Totaly *-paranormal and the Operators Equations $SRS = S^2$ and $RSR = R^2$

Buthainah A.A. Ahmed¹, Hassan N. Almrayatee²

^{1, 2}Department of Mathematics -College of Science -University of Baghdad

Abstract: In this paper we study the property of the operator equations $SRS = S^2$ and $RSR = R^2$ where S is a *-paranormal operator we show that if S or S^* is a polynomial root of *-paranormal operator then $f(A) \in gW$ for all $f \in H(\sigma(A))$, where $A \in \{SR, RS, R\}$ and we show that For the operator equation $SRS = S^2$ and $RSR = R^2$ we have $\sigma_{\beta}(S) = \sigma_{\beta}(RS) = \sigma_{\beta}(R)$

1. Introduction

Let *H* be an infinite dimensional separable Hilbert space and let $B(H), B_0(H)$ denote the algebra of bounded linear operators and the ideal of compact operator acting on *H*. If $T \in B(H)$ we shall write Im(T) and ker(T) for the range and null space of *T*. Let $\alpha(T) := dimker(T)$, $\beta(T) := dimker(T^*)$, and let $\sigma_a(T), \sigma_s(T), \sigma_p(T), p_0(T)$, and $\pi_0(T)$ denote the spectrum, approximate point spectrum, surjective spectrum, point spectrum of *T*, the set of the resolvent of *T* and the set of all eigenvalues of *T* which are isolated in $\sigma(T)$.

Recall that $T \in B(H)$ is called *-paranormal operator if $||T^*x||^2 \le ||T^2x||| ||x||$ and *T* is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of *T*. If $T \in B(H)$ we write r(T) for the spectral radius of *T* where $r(T) \le ||T||$. An operator $T \in B(H)$ is called normaliod if r(T) = ||T||. An operator $T \in B(H)$ is said to be nilpotent if $T^n = 0$ for a natural number *n* and called quasinilpotent if r(T) = 0 [11, 12]

The operator $E := \frac{1}{2\pi i} \int_{\partial D} (\lambda - T)^{-1}$ is called Riesz idempotent with respect to λ where D is a closed disk centered at λ and $D \cap \sigma(T) = \{\lambda\}$ where $\lambda \in \sigma(T)$ be an isolated point of $\sigma(T)$ see[11]

Recall that if $T \in B(H)$, the asent a(T) and the descent d(T) given by

$$a(T) = inf\{n \ge 0 : ker(T^{n}) = ker(T^{n+1})\}$$

and
$$d(T) = inf\{n \ge 0 : Im(T^{n}) = Im(T^{n+1})\}$$

An operator $T \in B(H)$ is called Fredholm if it has closed range, finite dimensional null space and its range has finite co-dimensional.the index of a Fredholm operator

 $i(T) = \alpha(T) - \beta(T)$

T is called Weyle if it is Fredholm of index zero , and Browder if it is Fredholm of finite ascent and descent. The essential spectrum $\sigma_e(T)$, the Wely spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ define as [7, 10]

$$\begin{split} &\sigma_e(T) := \{\lambda \in C : T - \lambda \quad is \quad not \quad Fredholm\} \\ &\sigma_w(T) := \{\lambda \in C : T - \lambda \quad is \quad not \quad Weyl\} \\ &\sigma_b(T) := \{\lambda \in C : T - \lambda \quad is \quad not \quad Browder\} \\ &\sigma_e(T) \subseteq W(T) \subseteq \sigma_b(T) := \sigma_e(T) \cup_{acc} \sigma(T) \\ &\text{we write } accK \text{ for the accumulation point of } K \subset C \text{ if we write } isoK = K \setminus accK \text{ then we let} \\ &\pi_{00}(T) := \{\lambda \in iso\sigma(T) : 0 \le \alpha(T - \lambda) \le \infty\} \\ &P_{00}(T) := \sigma(T) \setminus \sigma_b(T) \\ &\text{we say that Weyl's theorem hold for } T \text{ if } \end{split}$$

