Totaly *-paranormal and the Operators Equations

\[SRS = S^2 \text{ and } RSR = R^2 \]

Buthainah A.A. Ahmed\(^1\), Hassan N. Almaryate\(^2\)

\(^1,2\)Department of Mathematics -College of Science -University of Baghdad

Abstract: In this paper we study the property of the operator equations \(SRS = S^2 \) and \(RSR = R^2 \) where \(S \) is a *-paranormal operator we show that if \(S \) or \(S^\ast \) is a polynomial root of *-paranormal operator then \(f(A) \in \mathbb{G} \) for all \(f \in (H(\sigma(A))) \), where \(A \in \{SR, RS, R\} \) and we show that For the operator equation \(SRS = S^2 \) and \(RSR = R^2 \) we have \(\sigma_\beta(S) = \sigma_\beta(SR) = \sigma_\beta(RS) = \sigma_\beta(R) \)

1. Introduction

Let \(H \) be an infinite dimensional separable Hilbert space and let \(B(H), B_0(H) \) denote the algebra of bounded linear operators and the ideal of compact operator acting on \(H \). If \(T \in B(H) \) we shall write \(\text{Im}(T) \) and \(\text{ker}(T) \) for the range and null space of \(T \). Let \(\alpha(T) := \text{dimker}(T) \), \(\beta(T) := \text{dimker}(T^\ast) \), and let \(\sigma_\alpha(T), \sigma_\beta(T), \sigma_\rho(T), p_0(T), \) and \(\pi_0(T) \) denote the spectrum, approximate point spectrum, surjective spectrum, point spectrum of \(T \), the set of the resolvent of \(T \) and the set of all eigenvalues of \(T \) which are isolated in \(\sigma(T) \).

Recall that \(T \in B(H) \) is called *-paranormal operator if \(\|T^*x\| \leq \|T^2x\| \|x\| \) and \(T \) is called isosolid if every isolated point of \(\sigma(T) \) is an eigenvalue of \(T \). If \(T \in B(H) \) we write \(r(T) \) for the spectral radius of \(T \) where \(r(T) = \|T\| \). An operator \(T \in B(H) \) is called normal if \(\|T^*\| = \|T\| \). An operator \(T \in B(H) \) is said to be nilpotent if \(T^n = 0 \) for a natural number \(n \) and called quasinilpotent if \(r(T) = 0 \) [11, 12]

The operator \(E := \frac{1}{2\pi i} \int_{\mathbb{C}} (\lambda - T)^{-1} \) is called Riesz idempotent with respect to \(\lambda \) where \(D \) is a closed disk centered at \(\lambda \) and \(D \cap \sigma(T) = \{\lambda\} \) where \(\lambda \in \sigma(T) \) be an isolated point of \(\sigma(T) \) see[11]

Recall that if \(T \in B(H) \), the asent \(\alpha(T) \) and the descent \(d(T) \) given by

\[\alpha(T) := \inf \{ n \geq 0 : \text{ker}(T^n) = \text{ker}(T^{n+1}) \} \]
\[d(T) := \inf \{ n \geq 0 : \text{Im}(T^n) = \text{Im}(T^{n+1}) \} \]

An operator \(T \in B(H) \) is called Fredholm if it has closed range , finite dimensional null space and its range has finite co-dimensional:the index of a Fredholm operator \(i(T) = \alpha(T) - \beta(T) \)

