On Rate of Convergence of Jungck-T-CR Iterative Procedure

Jamil-Zeana Z.¹, Abdullateef-Assma Khaldoon²

University of Baghdad-College of Science-Department of Math-Baghdad-Iraq

Abstract: This paper concerns with the convergence and rate of convergence of Jungck-T-CR iterative procedure. We show that the previous iteration converges to a unique common fixed point when applied to a pair of Jungck-contraction mappings under certain condition. Also, we compare the speed of various Jungck-iterative schemes with Jungck-T-CR iterative procedure for a pair of Jungck-contraction mappings under certain contraction mappings under certain condition.

Keywords: Jungck iterative procedures, convergent sequences, rate of convergent sequences, Jungck-contraction mapping

1. Introduction and Preliminaries

In 1976, Jungck [4] generalized Banach's contraction principle using the concept of commuting mappings which was given by Pfeffer [9] but Jungck has introduced it in more general context.

Proposition (1.1) [4]:

Let *S* be a mapping on a set *X* into itself. Thus *S* has a fixed point if and only if there is a constant mapping $T: X \to X$ which commutes with $(i. e., T(S(x)) = S(T(x)) \text{ for all } x \in X)$.

Hence Jungck [4] has used this proposition and produced his theorem of common fixed point.

Theorem (1.2) [4]:

Let *S* be a continuous mapping of a complete metric space (X, d) into itself. Then *S* has a fixed point in *X* if and only if there exists $\delta \in (0,1)$ and a mapping $T: X \to X$ which commutes with *S* and satisfies

 $T(X) \subset S(X) \text{ and } d(Tx, Ty) \le \delta d(Sx, Sy)$ (*)

For all $x, y \in X$. Indeed *S* and *T* have common fixed point if (*) holds.

And in 1986, Jungck [5], introduced more generalized commuting mappings, called compatible mappings which are useful for obtaining common fixed points of mappings.

Definition (1.3) [5]:

Let (X, d) be a metric space, $T, S: X \to X$ are said to be compatible if

 $\lim_{n\to\infty} d\big(TS(x_n), ST(x_n)\big) = 0$

where $\{x_n\}_{n=0}^{\infty}$ is a sequence such that $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$ for some $t \in X$.

Thus in 1996 Jungck et. al. [6] introduced the concept of coincidence point and depending on it, in 1998, Jungck and Rhoades [7] defined the notion of weakly compatible and showed that compatible mappings are weakly compatible but the converse is not true.

Definition (1.4) [7]:

Let *B* be a Banach space and , $T, S: B \to B$. A point $u^* \in B$ is called a coincidence point of a pair of self mappings *T*, *S* if there exists a point *z* (called a point of coincidence) in *B* such that $z = Su^* = Tu^*$. Two self mappings *S* and *T* are weakly compatible if they commute at there coincidence points, that is if $Su^* = Tu^*$ for some $u^* \in B$ then $STu^* = TSu^*$. And the point $u^* \in B$ is called common fixed point of *S* and *T* if $u^* = Su^* = Tu^*$.

C(S,T) denotes the set of coincidence points of S and T.

In 2005, Singh et. al. [10] significantly improved on the result of Jungck [4] when he proved the following result which is now called Jungck-contraction principle.

Theorem (1.5) [10]:

Let (X, d) be a metric space. Let $T, S: X \to X$ satisfying $d(Tx, Ty) \leq \delta d(Sx, Sy)$, $0 \leq \delta < 1$, for all $x, y \in X$. $T(X) \subseteq S(X)$ and S(X) or T(X) is a complete subspace of X, then S and T have a coincidence. Indeed, for any $x_1 \in X$, there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in X such that

- 1. $Sx_{n+1} = Tx_n, n = 1, 2, \cdots$
- 2. $\{Sx_n\}_{n=1}^{\infty}$ converges to Su^* for some u^* in X, and $Su^* = Tu^*$ that is S and T have a coincidence at u^* .

Further, if S, T commute (just) at u^* then S and T have a unique common fixed point.

Remark (1.6):

If S = id (identity mapping), then the Jungck-contraction mapping

$$d(Tx, Ty) \le \delta d(Sx, Sy), \ 0 \le \delta < 1$$
(1.1)

is the same as the well known the contraction mapping.

