Purely Fully Cancellation Fuzzy Modules

Buthainah Nejad Shihab

University of Baghdad / College of Education of Pure and Sciences Ibn Al- Haythiam / Dep. Math.

Abstract: In this paper we introduce the concept of purely fully cancellation fuzzy modules and give some characterizations and properties of this concept.

Keywords: Fully cancellation Fuzzy modules, Invertible fuzzy ideal, Purely Fully-Cancellation fuzzy module

1. Introduction

Gilmer in [1] was introduced the concept of cancellation ideal, and Anderson in [2], studied the concept of cancellation ideals. In [3] A, S, Mijbass, gave some generalization of this concept namely cancellation module (weakly cancellation module). In [4], Buthyna Nijad Shihab, introduce and studied restricted (and weakly restricted) cancellation module.

Next, Dr. L.M. Salman and Buthyna Nigad Shihab introduced and studied Relatively cancellation module in[5]. In [6]. Hatam Yahya Khalaf and Hadi.G. Rashed, introduced the concept of Fully cancellation fuzzy modules, where a fuzzy module X of an R-module M is called fully cancellation fuzzy module if for each fuzzy ideal I of R and for each fuzzy submodules A and B of X such that IA=IB, implies A=B.

In this paper we will introduce the concept of Puerly-fully cancellation fuzzy module and gives some properties, examples of this concept.

2.1 Definition

Let X be a fuzzy module of an R-module M. X is called puerly fully cancellation fuzzy module if for all non-empty fuzzy pure ideal I of R and for all non-empty fuzzy submodules A_1 , A_2 of X such that $IA_1=IA_2$ then $A_1=A_2$. And follow up to this same idea will offer the defition of puerlly fully cancellation ideal. If for all non-empty pure fuzzy ideal J of R and for all non-empty fuzzy ideals A and B of R such that JA=JB, then A=B.

2.2 Proposition

Let X be a fuzzy module of an R-module M.X is purely-fully cancellation fuzzy module if and only if X_t is purely –fully cancellation module

Proof: (\Rightarrow) Let K, N be two submodules of an R-module M and let J be a pure ideal of R.

Let I: $\mathbb{R} \to [0, 1]$ such that $I(x) = \begin{cases} t & \text{if } x \in J \\ 0 & \text{otherwise} \end{cases} \quad \forall t \in (01]$

It is clear that I is afuzzy ideal of R

Let A: $M \rightarrow [0, 1]$, B: $M \rightarrow [0, 1]$ such that : $A(x) = \begin{cases} t & if \ x \in K \\ 0 & otherwise \end{cases}$ $B(x) = \begin{cases} t & if \ x \in N \\ 0 & otherwise \end{cases} \forall t \in (0, 1]$

It is clear that A and B are two fuzzy submodules of X and A_t=K, B_t=N and I_t=J

Suppose that JA=JB, to prove A=B (IA)_t=(IB)_t, so IA=IB by[7] Thus A=B, since X is purely –fully cancellation fuzzy module

Therefore A_t=B_t.

Conversely, It is clear that $X_t=M$ and M is purely –fully cancellation module.

Let A and B be two fuzzy submodules of a fuzzy module X and let I be a fuzzy ideal of R such that IA=IB, then $(IA)_t=(IB)_t \forall t \in (0, 1]$, which imples that A_t , B_t are submodules of X_t , but X_t is purely fully cancellation module, so $I_tA_t=I_tB_t$ implies $A_t=B_t$, hence A=B.

Thus X is purely fully cancellation fuzzy module

Examples (2.3)

(1) Let $M=Z_{30}$, $R=Z_{30}$ and let X: $M \to [0, 1]$ such that X(x) = $\begin{cases} 1 & if \ x \in (\overline{0}) \ \forall t \in (0, 1] \\ 0 & otherwise \end{cases}$ X is a fuzzy module of Z_{30} -module. Let I: $Z_{30} \to [0, 1]$ such that $I(x) = \begin{cases} t & if \ x \in (\overline{5}) \ \forall t \in (0.1] \\ 0 & otherwise \end{cases}$ Let A: $M \to [0, 1]$ such that $A(x) = \begin{cases} t & if \ x \in (\overline{18}) \ \forall t \in (0, 1] \\ 0 & otherwise \end{cases}$ Let B: $M \to [0, 1]$ such that $B(x) = \begin{cases} t & if \ x \in (\overline{12}) \ \forall t \in (0, 1] \\ 0 & otherwise \end{cases}$ It is clear that A and B are fuzzy submodules of X. X_t=M and A_t=(\overline{18}), B_t=(\overline{12}), I_t=(\overline{5}) it is pure ideal by[8] Now, I_tA_t=I_tB_t (since (\overline{5}) (\overline{18}) = (\overline{5}) (\overline{12}))) Thus A_t=B_t.