\(T \) is called Weyle if it is Fredholm of index zero , and Browder if it is Fredholm of finite ascent and descent.The essential spectrum \(\sigma_e(T) \), the Weyl spectrum \(\sigma_w(T) \) and the Browder spectrum \(\sigma_B(T) \) define as [7, 10]

\[\sigma_e(T) := \{ \lambda \in C : T - \lambda \text{ is not Fredholm} \} \]
\[\sigma_w(T) := \{ \lambda \in C : T - \lambda \text{ is not Weyl} \} \]
\[\sigma_B(T) := \{ \lambda \in C : T - \lambda \text{ is not Browder} \} \]

\[\sigma_T(W) \subseteq \sigma_T(T) \cup \text{acc} \sigma(T) \]

we write \(\text{acc} K \) for the accumulation point of \(K \subset C \) if we write \(\text{iso} K = K \backslash \text{acc} K \) then let \(\pi_0(T) := \{ \lambda \in \text{iso} \sigma(T) : 0 \leq \alpha(T - \lambda) \leq \infty \} \)

\[P_0(T) := \sigma(T) \backslash \sigma_0(T) \]

we say that Weyl’s theorem hold for \(T \) if \(\sigma(T) \backslash \sigma_0(T) \)

and Browder’s theorem hold for \(T \) if \(\sigma(T) \backslash \sigma_0(T) = P_0(T) \)

An operator \(T \in B(H) \) is called B-Fredholm if there exists a natural number \(n \) for the induced operator \(T_n : \text{Im}(T) \to \text{Im}(T^n) \) is Fredholm in the usual sense and B-Weyl’s if in addition \(T_n \) has zero index .

the B-Fredholm spectrum \(\sigma_{BF}(T) \) and B-Weyl spectrum \(\sigma_{BW}(T) \) are define by

\[\sigma_{BF}(T) := \{ \lambda \in C : T - \lambda \text{ is not } B - \text{Fredholm} \} \]
\[\sigma_{BW}(T) := \{ \lambda \in C : T - \lambda \text{ is not } B - \text{Weyl} \} \]

An element \(x \) of \(A \) is Drazin invertible if there is an element \(b \) of \(A \) and non-negative integer \(k \) such that [17]

\[x^k b x = x^k, b x b = b, \quad x b = b x \]

the Drazin spectrum of \(a \in A \) is define by [8]

\[\sigma_D(a) := \{ \lambda \in C : a - \lambda \text{ is not Drazin invertible} \} \]

If \(T \in B(H) \) it is well known that \(T \) is Drazin invertible if and only if it has finite ascent and descent and that is also equivalent to the fact that \(T \) decomposed as \(T_1 \oplus T_2 \) where \(T_1 \) is invertible and \(T_2 \) is nilpotent[15] and

\[\sigma_{BW}(T) = \sigma(\sigma_{D}(T+F)) : F \in B_0(H) \]
\[\sigma_{BB}(T) = \sigma(\sigma_{D}(T+F)) : F \in B_0(H) \text{ and } TF = FT \]
2. Main Results

Lemma 2.1 [19] every *-paranormal operator is normaloid.

Lemma 2.2 [19] If \(T \in B(H) \) is *-paranormal then \(\ker(T-\lambda I) \subseteq \ker(T^*-\lambda I) \) for each \(\lambda \in \mathbb{C} \) thus \(T-\lambda I \) is reduced by its eigenspace for every \(\lambda \in \mathbb{C} \)

Theorem 2.3 [19] If \(H \) is finite dimension .every *-paranormal operator \(T \) is normal.

Theorem 2.4 Let \(S \) be a *-paranormal operator on finite dimensional Hilbert space \(H \) and \(\ker(S)=\ker(S^*) \) then we have

(1) \(SR \) is normal.

(2) If \(N(S-\lambda I) \subseteq \ker(R-\lambda I) \) for each \(\lambda \in \mathbb{C} \) then for all of \(S, RS, SR, R \) are normal.