Olatinwo et. al. [8] introduced Jungck-Ishikawa iterative scheme and proved its convergence of the coincidence point of a pair of certain mappings with the assumption that one of the pair of mappings is injective. Its iterative scheme is defined as follows:

Definition (1.7) [8]:

Let *B* be a Banach space and *C* be a nonempty subset of *B*. Let $T, S: C \to C$ be two self mappings such that $T(C) \subseteq S(C)$. For $q_1 \in C$ the Jungck-Ishikawa iterative scheme is the sequence $\{Sq_n\}_{n=1}^{\infty}$ defined by $Sq_{n+1} = (1 - \alpha_n)Sq_n + \alpha_n Tr_n$

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 $Sr_n = (1 - \beta_n)Sq_n + \beta_n Tq_n, n \in \mathbb{N}$ (1.2) where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are real sequences in [0,1) such that $\sum_{n=1}^{\infty} \alpha_n = \infty$.

Hussain et. al. [3] introduced the Jungck-CR iterative scheme and proved its convergence to a unique common fixed point of a pair of certain mappings without assuming the injectivity of any of the mappings but rather they proved their results for a pair of weakly compatible mappings S,T.

Definition (1.8) [3]:

Let *B* be a Banach space and *C* be a nonempty subset of *B*. Let $T, S: C \to C$ be two self mappings such that $T(C) \subseteq S(C)$. For $a_0 \in C$, the Jungck-CR iterative scheme is the sequence $\{Sa_n\}_{n=1}^{\infty}$ defined by

 $Sa_{n+1} = (1 - \alpha_n)Sb_n + \alpha_nTb_n$ $Sb_n = (1 - \beta_n)Ta_n + \beta_nTc_n$

 $Sc_n = (1 - \gamma_n)Sa_n + \gamma_nTa_n \ n \in \mathbb{N}$ (1.3) where $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are real sequences in [0,1) such that $\sum_{n=1}^{\infty} \alpha_n = \infty$.

Recently, Badri [1] defined the following Jungck-Picard-S iterative scheme.

Definition (1.9) [1]:

Let *B* be a Banach space and *C* be a nonempty subset of *B*. Let $T, S: C \to C$ be two self mappings such that $T(C) \subseteq S(C)$. For $x_1 \in C$, the Jungck-Picard-S iterative scheme is the sequence $\{Sx_n\}_{n=1}^{\infty}$ defined by

 $Sx_{n+1} = Ty_n$ $Sy_n = (1 - \beta_n)Tx_n + \beta_nTz_n$

 $S_{n} = (1 - \gamma_{n}) S_{n} + \gamma_{n} T_{n} + \gamma_{n} T_{n} = 0 \quad (1.4)$ $S_{n} = (1 - \gamma_{n}) S_{n} + \gamma_{n} T_{n} = 0 \quad (1.4)$ where $\{\beta_{n}\}_{n=1}^{\infty}$ and $\{\gamma_{n}\}_{n=1}^{\infty}$ are real sequences in [0,1) such that $\sum_{n=1}^{\infty} \beta_{n} \gamma_{n} = \infty$.

In [12], we define *T*-CR iteration as follows:

Definition (1.10) [12]:

Let *C* be a nonempty closed convex subset of a Banach space X and T:C \rightarrow C be a self-mapping with $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are real sequences in [0,1] such that $\sum_{n=1}^{\infty} \alpha_n = \infty$. The *T*-CR iterative scheme $\{u_n\}_{n=1}^{\infty}$ is defined by:

 $u_{1} \in C$ $u_{n+1} = T[(1 - \alpha_{n})v_{n} + \alpha_{n}Tv_{n}]$ $v_{n} = T[(1 - \beta_{n})Tu_{n} + \beta_{n}Tw_{n}]$ $w_{n} = T[(1 - \gamma_{n})u_{n} + \gamma_{n}Tu_{n}], n \in \mathbb{N}$ In this section, we define Jungck-*T*-CR iteration as follows:

Definition (1.11):

Let *B* be a Banach space and *C* be a nonempty subset of *B*. Let *T*, *S*: $C \to C$ be two self mappings such that $T(C) \subseteq S(C)$. For $u_0 \in C$ the Jungck-*T*-CR iterative scheme is the sequence $\{Su_n\}_{n=1}^{\infty}$ is defined by: $Su_{n+1} = T[(1 - \alpha_n)Sv_n + \alpha_nTv_n]$ $Sv_n = T[(1 - \beta_n)Tu_n + \beta_nTw_n]$ $Sw_n = T[(1 - \gamma_n)Su_n + \gamma_nTu_n]$, $n \in \mathbb{N}$ (1.5) where $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are real sequences in

where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are real sequences in [0,1] such that $\sum_{n=1}^{\infty} \alpha_n = \sum_{n=1}^{\infty} \beta_n = \sum_{n=1}^{\infty} \beta_n \gamma_n = \infty$. The following definition will be needed in the sequel.

