5) and the speed of Jungck-CR (1.3), Jungck-Ishikawa
(1.2) and Jungck-Picard-S (1.4) iterative schemes to a
common fixed point of S and T is shown in the following

— Jim SRz A== +1(1=8)—Br+1¥n 416 (1=8)]

n—oo [1-Bn+1¥n+1(1-06)]

tables.

Jungck-T-CR
Iterative procedure

an+1

TX,

Xn+1

0.49598874208984380

0.49899718552246090

0.49598874208984367

0.49959831012584077

0.50005021123427000

0.50040168987415920

0.49995977452494555

0.49999748590780907

0.49995977452494555

OB |WIN|(F|D

0.49999597179578714

0.50000012588138170

0.50000402820421290

0.49999959661311250

0.49999999369707987

0.49999959661311255

0.50000000000000000

0.50000000000000000

0.50000000000000000

Jungck-CR

=]

SXne1

TX,

Xn+1

0.57009875625000020

0.58372500000000000

0.42990124374999983

0.47065490816484370

0.46495062187499990

0.52934509183515630

0.51228458906949230

0.51467254591757820

0.48771541093050774

0.49485736390078383

0.49385770546525387

0.50514263609921620

OB IW|IN(F-

0.50215283603703440

0.50257131804960810

0.49784716396296560

0.50000000000000000

0.50000000000000000

0.50000000000000000

Jungck-Ishikawa

SXns1

TX,

Xn+1

0.79412250000000010

0.32849999999999996

0.20587749999999994

0.75221004375000010

0.35293874999999997

0.24778995624999990

0.71627011251562510

0.37389497812499994

0.28372988748437490

0.68545162148214860

0.39186494374218744

0.31454837851785145

OB IW|IN|(F(D

0.65902476542094250

0.40727418925892570

0.34097523457905754

224

0.50000000000000040

0.49999999999999970

0.49999999999999956
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Jungck-Picard-S

an+l

TX,

Xn+1

0.52425562500000000

0.45075000000000000

0.47574437500000000

0.50597294765625000

0.48787218750000000

0.49402705234375000

0.50147083836035160

0.49701352617187500

0.49852916163964844

0.50036219394623660

0.49926458081982420

0.49963780605376340

OB W|IN|F(D

0.50008919025926080

0.49981890302688170

0.49991080974073920

99

0.50000000000000000

0.50000000000000000

0.50000000000000000

By observing the above tables, we conclude the decreasing
rate of convergence of iterative schemes is as follows:
Jungck-T -CR, Jungck-Picard-S, Jungck-CR and Jungck-
Ishikawa iterative schemes.
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