Proof. Since \(S \) is *-paranormal operator and \(\dim H < \infty \) use theorem (2.3) that \(S \) is normal operator hence \(S \) is paranormal operator then by [3] that \(SR \) is normal (2) since \(\ker(S) = \ker(RS) \) then by [3, Theorem3.1] it is obtain

Lemma 2.5 Let \(A \) be a *-paranormal operator then we have \(A=\lambda \) if \(\sigma(A) = \{\lambda\} \) for \(\lambda \in \mathbb{C} \)

Proof. case (1) if \(\lambda = 0 \) since \(A \) is *-paranormal then by lemma (2.1) \(T \) is normaloid therefore \(T = 0 \)

Case (2) if \(\lambda \neq 0 \) that is \(A \) is invertible since \(A \) is *-paranormal then \(A^{-1} \) is also *-paranormal then \(A^{-1} \) is normaloid hence \(\sigma(A^{-1}) = \{\frac{1}{\lambda}\} \) so \(\|A\| \left\|A^{-1}\right\| = \frac{1}{|\lambda|} = 1 \)

that is convexoid so \(\omega(A) = \{\lambda\} \) then \(A = \lambda \)

Lemma 2.6 Let \(S \) be a *-paranormal operator and \(\sigma(S) = \{\lambda\} \) then we have

(1) If \(\lambda = 0 \), then \(R^2 = 0 \)

(2) If \(\lambda \neq 0 \) then \(\lambda = 1 \) and \(R = S = I \)

Proof. case (1) is \(\lambda = 0 \) then by lemma (2.5) \(R^2 = 0 \) case (2) if \(\lambda \neq 0 \) and \(S \) is *-paranormal \(S = \lambda I \) and since \(SRS = S^2 \) that is \(SRS = (R-I) = 0 \) so that \(R = I \) and also that \(RSR = R^2 \) then \((\lambda - I)R^2 = 0 \) and \(\lambda = 1 \) that is \(\sigma(S) = \sigma(R) = \{1\} \) which is \(R = S = I \)

Remark 2.7 Let \(S \) be a *-paranormal operator then we have

(1) If \(S \) is quasinilpotent, then \(SR, RS, R \) are nilpotent

(2) If \(S - I \) is quasinilpotent, then \(R = I \) therefore \(RS - \lambda, SR - \lambda, R - \lambda \) are invertible for each \(\lambda \in \mathbb{C} \setminus \{1\} \)

Corollary 2.8 If \(S \) is a *-paranormal operator, then \(iso(A) \subseteq \{0,1\} \) where \(A \in \{S, SR, RS, R\} \)

Proof. Let \(\lambda_0 \) be a nonzero isolated point of \(\sigma(S) \) by Riesz decomposition \(E^\bullet_\lambda(A) \) with respect to \(\lambda_0 \) we can act \(A \) as the direct sum

\[
S = S_1 \oplus S_2 , \quad \text{where} \sigma(S_1) = \{\lambda_0\} \quad \text{and} \quad \sigma(S_2) = \sigma(S) \setminus \{\lambda_0\}
\]

since \(S_1 \) is *-paranormal then by lemma (2.6) that is \(\lambda_0 = 1 \) that is \(iso(A) \subseteq \{0,1\} \)

Lemma 2.9 If \(S \) is *-paranormal and \(\lambda_0 \) is nonzero isolated point of \(\sigma(S) \), then for the Riesz idempotent \(E^\bullet_\lambda(S) \) with respect to \(\lambda_0 \), we have

\[
Im(E^\bullet_\lambda(A)) = ker(SR - \lambda_0) = ker(S^*R^* - \lambda_0)
\]

Proof. since \(S \) is *-paranormal and \(\lambda \in iso(S) \setminus \{0\} \) then by [20, Theorem 3]

\[
Im(E^\bullet_\lambda(S)) = ker(RS - \lambda_0) = ker(S^* - \lambda_0)
\]

for the Riesz idempotent \(E^\bullet_\lambda(S) \) with respect to \(\lambda_0 \) but a pair \((S, R) \) is solution of the operator equation \(SRS = S^2 \) and \(RSR = R^2 \) then by [18, corollary 2.2]

\[
ker(S - \lambda_0) = ker(SR - \lambda_0) \quad \text{and} \quad ker(S^* - \lambda_0) = ker(S^*R^* - \lambda_0)
\]