Definition (1.12), [2]:

Let X be a Banach space, C be a nonempty closed convex subset of X. A self mapping $T: C \to C$ is said to be **nonexpansive** if for all x, y in C, we have

$$||x - Ty|| \le ||x - y||$$

Furthermore T is called **quasi-nonexpansive** if $y = u^*$ provided T has a fixed point in C and if $u^* \in C$ is a fixed point of T, then

$$\|Tx - Tu^*\| \le \|x - u^*\| \tag{1.6}$$

is true for all $x \in C$.

2. Convergence of Jungck-T-CR Iterative Procedure

In this section, we study the convergence of Jungck-T-CR iteration (1.5) when applied to Jungck-contraction mapping (1.1) under certain condition.

Theorem (2.1):

Let *C* be a nonempty closed convex subset of a Banach space *B*, $S,T:C \to C$ be two self-mappings satisfying Jungck-contraction condition (1.1) provided that *S* is quasi-nonexpansive mapping (1.6) as well, assume $T(C) \subseteq S(C)$ and *S*, *T* are weakly compatible, suppose that there exists a $z \in C(S,T)$ be the coincidence points of *S*, *T* such that $Sz = Tz = u^*$. Let $\{Su_n\}_{n=1}^{\infty}$ be the Jungck-*T*-CR iterative scheme generated by (1.5), where $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are real sequences in [0,1] satisfying $\sum_{n=1}^{\infty} \alpha_n = n = 1 \infty \beta n = n = 1 \infty \beta n = \infty$. Then the Jungck-*T*-CR iterative scheme $\{Su_n\}_{n=1}^{\infty}$ converges to a unique common fixed point u^* of *S*, *T*.

Proof:

It follows from (1.1) and (1.2) that: $||Su_{n+1} - u^*|| = ||T[(1 - \alpha_n)Sv_n + \alpha_nTv_n] - u^*||$ $\leq \delta \|S[(1-\alpha_n)Sv_n + \alpha_nTv_n] - u^*\|$ $\leq \delta \| (1 - \alpha_n) S v_n + \alpha_n T v_n - u^* \|$ $\leq \delta(1 - \alpha_n) \|Sv_n - u^*\| + \alpha_n \delta \|Tv_n - u^*\| \\ \leq \delta(1 - \alpha_n) \|Sv_n - u^*\| + \alpha_n \delta^2 \|Sv_n - u^*\|$ $= [1 - \alpha_n (1 - \delta)] \|Sv_n - u^*\| (2.1)$ $||Sv_n - u^*|| = ||T[(1 - \beta_n)Tu_n + \beta_n Tw_n] - u^*||$ $\leq \delta \|S[(1-\beta_n)Tu_n + \beta_n Tw_n] - u^*\|$ $\leq \delta \| (1 - \beta_n) T u_n + \beta_n T w_n - u^* \|$ $\leq \delta(1-\beta_n) \|Tu_n - u^*\| + \beta_n \delta \|Tw_n - u^*\|$ $\leq \delta^{2} (1 - \beta_{n}) \|Su_{n} - u^{*}\| + \beta_{n} \delta^{2} \|Sw_{n} - u^{*}\|$ (2.2) $||Sw_n - u^*|| = ||T[(1 - \gamma_n)Su_n + \gamma_n Tu_n] - u^*||$ $\leq \delta \|S[(1-\gamma_n)Su_n+\gamma_nTu_n]-u^*\|$ $\leq \delta \| (1 - \gamma_n) S u_n + \gamma_n T u_n - u^* \|$ $\leq \delta(1-\gamma_n) \|Su_n - u^*\| + \gamma_n \delta \|Tu_n - u^*\|$ $\leq \delta [1 - \gamma_n (1 - \delta)] \| Su_n - u^* \| (2.3)$