 $\sigma(T) \setminus W(T) = \pi_{00}(T)$ and Browder's theorem hold for T if $\sigma(T) \setminus W(T) = P_{00}(T)$

An operator $T \in B(H)$ is called B-Freadholm if there exists a natural number *n* for the induced operator $T_n: Im(T) \to Im(T^n)$ is Freadholm in the usual sense and B-Weyl's if in addition T_n has zero index.

the B-Fredholm spectrum $\sigma_{BF}(T)$ and B-Weyl spectrum $\sigma_{BW}(T)$ are define by

$$\begin{split} \sigma_{BF}(T) &:= \{ \lambda \in C : T - \lambda \quad is \quad not \quad B - Freadholm \} \\ \sigma_{BW}(T) &:= \{ \lambda \in C : T - \lambda \quad is \quad not \quad B - Weyl \} \end{split}$$

An element x of A is Drazin invertible if there is an element b of A and non-negative integer k such that [17] $x^k bx = x^k$, bxb = b, xb = bx

the Drazin spectrum of $a \in A$ is define by [8] $\sigma_D(a) := \{\lambda \in C : a - \lambda \text{ is not Drazin invertible}\}$

If $T \in B(H)$ it is well known that *T* is Drazin invertible if and only if it has finite ascent and descent and that is also equivalent to the fact that *T* decomposed as $T_1 \oplus T_2$ where T_1 is invertible and T_2 is nilpotent[15] and

$$\begin{split} \sigma_{BW}(T) &= \bigcap \{ \sigma_D(T+F) : F \in B_0(H) \} \\ \sigma_{BB}(T) &= \bigcap \{ \sigma_D(T+F) : F \in B_0(H) \text{ and } TF = FT \} \end{split}$$

Volume 6 Issue 8, August 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20175711

2. Main Results

Lemma 2.1 [19] every *-paranormal operator is normoliod.

Lemma 2.2 [19] If $T \in B(H)$ is *-paranormal then $ker(T - \lambda I) \subseteq ker(T^* - \lambda I)$ for each $\lambda \in C$ thus $T - \lambda I$ is reduced by its eigenspace for every $\lambda \in C$

Theorem 2.3 [19] If H is finite dimension .every *-paranormal operator T is normal

Theorem 2.4 *let S* be a *-paranormal operator on finite dimensional Hilbert space H and ker(S) = ker(SR) then we have

(1) SR is normal

(2) If $N(S-\lambda) = ker(R-\lambda)$ for each $\lambda \in C$ then for all of *S*, *RS*, *SR*, *R* are normal.

Proof. Since *S* is *-paranormal operator and $dimH < \infty$ use theorem(2.3) that is *S* is normal operator hence *S* is paranormal operator then by [3] that is *SR* is normal (2)since ker(S) = ker(RS) then by [3, Theorem3.1] it is obtain

Lemma 2.5 Let A be a *-paranormal operator then we have $A = \lambda$ if $\sigma(A) = \{\lambda\}$ for $\lambda \in C$

Proof. case(1) if $(\lambda = 0)$ since A is *-paranormal then by lemma(2.1) T is normoliod therefore T = 0

Case(2) if $(\lambda \neq 0)$ that is A is invertible ,since A is *-paranormal then A^{-1} is also *-paranormal then A^{-1} is normoliod hence $\sigma(A^{-1}) = \{\frac{1}{\lambda}\}$ so $||A|||| A^{-1} ||=|\lambda|| \frac{1}{\lambda} = 1$ that is convexoid so $w(A) = \{\lambda\}$ then $A = \lambda$

Lemma 2.6 Let *S* be a *-paranormal operator and $\sigma(S) = \{\lambda\}$ then we have