(2) Let M= Z₁₂ and R=Z₁₂. Let X: M \rightarrow [0, 1] such that $X(x) = \begin{cases} 1 & if \ x \in Z_{12} \\ 0 & otherwise \end{cases}$ Define I: R \rightarrow [0, 1] such that : $I(x) = \begin{cases} 1 & if \ x \in (\overline{3}) \\ 0 & otherwise \end{cases} \forall t \in (0, 1].$ Let A : M \rightarrow [0, 1] such that : A(x) = $\begin{cases} t & if \ t \in (\overline{2}) \\ 0 & otherwise \end{cases}$ and B: M \rightarrow [0, 1] such that : B(x) = $\begin{cases} t & if \ t \in (\overline{6}) \\ 0 & otherwise \end{cases}$

It is clear that $I_{t=}(\overline{3})$, $A_t=(\overline{2})$ and $B=(\overline{6})$ Then $\overline{(3)}$ is pure ideal of Z_{12} and $I_tA=(\overline{3}).(\overline{2})=(\overline{3}).(\overline{6})=I_t.B_t$. But $\overline{(2)}\neq \overline{(6)}$

Therefore $X_t=Z_{12}$ is not purely -fully cancellation module.

Volume 6 Issue 8, August 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20175563

Then by proposition (2.2).X is not purely –fully cancellation fuzzy module.

Remark: (2.4)

Every fully cancellation fuzzy module is purely –fully cancellation fuzzy module

The converse of this remark is not true in general for example:

For example (1) we get $I_t = \overline{(5)}$ and $X_t = \overline{(6)}$ is a Z_{30} -module, X_t is purely –fully cancellation module and by proposition (2.2).We get X is purely –fully cancellation fuzzy module.

Now, define A: $M \rightarrow [0, 1]$ where $M = Z_{30}$ by A(x) = $\begin{cases} t & \text{if } x \in \overline{(6)} \\ 0 & \text{otherwise} \end{cases} \forall t \in (0, 1]$

Define B: $M \rightarrow [0, 1]$ by $B(x) = \begin{cases} t & if x \in \overline{(0)} \\ 0 & otherwise \end{cases}$. Since

 $(5).\overline{(6)}=\overline{(5)}.\overline{(0)}=\overline{(0)}$, but $\overline{(6)}\neq\overline{(0)}$. Thus X_t is not fully cancellation module and by proposition (2.2). We get X is not fully cancellation fuzzy module.

Proposition (2.5)

Every fuzzy submodule of purely –fully cancellation fuzzy module is also purely –fully cancellation.

Proposition: (2.6)

Let X_1 and X_2 be two fuzzy submodules of an R-m0dule M_1 , M_2 respectively such that $M_1 \cong M_2$. Then X is purely –fully cancellation fuzzy module if and only if X_2 is purely –fully cancellation fuzzy module.

Proof:

Let X₁: M₁ \rightarrow [0, 1] define by X₁(x)= $\begin{cases}
1 & \text{if } x \in M_1 \\
0 & \text{otherwise} \\
\text{Let X_2: } M_2 \rightarrow [0, 1] \text{ define by } X_2(x) = \begin{cases}
1 & \text{if } x \in M_2 \\
0 & \text{otherwise} \end{cases}$

It is clear that X_1 and X_2 are fuzzy modules of M_1 and M_2 respectively.

Since $(X_1)_{t=}M_1$, $(X_2)_t = M_2 \forall t \in (0, 1]$, and $M_1 \cong M_2$, then M_2 is purely –fully cancellation module by [8, (2.1.2)(5)].

Then X_2 is purly –fully cancellation fuzzy module by proposition (2.2).

Definition (2.7): Let (x^{-1}) be the invertible element of x in R then $(x^{-1})_t$ is an invertible of a fuzzy singleton in A and $x_t(x^{-1})_t = (xx^{-1})_t = 1_t = (x^{-1})_t \cdot x_t$ where $1_t: \mathbb{R} \to [0, 1]$ such that $1_t = \begin{cases} t \text{ if } x = 1 \\ 0 \text{ if } x \neq 1 \end{cases} \leq \begin{cases} 1 \text{ if } x \in \mathbb{R} \\ 0 \text{ otherwise} \end{cases} = \lambda_R(x) = 1, [8].$

Proposition: (2.8)

Let X be a fuzzy module of an R-module M and every nonempty fuzzy ideal I of R is fuzzy invertible. Then X over an R-module M is purely –fully cancellation module. Proof:

Let A and B be a non- empty fuzzy submodules of a fuzzy module X and let I be a non-empty pure fuzzy ideal of R such that IA=IB.

Since I is an invertible fuzzy ideal, then $A=I^{-1}I A=I^{-1}I B=B$. Therefore X is purely –fully cancellation fuzzy module which is end the proof.

Definition: (2.9)

Let I be a fuzzy invertible ideal of a ring R, I is called fuzzy invertible if there exsist I⁻¹ in R such that I.I⁻¹= $\lambda_R(x)$ where $\lambda_R(x) = 1$ if x=1.

Theorem: (2.10)

Let X be a fuzzy module of an R-module M. If A, B are two non-empty fuzzy submodules of X and I be a puire fuzzy ideal of R. Then the following statements are equivalents: (1) X is purely- fully cancellation fuzzy module.

(2) If IA \subseteq IB, then A \subseteq B.

(3) If $I(a_t) \subseteq IB$, then $a_t \subseteq A$, where $a_t \subseteq X \forall t \in (0, 1]$ (4) If $(IA:_RIB) = (A:_RB)$.

Proof:

(1) \vDash (2) Let IA \subseteq IB, then we have IB= IA +IB. Thus IB =I(A+B).

Since X is purely –fully by(1), then we get B = A+BTherefore A $\subseteq B$ which is end the proof.

(2) \Rightarrow (3) If I(a_t) \subseteq IB, then by (2) we get a_t \subseteq B. \forall t \in (0, 1]

(1) \Rightarrow (4) Let $r_t \subseteq$ (IA:_RIB).Then $r_t IB \subseteq IA \forall t \in (0, 1]$.

Therefore, $Ir_tB\subseteq IA$, then we have $r_tB\subseteq A$, since (1) implies (2)

Thus $r_t \subseteq (A:_R B)$, and hence, we get (IA:_R IB).

The other hand, let $r_t \subseteq (A:_R B) \forall t \in (0, 1]$. Then $r_t B \subseteq A$ which implies that

Ir_tB \subseteq IA, and hence r_tIB \subseteq IA. \forall t \in (0, 1].

Therefore $r_t \subseteq (IA:_RIB)$, then we get $(A:_RB) \subseteq (IA:_RIB)$. Thus $(A:_B)B = (IA:_RIB)$.

 $(4) \Rightarrow (1)$ Let IA = IB and $(IA:_RIB) = (A:_RB)$

Since IA =IB, then (IA:_RIB) = $\lambda_R(x)$ where $\lambda_R(x) = 1$ if x = 1.

Hence $(A:_RB) = \lambda_R(x)$, and so $B \subseteq A$.

Similarly (IB:_RIA) = (B:_RA), then (B:_RA) = $\lambda_R(x)$.

Which implies that $A \subseteq B$. Therefore A = B.

Thus X is purely- fully cancellation fuzzy modules.

References

- [1] Glimer.R.W,. "Multiplication ideal Theory" Marcel Dekkes New Yourk, (1972)
- [2] Anderson.D.D., and D.F., Anderson "Some remarks on Cancellation ideal " Math. Goponica 29(6), (1984), 879-886.
- [3] Ali.S Mijbass "On Cancellation modules" M.Sc. Thesis.University of Baghdad (1992).
- [4] Buthna.N. Shihab "Restricted cancellation modules" M.Sc,..Thesis university of Tikrit (2000).
- [5] Dr. Layla S.M, Buthyna N. Sh. And Thaier S. Rasheed "Relatively cancellation modules" M.Sc. Thesis University of Baghdad (2005).
- [6] Hatam Y. Khalaf and Hadi G.Rashad "Fully Cancellation fuzzy modules" M Sc. Thesis University of Baghdad.
- [7] Zada L A., "Fuzzy information and Control (8), (1965), 338-353.
- [8] Bothaynah N.Shihab and Heba M.A Judi "Puerly –fully cancellation modules" International Journal of Applied Mathematics and Statistical Sciences(IJAMSS) Vol(5). (2016)., 79-96.

DOI: 10.21275/ART20175563