It follows from (2.1), (2.2) and (2.3) that $\begin{aligned} \|Su_{n+1} - u^*\| &\leq \delta^3 [1 - \alpha_n (1 - \delta)] (1 - \beta_n) \|Su_n - u^*\| \\ &+ \delta^4 \beta_n [1 - \alpha_n (1 - \delta)] [1 - \gamma_n (1 - \delta)] \|Su_n - u^*\| \\ &\leq \delta^3 [1 - \alpha_n (1 - \delta)] \\ &\cdot [1 - \beta_n (1 - \delta) - \beta_n \gamma_n \delta (1 - \delta)] \|Su_n - u^*\| \end{aligned}$

And so on, we get: $\|Su_{n+1} - u^*\| \le \delta^{3(n+1)} \|Su_1 - u^*\|$

Volume 6 Issue 8, August 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20175795

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

$$\prod_{k=1}^{n} [1 - \alpha_k (1 - \delta)] [1 - \beta_k (1 - \delta) - \beta_k \gamma_k \delta (1 - \delta)]$$
(2.3)

 $\leq \delta^{3(n+1)} \| Su_1 - u^* \| e^{-(1-\delta) \sum_{k=1}^{\infty} \alpha_k - (1-\delta) \sum_{k=1}^{\infty} \beta_k - (1-\delta) \sum_{k=1}^{\infty} \beta_k \gamma_k}$

Since $0 \le \delta < 1$, $\sum_{n=1}^{\infty} \alpha_n = \infty$, $\sum_{n=1}^{\infty} \beta_n = \infty$ and $\sum_{n=1}^{\infty} \beta_n \gamma_n = \infty$ so $\delta^{3(n+1)} e^{-(1-\delta)\sum_{k=1}^{\infty} \alpha_k - (1-\delta)\sum_{k=1}^{\infty} \beta_k - (1-\delta)\sum_{k=1}^{\infty} \beta_k \gamma_k} \rightarrow 0$ as $n \to \infty$. Which implies that $\lim_{n \to \infty} ||Su_n - u^*|| = 0$.

Therefore, $\{Su_n\}_{n=1}^{\infty}$ converges to u^* . Now, we will prove u^* is the unique fixed point of S, T.

Suppose that there exist two points of coincidence z_1 , $z_2 \in C(S,T)$ such that $Sz_1 = Tz_1 = u_1^*$ and $Sz_2 = Tz_2 = u_2^*$.

Using condition (1.1), we have $\begin{array}{l} 0 \leq \|u_1^* - u_2^*\| = \|Tz_1 - Tz_2\| \\ \leq \delta \|Sz_1 - Sz_2\| \\ 0 \leq \|u_1^* - u_2^*\| = \delta \|u_1^* - u_2^*\| \\ \end{array}$ which leads $(1 - \delta) \|u_1^* - u_2^*\| \leq 0$, since $0 \leq \delta < 1$ from which it follows that $\|u_1^* - u_2^*\| = 0$, that is $u_1^* = u_2^*$. Now, since *S*, *T* are weakly compatible and $u^* = Tz = Sz$ then $Tu^* = TTz = TSz = STz$. Hence $Tu^* = Su^*$. Therefore, Tu^* is a point of coincidence of *S*, *T* but the coincidence point is unique, so $u^* = Tu^*$. Thus $Tu^* = Su^* = u^*$. Therefore u^* is the unique common fixed point of

3. Rate of Convergence of Jungck-T-CR Iterative Procedure

We now compare the speed of Jungck-T-CR iterative scheme (1.5) and the speed of Jungck-CR (1.3), Jungck-Ishikawa (1.2) and Jungck-Picard-S (1.4) iterative schemes by the following theorem.

Theorem (3.1):

S,T.

Let *C* be a nonempty closed convex subset of a Banach space *B*, *S*,*T*: *C* \rightarrow *C* be two self-mappings satisfying Jungck-contraction condition (1.1) provided that *S* is quasinonexpansive mapping (1.6) as well, assume $T(C) \subseteq S(C)$, let $\{Su_n\}_{n=1}^{\infty}$, $\{Sa_n\}_{n=1}^{\infty}$, $\{Sq_n\}_{n=1}^{\infty}$ and $\{Sx_n\}_{n=1}^{\infty}$ be the Jungck- *T*-CR iterative scheme (1.5) and the speed of Jungck-CR (1.3), Jungck-Ishikawa (1.2) and Jungck-Picard-S (1.4) iterative schemes respectively satisfying $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = \lim_{n\to\infty} \alpha_n \beta_n = \lim_{n\to\infty} \beta_n \gamma_n = 0$. Then $\{Su_n\}_{n=0}^{\infty}$ converges to u^* faster than $\{Sa_n\}_{n=1}^{\infty}$, $\{Sq_n\}_{n=1}^{\infty}$ and $\{Sx_n\}_{n=1}^{\infty}$ do.