(1) If $\lambda = 0$, then $R^2 = 0$

(2) If $\lambda \neq 0$ then $\lambda = 1$ and R = S = I

Proof. case(1) is $\lambda = 0$ then by lemma(2.5) $R^2 = 0$

case(2) if $\lambda \neq 0$ and *S* is *-paranormal, $S = \lambda I$ and since $SRS = S^2$ that is $\lambda^2(R-I) = 0$ so that R = I and also that $RSR = R^2$ then $(\lambda - I)R^2 = 0$ and $\lambda = 1$ that is $\sigma(S) = \sigma(R) = \{1\}$ which is R = S = I

Remark 2.7 Let *S* be a*-paranormal operator then we have (1) If *S* is quasinilpotent, then *SR*, *RS*, *R* are nilpotent (2) IF *S*-*I* is quasinilpotent, then R = I therefore $RS - \lambda$, $SR - \lambda$ and $R - \lambda$ are invertible for each $\lambda \in C \setminus \{1\}$

Corollary 2.8 If S is a^* -paranormal operator, then $iso(A) \subseteq \{0,1\}$ where $A \in \{S, SR, RS, R\}$

Proof. Let λ_0 be a nonzero isolated point of $\sigma(S)$ by Riesz

decomposition $E_{\lambda_0}(A)$ with respect to λ_0 we can act A as the direct sum

$$S = S_1 \oplus S_2$$
, where $\sigma(S_1) = \{\lambda_0\}$ and $\sigma(S_2) = \sigma(S) \setminus \{\lambda_0\}$

since S_1 is *-paranormal then by lemma (2.6) that is $\lambda_0 = 1$ that is $iso\sigma(A) \subseteq \{0,1\}$

Lemma 2.9 If S is *-paranormal and λ_0 is nonzero isolated point of $\sigma(SR)$, then for the Riesz idempotent $E_{\lambda_0}(S)$ with respect to λ_0 , we have

$$Im(E_{\lambda_0}(A)) = ker(SR - \lambda_0) = ker(S^*R^* - \overline{\lambda_0})$$

Proof. since *S* is *-paranormal and $\lambda \in iso\sigma(S) \setminus \{0\}$, then by [20, Theorem 3] $Im(E_{\lambda_0}(S)) = ker(RS - \lambda_0) = ker(S^* - \overline{\lambda_0})$ for the Riesz idempotent $E_{\lambda_0}(S)$ with respect to λ_0 but a pair (S, R) is solution of the operator equation $SRS = S^2$ and $RSR = R^2$ then by [18, corollary 2.2]

 $ker(S - \lambda_0) = ker(SR - \lambda_0)$ and $ker(S^* - \overline{\lambda_0}) = ker(S^*R^* - \overline{\lambda_0})$, for $\lambda_0 \neq 0$

Definition 2.10 we called the set δ be the collection of every pair (S, R) of the operators as following

 $\delta := \{(S, R) : S \text{ and } R \text{ are the solution of the operator}$ equation $SRS = S^2$ and $RSR = R^2$ with $ker(S - \lambda) = ker(R - \lambda)$ for $\lambda \neq \{0\}$

Lemma 2.11 Suppose that $(S,R) \in \delta$ and S is *-paranormal if $\lambda_0 \in iso\sigma(RS) \setminus \{0\}$ then for the Riesz idempotent $E_{\lambda_0}(A)$ with respect to λ_0 we have that

$$Im(E_{\lambda_0}(S)) = ker(RS - \lambda_0) = ker(S^*R^* - \lambda_0)$$

Proof. since $(S, R) \in \delta$ and S is *-paranormal then by [18, Corollary 2.2] and lemma (2.9) that is $ker(RS - \lambda_0) = ker(SR - \lambda_0) = ker(S^*R^* - \overline{\lambda_0})$ for $\lambda_0 \in iso(RS) \setminus \{0\}$