Definition 2.10 we called the set \(\delta \) the collection of every pair \((S, R) \) the operators as following

\(\delta := \{(S, R) : S \quad \text{and} \quad R \quad \text{are the solution of the operator equation} \quad SRS = S^2 \quad \text{and} \quad RSR = R^2 \quad \text{with} \quad ker(S - \lambda_0) = ker(R - \lambda) \quad \text{for} \quad \lambda \neq 0 \} \)

Lemma 2.11 Suppose that \((S, R) \in \delta \) and \(S \) is *-paranormal then by [18, Corollary 2.2] and lemma (2.9) that \(ker(RS - \lambda_0) = ker(S^*R^* - \lambda_0) \) for \(\lambda_0 \in iso(RS) \setminus \{0\} \)

Proposition 2.12 Let \((S, R) \in \delta \) and \(S \) be a *-paranormal operator

(1) If \(\lambda_0 \) is a nonzero isolated point of \(\sigma(S) \) then the range of \(RS - \lambda_0 \) is closed

(2) If \(R^* \) is injective and \(\lambda_0 \in iso(A) \setminus \{0\} \) then, \(ker(A - \lambda_0) \) reduces A where \(\in \{SR, R\} \)

Proof. (1) Let \(\lambda_0 \) is a nonzero isolated point of \(\sigma(S) \) then by corollary (2.8) that is \(iso(S) \subseteq \{1\} \). If \(iso(RS) = \phi \) then the prove done. If \(iso(RS) = \{1\} \), since \(SRS = S^2 \).
and \(RSR = R^2 \), by [18] 1 is an isolated point of \(\sigma(S) \) by
using the Riesz idempotent \(E_1(S) \) with respect to 1 we can act \(S \) as the direct sum
\[S = S_1 \oplus S_2 \] where \(\sigma(S_1) = \{1\} \) and \(\sigma(S_2) = \sigma(S) \setminus \{1\} \)

since \((S, R)\) is \(\delta \) and \(S \) is \(*\)-paranormal then by lemma (2.9)
\[H = \text{Im}(E) \oplus \text{Im}(E)^\perp = \ker(RS - I) \oplus \ker(RS - I)^\perp \]
which implies that
\[RS = C_1 \oplus C_2 \text{ where } \sigma(C_1) = \{1\} \text{ and } \sigma(C_2) = \sigma(RS) \setminus \{1\} \]

since \(S_1 \) and \(C_1 \) are the restriction of \(S \) and \(RS \) to
\(\text{Im}(E_1(S)) \) therefore we not that if \(R := R \mid \text{Im}(E_1(S)) \) then
\(S_1 R_1 S_1 = S_1^2 \) and \(R S_1 R_1 = R_1^2 \) since \(S_1 \) is \(*\)-paranormal
then be lemma (2.6) that \(C_1 = I \) thus
\[RS - I = 0 \oplus (C_2 - I) \]
so that
\[\text{Im}(RS - I) = (RS - I)(H) = 0 \oplus (C_2 - I)(N(RS - I)^\perp) \]

since \(C_2 - I \) is invertible, that is \(RS - I \) has closed range
(2) since a pair \((S^*, R^*)\) is a solution of the operator
equation \(S^* R^* \) is \(S^2 \) and \(R^* R^* = R^2 \) and \(R^* \) is
injective \(S^* R^* = R^* \) but \((S, R) \in \delta \) then by lemma (2.9)
and lemma(2.11) that for the Riesz idempotent \(E_{\lambda_0}(A) \)
\[\text{Im}(E_{\lambda_0}(S)) = \ker(A - \lambda_0) = \ker(A^* - \lambda_0) \]
where \(A \in \{SR, RS\} \)

Lemma 2.13 We have the following properties
(1) \(\pi_0(S) = \pi_0(SR) = \pi_0(RS) = \pi_0(R) \)
(2) \(S \) is isolated if and only if \(A \) is is isolated where \(A \in \{SR, RS, R\} \)