Proof:

From inequality (2.3), we have $\begin{aligned} \|Su_{n+1} - u^*\| &\leq \delta^{3(n+1)} \|Su_1 - u^*\| \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] [1 - By \text{ the assumption} \\ \beta k 1 - \delta - \beta k \gamma k \delta 1 - \delta (3.1) \end{aligned}$ From Jungck-CR iteration (1.3) and Jungck-contraction condition (1.1), it is easy to get that: $\|Sa_{n+1} - u^*\| &\leq \delta^{(n+1)} \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] [1 - \beta k \gamma k \delta 1 - \delta] \|Su_1 - u^*\| \\ \|Su_{n+1} - u^*\| &\leq \delta^{(n+1)} \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] \|Su_1 - u^*\| \\ \frac{\|Su_{n+1} - u^*\|}{\delta^{(n+1)} \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] \|Su_1 - u^*\|} \\ \frac{\delta^{3(n+1)} \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] [1 - \beta_k \gamma_k \delta (1 - \delta)] \|Su_1 - u^*\|}{\delta^{(n+1)} \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] \|Su_1 - u^*\|} \end{aligned}$

$$\begin{split} &= \delta^{2(n+1)} \prod_{k=1}^{n} \frac{[1-\alpha_{k}(1-\delta)][1-\beta_{k}(1-\delta)-\beta_{k}\gamma_{k}\delta(1-\delta)]||Su_{1}-u^{*}||}{[1-\alpha_{k}(1-\delta)][1-\beta_{k}\gamma_{k}(1-\delta)]||Su_{1}-u^{*}||} \\ &\text{Define } \theta_{n} = \delta^{2(n+1)} \prod_{k=1}^{n} \frac{[1-\alpha_{k}(1-\delta)][1-\beta_{k}(1-\delta)-\beta_{k}\gamma_{k}\delta(1-\delta)]}{[1-\alpha_{k}(1-\delta)][1-\beta_{k}\gamma_{k}(1-\delta)]} \\ &\text{By the assumption} \\ &\lim_{n\to\infty} \frac{\theta_{n+1}}{\theta_{n}} = \\ &\lim_{n\to\infty} \frac{\theta_{n+1}}{\delta^{2(n+2)}k} = 1n+11-\alpha k1-\delta 1-\beta k1-\delta-\beta k\gamma k\delta 1 \\ -\delta 1-\alpha k1-\delta 1-\beta k\gamma k1-\delta \delta^{2(n+1)}k = 1n1-\alpha k1-\delta 1-\beta k \\ 1-\delta-\beta k\gamma k\delta 1-\delta 1-\alpha k1-\delta 1-\beta k\gamma k1-\delta \\ &= \lim_{n\to\infty} \frac{\delta [1-\beta_{n+1}(1-\delta)-\delta \beta_{n+1}\gamma_{n+1}(1-\delta)]}{[1-\beta_{n+1}\gamma_{n+1}(1-\delta)]} \\ &= \delta < 1 \end{split}$$

Thus it follows from ratio test that $\sum_{n=1}^{\infty} \theta_n < \infty$. Hence, we have $\lim_{n\to\infty} \theta_n = 0$ which implies that the iterative sequence defined by Jungck-*T*-CR (1.5) converges to u^* faster than the iterative sequence defined by Jungck-CR iteration method (1.3).