Proposition 2.12 Let $(S, R) \in \delta$ and S be a *-paranormal operator

(1) If λ_0 is a nonzero isolated point of $\sigma(RS)$ then the range of $RS - \lambda_0$ is closed

(2) If R^* is injective and $\lambda_0 \in iso\sigma(A) \setminus \{0\}$ then, $ker(A - \lambda_0)$ reduces A where $\in \{SR, R\}$

Proof. (1) Let λ_0 is a nonzero isolated point of $\sigma(RS)$ then by corollary (2.8) that is $iso\sigma(RS) \subseteq \{1\}$. If $iso\sigma(RS) = \phi$ then the prove done. If $iso\sigma(RS) = \{1\}$, since $SRS = S^2$

<u>www.ijsr.net</u>

DOI: 10.21275/ART20175711

Licensed Under Creative Commons Attribution CC BY

1218

and $RSR = R^2$, by [18] 1 is an isolated point of $\sigma(S)$ by using the Riesz idempotent $E_1(S)$ with respect to 1 we can act S as the direct sum

$$S = S_1 \oplus S_2$$
 where $\sigma(S_1) = \{1\}$ and $\sigma(S_2) = \sigma(S) \setminus \{1\}$

since (S, R) is δ and S is *-paranormal then by lemma (2.9)

$$H = Im(E) \oplus Im(E)^{\perp} = ker(RS - I) \oplus ker(RS - I)^{\perp}$$

which implies that

which implies that

$$RS = C_1 \oplus C_2$$
, where $\sigma(C_1) = \{1\}$ and $\sigma(C_2) = \sigma(RS) \setminus \{1\}^{A-A}$

since S_1 and C_1 are the restriction of S and RS to $Im(E_1(S))$ therefore we not that if $R_1 := R \mid Im(E_1(S))$ then $S_1R_1S_1 = S_1^2$ and $R_1S_1R_1 = R_1^2$ since S_1 is *-paranormal then be lemma (2.6) that is $C_1 = I$ thus $RS - I = 0 \oplus (C_2 - I)$

so that

 $Im(RS-I) = (RS-I)(H) = 0 \oplus (C_2 - I)(N(RS-I)^{\perp})$ since $(C_2 - I)$ is invertible, that is RS - I has closed range (2) since a pair (S^*, S^*) is a solution of the operator equation $S^*R^*S^* = S^{*2}$ and $R^*S^*R^* = R^{*2}$ and R^* is injective $S^*R^* = R^*$ but $(S, R) \in \delta$ then by lemma (2.9) and lemma(2.11) that for the Riesz idempotent $E_{\lambda_0}(A)$

$$Im(E_{\lambda_0}(S)) = ker(A - \lambda_0) = ker(A^* - \overline{\lambda_0})$$

where $A \in \{SR, R\}$

Lemma 2.13 We have the following properties (1) $\pi_0(S) = \pi_0(SR) = \pi_0(RS) = \pi_0(R)$

(2) *S* is isolated if and only if *A* is is isolated where $A \in \{SR, RS, R\}$

Proof. Since $SRS = S^2$ and $RSR = R^2$ then by [18] and [9, Lemma 2.3], it is known that $\sigma(S) = \sigma(SR) = \sigma(RS) = \sigma(R)$ and $\sigma_p(S) = \sigma_p(SR) = \sigma_p(RS) = \sigma_p(R)$ that is (2) is satisfied. Also for every $\lambda \in C$

$$\alpha(S-\lambda) > 0 \Leftarrow \alpha(SR_{\lambda}) > 0 \Leftarrow \alpha(RS-\lambda) > 0 \Leftarrow \alpha(R-\lambda) > 0$$

that is (1) satisfied

3. Generalized Weyl's theorem for algebraically totally *-paranormal

Definition 3.1 [14] An operator $A \in B(H)$ is said to be totally *-paranormal if $T - \lambda$ is *-paranormal for all $\lambda \in C$