Proof. Since \(SRS = S^2 \) and \(RSR = R^2 \) then by [18] and [9, Lemma 2.3], it is known that
\[\sigma(S) = \sigma(SR) = \sigma(RS) = \sigma(R) \]
and
\[\sigma_p(S) = \sigma_p(SR) = \sigma_p(RS) = \sigma_p(R) \]
that is (2) is satisfied .
Also for every \(\lambda \in C \)
\[\alpha(S - \lambda) > 0 \iff \alpha(SR_1) > 0 \iff \alpha(RS - \lambda) > 0 \iff \alpha(R - \lambda) > 0 \]
that is (1) satisfied

3. Generalized Weyl’s theorem for
algebraically totally \(*\)-paranormal

Definition 3.1 [14] An operator \(A \in B(H) \) is said to be
totally \(*\)-paranormal if \(T - \lambda \) is \(*\)-paranormal for all \(\lambda \in C \)

Definition 3.2 Let \(A \in B(H) \), we called \(A \) is an
algebraically totally \(*\)-paranormal if there exists a
non-constant complex polynomial \(P \) such that \(P(A) \) is
totally \(*\)-paranormal

normal operator ⇒ totally \(*\)-paranormal ⇒ algebraically
totally \(*\)-paranormal

Theorem 3.3 Suppose that \(S \) or \(S^* \) is a polynomial root of
\(*\)-paranormal operator then \(f(A) \in gW \) for all
\(f \in H(\sigma(A)) \), where \(A \in \{SR, RS, R\} \)

Proof. suppose that \(\lambda \in \sigma(A) \setminus \sigma_{BW}(A) \). Then \(A - \lambda \) is
B-Weyl but not invertible then by [5, Lemma 4.1] we can act \(A - \lambda \) as the direct sum
\(A - \lambda = A_1 \oplus A_2 \) where \(A_1 \) is Weyl and \(A_2 \) is nilpotent

Since \(S \) is polynomial root of \(*\)-paranormal then by[13] \(S \)
has (SVEP) therefore by [16][Theorem 3.3.9] and [9, Theorem 2.1], \(A \) has (SVEP).
This is implies that \(A_1 \) has (SVEP) at 0. Therefore \(A_1 \) is Wyle, so that \(A_1 \) has finite ascent and descent that is \(A - \lambda \) has finite ascent and
descent so that \(\lambda \in \pi_0(A) \)

Conversely, suppose that \(\lambda \in \pi_0(A) \). Then by lemma(2.13)
\(\lambda \in \pi_0(S) \). But \(S \) is polynomial root of \(*\)-paranormal
operator hence by [2] \(S \in gB \) therefore \(\lambda \) is a pole of
the resolvent of \(S \) so that \(A - \lambda \) is Drazin invertible by [9, Theorem 2.1] we can act \(A - \lambda \) as the direct sum
\(A - \lambda = A_1 \oplus A_2 \) where \(A_1 \) is invertible and \(A_2 \) is nilpotent.

Therefore \(A - \lambda \) is B-Weyl, and so \(\lambda \in \sigma_{BW}(A) \).
thus \(\sigma(A) \setminus \sigma_{BW}(A) = \pi_0(A) \)
therefore \(A \in gW \)

We claim that \(\sigma_{BW}(f(A)) = f(\sigma_{BW}(A)) \) for all
\(f \in H(\sigma(A)) \). Since \(A \in gW \), \(A \in gB \) then by [6, Theorem 2.1]
that \(\sigma_{BW}(A) = \sigma_{D}(A) \). Since \(S \) is polynomial root of \(*\)-paranormal operator, \(A \) has (SVEP)
so that \(f(A) \) has (SVEP) for all \(f \in H(\sigma(A)) \) therefore
\(f(A) \in gB \) by [6, Theorem 2.9] hence we have
\(\sigma_{BW}(f(A)) = \sigma_{D}(f(A)) = f(\sigma_{D}(A)) = f(\sigma_{BW}(A)) \)