From Jungck-Ishikawa iterative scheme (1.2) and Jungck-contraction condition (1.1), we obtain:

$$\begin{aligned} \|Sq_{n+1} - u^*\| &= \|(1 - \alpha_n)Sq_n + \alpha_n Tr_n - u^*\| \\ &\leq (1 - \alpha_n)\|Sq_n - u^*\| + \alpha_n\|Tr_n - u^*\| \\ &\leq (1 - \alpha_n)\|Sq_n - u^*\| + \alpha_n\delta\|Sr_n - u^*\| \end{aligned}$$

$$\begin{aligned} (3.3) \\ \|Sr_n - u^*\| &= \|(1 - \beta_n)Sq_n + \beta_nTq_n - u^*\| \\ &\leq (1 - \beta_n)\|Sq_n - u^*\| + \beta_n\|Tq_n - u^*\| \\ &\leq (1 - \beta_n)\|Sq_n - u^*\| + \beta_n\delta\|Sq_n - u^*\| \\ &\leq [1 - \beta_n(1 - \delta)]\|Sq_n - u^*\| \end{aligned}$$

$$\begin{aligned} (3.4) \\ \text{Substituting (3.4) in (3.3), we have:} \end{aligned}$$

Substituting (3.4) in (3.5), we have:

$$||Sq_{n+1} - u^*|| \le (1 - \alpha_n) ||Sq_n - u^*|| + \alpha_n \delta[1 - \beta_n (1 - \delta)] ||Sq_n - u^*|| = [1 - \alpha_n (1 - \delta) - \alpha_n \beta_n \delta(1 - \delta)] ||Sq_n - u^*||$$

$$\begin{split} & \mathcal{U}^{*} \\ \text{Repeating this process n times, we get} \\ & \|Sq_{n+1} - u^{*}\| \leq \prod_{k=1}^{n} [1 - \alpha_{k}(1 - \delta) - \alpha_{k}\beta_{k}\delta(1 - \delta)] \\ & \delta Sq1 - u^{*} \\ & (3.5) \\ \text{Using (3.1) and (3.5), we have} \\ & \frac{\|Su_{n+1} - u^{*}\|}{\|Sq_{n+1} - u^{*}\|} \leq \\ & \frac{\delta^{3(n+1)}\prod_{k=1}^{n} [1 - \alpha_{k}(1 - \delta)] [1 - \beta_{k}(1 - \delta) - \beta_{k}\gamma_{k}\delta(1 - \delta)] \|Su_{1} - u^{*}\|}{\prod_{k=1}^{n} [1 - \alpha_{k}(1 - \delta) - \alpha_{k}\beta_{k}\delta(1 - \delta)] \|Sq_{1} - u^{*}\|} \\ & \frac{\delta^{3(n+1)}\prod_{k=1}^{n} [1 - \alpha_{k}(1 - \delta) - \alpha_{k}\beta_{k}\delta(1 - \delta)] \|Sq_{1} - u^{*}\|}{[1 - \alpha_{k}(1 - \delta) - \alpha_{k}\beta_{k}\delta(1 - \delta)]} \\ & \text{Define } \theta_{n} = \delta^{3(n+1)}\prod_{k=1}^{n} \frac{[1 - \alpha_{k}(1 - \delta)] [1 - \beta_{k}(1 - \delta) - \beta_{k}\gamma_{k}\delta(1 - \delta)]}{[1 - \alpha_{k}(1 - \delta) - \alpha_{k}\beta_{k}\delta(1 - \delta)]} \\ & \text{By the assumption} \\ & \lim_{n \to \infty} \frac{\theta_{n+1}}{\theta_{n}} = \\ & \lim_{n \to \infty} \frac{\theta_{n+1}}{\theta_{n}} = \\ & \lim_{n \to \infty} \frac{\theta_{n+1}}{\delta_{n}} = \\ & \lim_{n \to \infty} \frac{\theta_{n+1}}{\delta_{n}}$$

$$= \lim_{n \to \infty} \frac{\delta^{3} [1 - \alpha_{n+1}(1 - \delta)] [1 - \beta_{n+1}(1 - \delta) - \beta_{n+1}\gamma_{n+1}\delta(1 - \delta)]}{[1 - \alpha_{n+1}(1 - \delta) - \alpha_{n+1}\beta_{n+1}\delta(1 - \delta)]} = \delta^{3} < 1$$

Volume 6 Issue 8, August 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Thus it follows from ratio test that $\sum_{n=1}^{\infty} \theta_n < \infty$. Hence, we have $\lim_{n\to\infty} \theta_n = 0$ which implies that the iterative sequence defined by Jungck-*T*-CR (1.5) converges to u^* faster than the iterative sequence defined by Jungck-Ishikawa iteration method (1.2).