Definition 3.2 Let $A \in B(H)$, we called A is an

algebraically totally *-paranormal if there exists a non-constant complex polynomial P such that P(A) is totally *-paranormal

normal operator \Rightarrow totally *-paranormal \Rightarrow algebraically totally *-paranormal

Theorem 3.3 Suppose that S or S^* is a polynomial root of *-paranormal operator then $f(A) \in gW$ for all $f \in H(\sigma(A))$, where $A \in \{SR, RS, R\}$

Proof. suppose that $\lambda \in \sigma(A) \setminus \sigma_{BW}(A)$. Then $A - \lambda$ is B-Weyl but not invertible then by [5, Lemma 4.1] we can act $\frac{1}{4}A - \lambda$ as the direct sum

 $A - \lambda = A_1 \oplus A_2$ where A_1 is Weyl and A_2 is nilpotent

Since *S* is polynomial root of *-paranormal then by[13] *S* has (*SVEP*) therefore by [16][Theorem 3.3.9] and [9, Theorem 2.1], *A* has (*SVEP*). This is implies that A_1 has (*SVEP*) at 0. Therefore A_1 is Wyle, so that A_1 has finite ascent and descent that is $A - \lambda$ has finite ascent and descent and descent so that $\lambda \in \pi_0(A)$

Conversely, suppose that $\lambda \in \pi_0(A)$. Then by lemma(2.13) $\lambda \in \pi_0(S)$. But *S* is polynomial root of *-paranormal operator hence by [2] $S \in gB$ therefore λ is a pole of the resolvent of *S* so that $A - \lambda$ is Drazin invertible by [9, Theorem 2.1] we can act $A - \lambda$ as the direct sum

 $A - \lambda = A_1 \oplus A_2$ where A_1 is invertible and A_2 is nilpote

Therefore $A - \lambda$ is B-Weyl, and so $\lambda \in \sigma_{BW}(A)$.thus $\sigma(A) \setminus \sigma_{BW}(A) = \pi_0(A)$ therefore $A \in gW$

We claim that $\sigma_{BW}(f(A)) = f(\sigma_{BW}(A))$ for all $f \in H(\sigma(A))$. Since $A \in gW$, $A \in gB$ then by [6, Theorem 2.1] that is $\sigma_{BW}(A) = \sigma_D(A)$. Since *S* is polynomial root of *-paranormal operator, *A* has (*SVEP*) so that f(A) has (*SVEP*) for all $f \in H(\sigma(A))$ therefore $f(A) \in gB$ by [6, Theorem 2.9] hence we have

$$\sigma_{BW}(f(A)) = \sigma_D(f(A)) = f(\sigma_D(A)) = f(\sigma_{BW}(A))$$

Since *S* is a polynomial root of *-paranormal operator then by [2] that *S* is isoliod therefore by lemma(2.13) *S* is isoloid for all $f \in H(\sigma(A))$,

$$\sigma(f(A)) \setminus \pi_0(f(A)) = f(\sigma(A) \setminus \pi_0(A))$$

since $A \in gW$, we have
$$\sigma(f(A)) \setminus \pi_0(f(A)) = f(\sigma(A) \setminus \pi_0(A)) = f(\sigma_{BW}(A)) = \sigma_{BW}(f(A))$$

that is $f(A) \in gW$.

Now suppose that S^* is polynomial root of *-paranormal operator. Let $\lambda \in \sigma(A) \setminus \sigma_{BW}(A)$ observe that

Volume 6 Issue 8, August 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

 $\sigma(A^*) = \sigma(A)$ and $\sigma_{BW}(A^*) = \sigma_{BW}(A)$ so . $\overline{\lambda} \in \sigma(A^*) \setminus \sigma_{BW}(A^*)$. But, $S^* R^* S^* = S^{*2}$ and $R^*S^*R^* = R^{*2}$ hence $A^* \in gW$ so $\overline{\lambda} \in P_0(A^*)$, therefore $\overline{\lambda} \in P_0(S^*)$. Since S^* is polynomial root of *-paranormal operator and $\overline{\lambda}$ is pole if the resolvent of S^* that is λ is a pole of the resolvent of T so $\lambda \in \pi_0(T)$

Conversely let $\lambda \in \pi_0(A)$ then $\lambda \in \pi_0(S)$. Since $\lambda \in iso\sigma(S^*)$ and S^* is a polynomial root of *-paranormal operators and λ is a pole of the resolvent of S, so that $T - \lambda$ is Drazin invertible. hence $\lambda \in \sigma(A) \setminus \sigma_{BW}(A)$ so that $\sigma(A) \setminus \sigma_{BW}(A) = \pi_0(A)$. Hence $A \in gW$. If S^* is polynomial root of *-paranormal operators then by lemma(2.13) A is isoloid. Hence $f(A) \in gW$.

Corollary 3.4 Suppose that $(S, R) \in \delta$ and A is a compact operator. Then we have

 $RA = I \oplus Q$ on $ker(RS - I) \oplus ker(RS - I)^{\perp}$ where $\sigma(Q) = 0$

Proof. Let *S* be a compact operator and *-paranormal. Then by theorem (3.3) RS satisfies generalized Weyl's theorem and by corollary (2.8) that is $iso\sigma(RS) \subseteq \{0,1\}$ hence $\sigma(RS) \setminus \sigma_{BW}(RS) \subseteq \{0,1\}$

Assume that $\sigma_{BW}(RS)$ is not finite. Then $\sigma(RS)$ is finite. S is compact, Since $\sigma(RS)$ is countable set $\sigma(RS) := \{0, \lambda_1, \lambda_2, \dots\},\$ where $\lambda_i \neq 0$ for $j = 1, 2, ..., \lambda_i \neq \lambda_j$ for all $i \neq j$ and $\lambda_j \rightarrow 0$ as $j \rightarrow \infty$ then by corollary (2.8) $\{\lambda_1, \lambda_2, ...\} \subseteq iso\sigma(RS) \setminus \{0\} \subseteq \{1\}$. But this is a contradiction therefore $\sigma_{BW}(RS)$ is finite. That is means for all point in $\sigma_{RW}(RS)$ is isolated. So $\sigma(RS) \subseteq \{0,1\}$. If $1 \notin \sigma(RS)$, then $\sigma(RS) = 0$. Since S is *-paranormal then by lemma (2.5) S = 0 hence RS = 0. If $1 \in \sigma(RS)$, then by proposition (2.12)

Theorem 3.5 Let S is a polynomial root of *-paranormal operators then generalized a-Browder's theorem holds for A where $A \in \{SR, RS, R\}$

Proof. First we must show that $\sigma_{ea}(f(A)) = f(\sigma_{ea}(A))$ for all $f \in H(\sigma(A))$

Let since the inclusion $f \in H(\sigma(A))$ $\sigma_{ea}(f(A)) \subseteq f(\sigma_{ea}(A))$ hold for each operator. Suppose that $\lambda \notin \sigma_{ea}(f(A))$ then $f(A) - \lambda$ is upper semi-Fredholm and $i(f(A) - \lambda) \le 0$ let

 $f(A) - \lambda = c(A - \mu_1)(A - \mu_2)...(A - \mu_n)g(A)$

where $c, \mu_1, \mu_2, ..., \mu_n \in C$ and g(A) is invertible. Since S is polynomial root of *-paranormal operators then by [13] and [1,

Theorem 2.40] that is S has (SVEP) therefore A has (SVEP) by [9, Theorem 2.1]. Since $A - \mu_i$ is upper semi-Fredholm, then by [15, Proposition 2.2] that is $i(A - \mu_i) \le 0$ for all i = 1, 2, ..., n hence $\lambda \notin f(\sigma_{ea}(A))$.

Suppose that S or S^* is a polynomial root of *-paranormal operators. Since $S^*R^*S^* = S^{*2}$ and $R^*S^*R^* = R^{*2}A^*$ has also (SVEP). So $i(A-\mu_i) \ge 0$ for all i=1,2,...,n. From the classical index product theorem , $A - \mu_i$ is Weyl for all $\lambda \notin f(\sigma_{ea}(A))$ therefore *i*-1,2,...,*n* so that $\sigma_{ea}(f(A)) = f(\sigma_{ea}(A))$. Since S or S^{*} is a root of *-paranormal operators then A or A^* has (SVEP) therefore a-Browder's theorem holds for A. Hence $\sigma_{ab}(f(A)) = f(\sigma_{ab}(A)) = f(\sigma_{ea}(A)) = \sigma_{ea}(f(A))$

for all $f \in H(\sigma(A))$

Definition 3.6 [16] An operator $A \in B(H)$ on C is said has a Bishop's property (β) if for every open subset U of C and every sequence of analytic functions $f_n: U \to x$ with the property that $(A - \lambda I) f_n(\lambda) \rightarrow 0$ as $n \rightarrow \infty$ Let

 $\sigma_{\beta}(A) = \{\lambda \in C: A \text{ dose not have aBishop's property}\}$

Theorem 3.7 For the operator equation $SRS = S^2$ and $RSR = R^2$ we have $\sigma_{\beta}(S) = \sigma_{\beta}(SR) = \sigma_{\beta}(RS) = \sigma_{\beta}(RS)$ *Proof.* The equivalence SR has a property (β) at a point $\mu \subset RS$ has a property (β) at μ holds for all $RS = I \oplus Q$ on $H = ker(RS - I) \oplus ker(RS - I)^{\perp}$, where $\sigma(\mathfrak{G}) \mathbb{R} \in \mathfrak{G}(H)$ [4]. We prove that S has a property (β) at $\mu \leftarrow SR$ has a property (β) at μ the equivalence R has a property (β) at $\mu \leftarrow RS$ has a property (β) at μ is similarly proved. Let U be an open neighborhood of μ and $(f_n): U \to X$ be a sequence of analytic functions in a neighborhood of λ such that

$$\lim_{n \to +\infty} (S - \lambda) f_n(\lambda) = 0 \quad in \quad U. \quad Then$$

$$\lim_{n \to +\infty} (S^2 - \lambda S) f_n(\lambda) = 0 \rightleftharpoons \lim_{n \to +\infty} S^2 f_n(\lambda) = \lambda \lim_{n \to +\infty} Sf_n(\lambda) = \lambda^2 \lim_{n \to +\infty} f_n(\lambda) \quad in \quad U$$

and so
$$\lim_{n \to +\infty} SR(S - \lambda) f_n(\lambda) = 0 \Rightarrow \lim_{n \to +\infty} (S^2 - \lambda SR) f_n(\lambda) = 0 \Rightarrow \lim_{n \to +\infty} (SR - \lambda) (-\lambda f_n(\lambda)) = 0 \quad in \quad U$$

Volume 6 Issue 8, August 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20175711

Thus if SR has a property (β) at μ then

$$\lambda \lim_{n \to +\infty} f_n(\lambda) = 0 \Longrightarrow \lim_{n \to +\infty} f_n(\lambda) = 0 \quad for \quad all \quad \lambda \quad in \quad U$$

implies S has a property β at μ . Conversely assume that S has a property β at μ and let $g_n U \rightarrow x$ be an analytic

$$\lim_{n \to +\infty} (SR - \lambda)g_n(\lambda) = 0 \quad in \quad U$$

Then

$$\lim_{n \to \infty} SR(SR - \lambda) = 0 \Leftarrow \lim_{n \to \infty} (S^2 R - \lambda SR) g_n(\lambda) = \lim_{n \to \infty} (S - \lambda) SR g_n(\lambda) = 0 \quad \in \quad U$$

$$\Rightarrow \lim_{n \to +\infty} SR g_n(\lambda) = 0 \Rightarrow \lambda \lim_{n \to +\infty} g_n(\lambda) = 0 \quad in \quad U \Rightarrow \lim_{n \to +\infty} g_n(\lambda) = 0 \quad in \quad U$$

this implies that S has a property \mathcal{R}

this implies that S has a property β

References

- [1] P Aiena, *Fredholm and local spectral theory*, UIT Applications to Multiplers (2004).
- [2] Hiba F. Al-Janaby, *Generalized weyl's theorem for* spectral classes of operators, Journal of college of education **3** (2010), no. 6, 297–314.
- [3] Il Ju An and Eungil Ko, *Paranormal operators and some operator equations*, Filomat 29 (2015), no. 6, 1195–1207.
- [4] C Benhida and EH Zerouali, Local spectral theory of linear operators rs and sr, Integral Equations and Operator Theory 54 (2006), no. 1, 1–8.
- [5] M Berkani, Index of b-fredholm operators and generalization of a weyl theorem, Proceedings of the American Mathematical Society 130 (2002), no. 6, 1717–1723.
- [6] Raúl E Curto and Young Min Han, Generalized browder's and weyl's theorems for banach space operators, Journal of Mathematical Analysis and Applications 336 (2007), no. 2, 1424–1442.
- [7] HR Dowson, R. harte, invertibility and singularity for bounded linear operators (marcel dekker inc., new york and basel, 1987) xii+ 590 pp. 0 8247 7754 9, 119.50., Proceedings of the Edinburgh Mathematical Society (Series 2) 32 (1989), no. 02, 334–335.
- [8] MP Drazin, Pseudo-inverses in associative rings and semigroups, The American Mathematical Monthly 65 (1958), no. 7, 506–514.
- [9] BP Duggal, Operator equations aba= a2 and bab= b2, Funct. Anal. Approx. Comput 3 (2011), no. 1, 9–18.
- [10] Robin Harte, Fredholm, weyl and browder theory, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, JSTOR, 1985, pp. 151–176.
- [11] G.H. Heuser, *Functional analysis*, Jonhn Wiley and Sons Lid, 1982.
- [12] Istratusco, *Introduction to linear operator theory*, Mareel Dekker, INC.New York and Basel, 1981.
- [13] K Laursen, Essential spectra through local spectral theory, Proceedings of the American Mathematical Society 125 (1997), no. 5, 1425–1434.
- [14] Sang Hun Lee and Cheon Seoung Ryoo, Some properties of certain nonhyponormal operators, Bull. Korean Math. Soc **31** (1994), no. 1, 133–141.
- [15] Mourad Oudghiri, Weyl's and browder's theorems for operators satisfying the svep, Studia Mathematica 163 (2004), 85–101.
- [16] BEBE PRUNARU, Kjeld B Laursen, and Michael M

Neumann, An introduction to local spectral theory: London mathematical society monographs (new series), 2002.

- [17] Steffen Roch and Bernd Silbermann, *Continuity of generalized inverses in banach algebras*, Studia Mathematica **136** (1999), no. 3, 197–227.
- [18] Christoph Schmoeger et al., Common spectral properties of linear operators a and b such that aba= a2 and bab= b2, Publications de lâ€TMInstitut Math.(NS) **79** (2006), no. 93, 109–114.
- [19] Cheon seoung Ryoo, *Some class of operators*, Math.J.Toyamn Univ **21** (1998), no. 1, 147–152.
- [20] Kotoro Tanahashi and Atsushi Uchiyama, A note onâ[^]—-paranormal operators and related classes of operators, Bulletin of the Korean Mathematical Society 51 (2014), no. 2, 357–371.

Volume 6 Issue 8, August 2017