Since \(S \) is a polynomial root of \(*\)-paranormal operator then
by [2] that \(S \) is isolated therefore by lemma(2.13) \(S \) is
isolated for all \(f \in H(\sigma(A)) \),
\(\sigma(f(A)) \setminus \pi_0(f(A)) = f(\sigma(A)) \setminus \pi_0(A) \)
since \(A \in gW \), we have
\(\sigma(f(A)) \setminus \pi_0(f(A)) = f(\sigma(A)) \setminus \pi_0(A) = f(\sigma_{BW}(A)) = \sigma_{BW}(f(A)) \)
that is \(f(A) \in gW \).

Now suppose that \(S^* \) is polynomial root of \(*\)-paranormal
operator. Let \(\lambda \in \sigma(A) \setminus \sigma_{BW}(A) \) observe that
Corollary 3.4 Suppose that $(S, R) \in \delta$ and A is a compact operator. Then we have
$$RA = I \oplus Q \text{ on } ker(RS-I) \oplus ker(RS-I)$$
where $\sigma(Q) = 0$

Proof. Let S be a compact operator and $*$-paranormal. Then by theorem (3.3) RS satisfies generalized Weyl’s theorem and by corollary (2.8) that is $isoaRS(0) \subseteq \{0\}$ hence
$$\sigma(RS) \setminus \sigma_{BW}(RS) \subseteq \{0\}$$

Assume that $\sigma_{BW}(RS)$ is not finite. Then $\sigma(RS)$ is finite. Since S is compact, $\sigma(RS)$ is countable set $\sigma(RS) = \{0, \lambda_1, \lambda_2, \ldots\}$, where $\lambda_i \neq 0$ for $j = 1, 2, \ldots$ and $\lambda_i \neq \lambda_j$ for all $i \neq j$ and $\lambda_j \to 0$ as $j \to \infty$ then by corollary (2.8) $\{\lambda_1, \lambda_2, \ldots\} \subseteq isoaRS(0) \subseteq \{0\}$. But this is a contradiction therefore $\sigma_{BW}(RS)$ is finite. That is means for all point in $\sigma_{BW}(RS)$ is isolated. So $\sigma(RS) \subseteq \{0\}$ if $1 \notin \sigma(RS)$, then $\sigma(RS) = 0$. If S is $*$-paranormal then by lemma (2.5) $S = 0$ hence $RS = 0$. If $1 \in \sigma(RS)$, then by proposition (2.12)

$$RS = I \oplus Q \text{ on } H = ker(RS-I) \oplus ker(RS-I)$$

Theorem 3.5 Let S is a polynomial root of $*$-paranormal operators then generalized a-Browder’s theorem holds for A where $A \in \{SR, RS, R\}$

Proof. First we must show that $\sigma_{ea}(f(A)) = f(\sigma_{ea}(A))$ for all $f \in H(\sigma(A))$

Let $f \in H(\sigma(A))$. Since the inclusion $\sigma_{ea}(f(A)) \subseteq f(\sigma_{ea}(A))$ hold for each operator. Suppose that $\lambda \notin \sigma_{ea}(f(A))$ then $f(A) - \lambda$ is upper semi-Fredholm and $i(f(A) - \lambda) \leq 0$

$$f(A) - \lambda = c(A - \mu_1)(A - \mu_2)\ldots(A - \mu_n)_g(A)$$

where $c, \mu_1, \mu_2, \ldots, \mu_n \in C$ and $g(A)$ is invertible. Since S is polynomial root of $*$-paranormal operators then by [13] and [1],

Theorem 2.40] that is S has (SVEP) therefore A has (SVEP) by [9, Theorem 2.1]. Since $A - \mu_i$ is upper semi-Fredholm, then by [15, Proposition 2.5] that is $i(A - \mu_i) \leq 0$ for all $i = 1, 2, \ldots, n$ hence $\lambda \notin f(\sigma_{ea}(A))$.

Suppose that S or S^* is a polynomial root of $*$-paranormal operators. Then $S^*R^*S^* = S^2$ and $R^*R^* = R^2$ A^* has also (SVEP). So $i(A - \mu_i) \leq 0$ for all $i = 1, 2, \ldots, n$. From the classical index product theorem $A - \mu_i$ is Weyl for all $i = 1, 2, \ldots, n$ therefore $\lambda \notin f(\sigma_{ea}(A))$. Since S or S^* is a root of $*$-paranormal operators then A or A^* has (SVEP) therefore a-Browder’s theorem holds for A. Hence $\sigma_{ab}(f(A)) = f(\sigma_{ab}(A)) = f(\sigma_{ea}(A)) = f(\sigma_{ea}(A))$ for all $f \in H(\sigma(A))$

Definition 3.6 [16] An operator $A \in B(H)$ on C is said has a Bishop’s property (β) if for every open subset U of C and every sequence of analytic functions $f_n : U \to x$ with the property that $(A - \lambda I)f_n(\lambda) \to 0$ as $n \to \infty$

Let $\sigma_{\beta}(A) = \{\lambda \in C : A \text{ does not have a Bishop’s property}\}$

Theorem 3.7 For the operator equation $SRS = S^2$ and $RSR = R^2$ we have $\sigma_{\beta}(S) = \sigma_{\beta}(SR) = \sigma_{\beta}(RS) = \sigma_{\beta}(R)$

Proof. The equivalence SR has a property (β) at a point $\mu \in RS$ has a property (β) at μ holds for all $H^* \subseteq B(H)$ [4]. We prove that S has a property (β) at μ the equivalence R has a property (β) at μ is similarly proved. Let U be an open neighborhood of μ and $(f_n) : U \to x$ be a sequence of analytic functions in a neighborhood of λ such that

$$\lim_{n \to \infty} (S - \lambda)f_n(\lambda) = 0 \text{ in } U.$$ Then

$$\lim_{n \to \infty} (S^2 - \lambda S)f_n(\lambda) = 0 \Leftrightarrow \lim_{n \to \infty} S^2f_n(\lambda) = \lambda \text{ limit } Sf_n(\lambda) = \lambda^2 \text{ limit } f_n(\lambda) \text{ in } U$$

and so

$$\lim_{n \to \infty} SR(S - \lambda)f_n(\lambda) = 0 \Rightarrow \lim_{n \to \infty} (S^2 - \lambda SR)f_n(\lambda) = 0 \Rightarrow \lim_{n \to \infty} (SR - \lambda)(-\lambda f_n(\lambda)) = 0$$

in U.
Thus if SR has a property (β) at μ then
\[\lambda \lim_{n \to \infty} f_{g_n}(\lambda) = 0 \Rightarrow \lim_{n \to \infty} g_n(\lambda) = 0 \quad \text{for all} \; \lambda \; \text{in} \; U \]
implies S has a property β at μ. Conversely assume that S has a property β at μ and let \(g_nU \to x \) be an analytic sequence such that
\[\lim_{n \to \infty} (SR - \lambda)g_n(\lambda) = 0 \quad \text{in} \; U. \]

Then
\[\lim_{n \to \infty} SRg_n(\lambda) = 0 \Leftrightarrow \lim_{n \to \infty} (S^2R - \lambda SR)g_n(\lambda) = (S - \lambda)SRg_n(\lambda) = 0 \quad \text{in} \; U \]
\[\Rightarrow \lim_{n \to \infty} SRg_n(\lambda) = 0 \Rightarrow \lambda \lim_{n \to \infty} g_n(\lambda) = 0 \quad \text{in} \; U \; \Rightarrow \lim_{n \to \infty} g_n(\lambda) = 0 \quad \text{in} \; U \]
this implies that S has a property β

References