From Jungck-Picard-S iterative scheme (1.4) and Jungck-contraction condition (1.1), we have obtained the following inequality:

 $\begin{aligned} \|Sx_{n+1} - u^*\| &\leq \delta^{2(n+1)} \prod_{k=1}^n [1 - \beta_k \gamma_k (1 - \delta)] \|Sx_1 - u^*\| \\ (3.6) \\ \text{From inequality (3.1) and (3.6), we have:} \\ \frac{\|Su_{n+1} - u^*\|}{\|Sx_{n+1} - u^*\|} &\leq \\ \frac{\delta^{3(n+1)} \prod_{k=1}^n [1 - \alpha_k (1 - \delta)] [1 - \beta_k (1 - \delta) - \beta_k \gamma_k \delta (1 - \delta)] \|Su_1 - u^*\|}{\delta^{2(n+1)} \prod_{k=1}^n [1 - \beta_k \gamma_k (1 - \delta)] \|Sx_1 - u^*\|} \end{aligned}$

 $= \delta^{(n+1)} \prod_{k=1}^{n} \frac{[1-\alpha_{k}(1-\delta)][1-\beta_{k}(1-\delta)-\beta_{k}\gamma_{k}\delta(1-\delta)]\|Su_{1}-u^{*}\|}{[1-\beta_{k}\gamma_{k}(1-\delta)]\|Sx_{1}-u^{*}\|}$ Define $\theta_{n} = \delta^{(n+1)} \prod_{k=1}^{n} \frac{[1-\alpha_{k}(1-\delta)][1-\beta_{k}(1-\delta)-\beta_{k}\gamma_{k}\delta(1-\delta)]}{[1-\beta_{k}\gamma_{k}(1-\delta)]}$

By the assumption

$$\begin{split} &\lim_{n\to\infty} \frac{\theta_{n+1}}{\theta_n} = \\ &\lim_{n\to\infty} n\to\infty \delta n + 2k = 1n + 11 - \alpha k1 - \delta 1 - \beta k1 - \delta - \beta k\gamma k\delta 1 - \delta 1 \\ &-\beta k\gamma k1 - \delta \delta n + 1k = 1n1 - \alpha k1 - \delta 1 - \beta k1 - \delta - \beta k\gamma k\delta 1 - \delta 1 \\ &-\beta k\gamma k1 - \delta \end{split}$$

$$= \lim_{n \to \infty} \frac{\delta^3 [1 - \alpha_{n+1} (1 - \delta)] [1 - \beta_{n+1} (1 - \delta) - \beta_{n+1} \gamma_{n+1} \delta (1 - \delta)]}{[1 - \beta_{n+1} \gamma_{n+1} (1 - \delta)]}$$

 $= \delta < 1$

Thus it follows from ratio test that $\sum_{n=1}^{\infty} \theta_n < \infty$. Hence, we have $\lim_{n\to\infty} \theta_n = 0$ which implies that the iterative sequence defined by Jungck-*T*-CR (1.5) converges to u^* faster than the iterative sequence defined by Jungck-Picard-S iteration method (1.4).

We now support the result of the above theorem by the following example using computer programming in java for comparing the speed of Jungck-T-CR iterative scheme (1.5) and the speed of Jungck-CR (1.3), Jungck-Ishikawa (1.2) and Jungck-Picard-S (1.4) iterative schemes.

Example (3.2): Let $B = \mathbb{R}$, C = [0,1], $S, T: C \to C$ are mappings defined as Sx = 1 - x and $Tx = \frac{2x+1}{4}$ for all $x \in C$. It is easily seen that the mappings *S* and *T* satisfying Jungck-contraction condition (1.1) provided that *S* is quasi-nonexpansive mapping (1.6) with the unique common fixed point 0.5 take $\alpha_n = \beta_n = \gamma_n = 0.1$ or all $n = 1, \dots, 99$ with initial value 0.1. The comparison of the rate of convergence of the speed of Jungck-*T*-CR iterative scheme (1.5) and the speed of Jungck-CR (1.3), Jungck-Ishikawa (1.2) and Jungck-Picard-S (1.4) iterative schemes to a common fixed point of *S* and *T* is shown in the following tables.

	Jungck-T-CR		
	Iterative procedure		
n	Sx _{n+1}	Tx _n	x _{n+1}
1	0.49598874208984380	0.49899718552246090	0.49598874208984367
2	0.49959831012584077	0.50005021123427000	0.50040168987415920
3	0.49995977452494555	0.49999748590780907	0.49995977452494555
4	0.49999597179578714	0.50000012588138170	0.50000402820421290
5	0.49999959661311250	0.49999999369707987	0.49999959661311255
•••	•••	•••	•••
99	0.500000000000000000	0.500000000000000000	0.500000000000000000

	Jungck-CR		
n	Sx _{n+1}	Tx _n	x _{n+1}
1	0.57009875625000020	0.58372500000000000	0.42990124374999983
2	0.47065490816484370	0.46495062187499990	0.52934509183515630
3	0.51228458906949230	0.51467254591757820	0.48771541093050774
4	0.49485736390078383	0.49385770546525387	0.50514263609921620
5	0.50215283603703440	0.50257131804960810	0.49784716396296560
•••	•••	•••	•••
99	0.500000000000000000	0.500000000000000000	0.500000000000000000

	Jungck-Ishikawa		
n	Sx _{n+1}	Tx _n	x _{n+1}
1	0.7941225000000010	0.3284999999999999996	0.205877499999999994
2	0.75221004375000010	0.35293874999999997	0.24778995624999990
3	0.71627011251562510	0.37389497812499994	0.28372988748437490
4	0.68545162148214860	0.39186494374218744	0.31454837851785145
5	0.65902476542094250	0.40727418925892570	0.34097523457905754
•••	•••	•••	•••
224	0.50000000000000040	0.49999999999999999970	0.4999999999999999956

Volume 6 Issue 8, August 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

		Jungck-Picard-S	
n	Sx _{n+1}	Tx _n	x _{n+1}
1	0.52425562500000000	0.45075000000000000	0.4757443750000000
2	0.50597294765625000	0.48787218750000000	0.49402705234375000
3	0.50147083836035160	0.49701352617187500	0.49852916163964844
4	0.50036219394623660	0.49926458081982420	0.49963780605376340
5	0.50008919025926080	0.49981890302688170	0.49991080974073920
•••	•••	•••	•••
99	0.500000000000000000	0.500000000000000000	0.500000000000000000

By observing the above tables, we conclude the decreasing rate of convergence of iterative schemes is as follows: Jungck-T-CR, Jungck-Picard-S, Jungck-CR and Jungck-Ishikawa iterative schemes.

References

- [1] Badri M., **On a modified SP-iterative scheme approximation of fixed points,** M.Sc. Thesis, College of Science, Baghdad University, 2016.
- [2] Dotson W. G., **On the Mann iterative process,** Trans. Amer. Math. Soc., vol. 149, no. 1, (1970), pp:65-73.
- [3] Hussain N., Kumar V. and Kutbi M. A., On rate of convergence of Jungck-type iterative schemes, Hindawi Publishing Corporation Abstract and Applied Analysis, (2013), Article ID 132626, pp:1-15.
- [4] Jungck G., Commuting mappings and fixed points, Amer. Math. Monthly vol. 83, no. 4, (1976), pp:261-263.
- [5] Jungck G., Compatible mappings and common fixed points, J. Math. And Math. Sci., vol.9, (1986), pp:771-779.
- [6] Jungck G., Common fixed points for non-continuous non-self maps on non-metric spaces, Far east J. Math. Sci., vol.4, no.2, (1996), pp:199-215.
- [7] Jungck G. and Rhoades B. E., Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., Vol.29, (1998), pp:227-238.
- [8] Olatinwo M. O. and Imoru C. O., Some convergence results of the Jungck-Mann and Jungck-Ishikawa iteration processes in the class of generalized Zamfirescu operators, Acta. Math. Comenianae, vol.LXXVII, no.2, (2008), pp:299-304.
- [9] Pfeffer W. F., **More on involutions of a circle**, Amer. Math. Monthly, vol.81, (1974), pp:613-616.
- [10] Singh S. L., Bhatnagar C. and Mishra S. N., Stability of Jungck-type procedures, Int. J. Math. Sci., vol.19, (2005), pp:3035-3043.
- [11] Soltuz S. and Grosan T., Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory and Appl. (2008), Article ID 242916, 7 pages.
- [12] Zeana Z. J. and Assma K. A., On different results for a new three-step iteration method under weakcontraction mappings in Banach spaces, reprint.

Volume 6 Issue 8, August 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY