Purely Fully Cancellation Fuzzy Modules

Buthainah Nejad Shihab

Abstract: In this paper we introduce the concept of purely fully cancellation fuzzy modules and give some characterizations and properties of this concept.

Keywords: Fully cancellation Fuzzy modules, Invertible fuzzy ideal, Purely Fully-Cancellation fuzzy module

1. Introduction

Gilmer in [1] was introduced the concept of cancellation ideal, and Anderson in [2], studied the concept of cancellation ideals. In [3] A. S. Mijbash, gave some generalization of this concept namely cancellation module (weakly cancellation module). In [4], Buthyna Nijad Shihab, introduce and studied restricted (and weakly restricted) cancellation module.

Next, Dr. L.M. Salman and Buthyna Nigad Shihab introduced and studied Relatively cancellation module in[5]. In [6], Hatam Yahya Khalaf and Hadi G. Rashed, introduced the concept of Fully cancellation fuzzy modules, where a fuzzy module X of an R-module M is called fully cancellation fuzzy module if for each fuzzy ideal I of R and for each fuzzy submodules A and B of X such that IA=IB, implies A=B.

In this paper we will introduce the concept of Puerely-fully cancellation fuzzy module and gives some properties, examples of this concept.

2.1 Definition

Let X be a fuzzy module of an R-module M. X is called puerely fully cancellation fuzzy module if for all non-empty fuzzy pure ideal I of R and for all non-empty fuzzy submodules A, A, of X such that IA=IA, then A=A. And follow up to this same idea will offer the defition of puerely fully cancellation ideal. If for all non-empty pure fuzzy ideal J of R and for all non-empty fuzzy ideals A and B of R such that JA=JB, then A=B.

2.2 Proposition

Let X be a fuzzy module of an R-module M. X is purely-fully cancellation fuzzy module if and only if X is purely-fully cancellation module

Proof: (⇒) Let K, N be two submodules of an R-module M and let J be a pure ideal of R.

Let I: R→[0,1] such that I(x):\[I(x) = \begin{cases} t & \text{if } x \in J \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases} \]

It is clear that I is a fuzzy ideal of R

Let A: M→[0,1], B: M→[0,1] such that:

\[A(x) = \begin{cases} t & \text{if } x \in K \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases}, B(x) = \begin{cases} t & \text{if } x \in N \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases} \]

It is clear that A and B are two fuzzy submodules of X and A=K, B=N and I=J.

Suppose that JA=JB, to prove A=B (IA)=IB, so IA=IB by[7].

Thus A=B, since X is purely-fully cancellation fuzzy module.

Therefore A=B.

Conversely, It is clear that X=M and M is purely-fully cancellation module.

Let A and B be two fuzzy submodules of a fuzzy module X and let I be a fuzzy ideal of R such that IA=IB, then (IA)=IB, ∀ t∈(0,1], which implies that A, B are submodules of X, but X is purely fully cancellation module, so IA=IB, implies A=B, hence A=B.

Thus X is purely fully cancellation fuzzy module.

Examples (2.3)

(1) Let M=Z_{10}, R=Z_{10} and let X: M→[0,1] such that X(x) = \begin{cases} 1 & \text{if } x \in \{5\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases}

X is a fuzzy module of Z_{10} module.

Let I: Z_{10}→[0,1] such that I(x) = \begin{cases} t & \text{if } x \in \{5\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases}

Let A: M→[0,1] such that A(x) = \begin{cases} t & \text{if } x \in \{1\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases}

Let B: M→[0,1] such that B(x) = \begin{cases} t & \text{if } x \in \{12\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases}

It is clear that A and B are fuzzy submodules of X.

X_1=M and A_1=1, B_1=12, I_1=5 it is pure ideal by[8].

Now, I_1A_1=I_1B_1 (since (5) \{18\} = (5) \{12\})

Thus A_1=B_1.

(2) Let M=Z_{12} and R=Z_{12}. Let X: M→[0,1] such that:

\[X(x) = \begin{cases} 1 & \text{if } x \in Z_{12} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases} \]

Define I: R→[0,1] such that:

I(x) = \begin{cases} 1 & \text{if } x \in \{3\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases}

Let A: M→[0,1] such that:

\[A(x) = \begin{cases} t & \text{if } x \in \{3\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases} \]

and B: M→[0,1] such that:

\[B(x) = \begin{cases} t & \text{if } x \in \{2\} \text{ } \forall t \in (0,1] \\ 0 & \text{otherwise} \end{cases} \]

It is clear that I_1=\{3\}, A_1=\{2\} and B=\{6\}.

Then \{3\} is pure ideal of Z_{12} and I_1A_1=\{3\}, I_1B_1=\{3\}, B_1=\{6\}.

Thus A_1=B_1.

Therefore X_1=Z_{12} is not purely-fully cancellation module.
Then by proposition (2.2), X is not purely –fully cancellation fuzzy module.

Remark: (2.4)
Every fully cancellation fuzzy module is purely –fully cancellation fuzzy module.

The converse of this remark is not true in general for example:

For example (1) we get $I_1=\{5\}$ and $X_1=\{6\}$ is a Z_{10}-module, X_1 is purely –fully cancellation module and by proposition (2.2), we get X is purely –fully cancellation fuzzy module.

Now, define A: $M \to [0, 1]$ where $M = Z_{10}$ by $A(x) = \begin{cases} t & \text{if } x \in \{6\} \\ 0 & \text{otherwise} \end{cases}$

Define B: $M \to [0, 1]$ by $B(x) = \begin{cases} t & \text{if } x \in \{0\} \\ 0 & \text{otherwise} \end{cases}$ Since $\{6\} = \{5\}$, but $\{0\} \neq \{5\}$. Thus X_1 is not fully cancellation module and by proposition (2.2), we get X is not fully cancellation fuzzy module.

Proposition: (2.5)
Every fuzzy submodule of purely –fully cancellation fuzzy module is also purely –fully cancellation.

Proposition: (2.6)
Let X_1 and X_2 be two fuzzy submodules of an R-module M_1, M_2 respectively such that $M_1 \cong M_2$. Then X is purely –fully cancellation fuzzy module if and only if X_1 is purely –fully cancellation fuzzy module.

Definition: (2.7) Let (x^{-1}) be the invertible element of x in R then (x^{-1}) is an invertible of a fuzzy singleton in A and $x(x^{-1}) = (xx^{-1}) = = 1 = (x^{-1})x$, where $1: R \to [0, 1]$ such that $1 = \begin{cases} t & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}$

Definition: (2.8) Let X be a fuzzy module of an R-module M and every non-empty fuzzy ideal I of R is fuzzy invertible. Then X over an R-module M is purely –fully cancellation module.

Definition: (2.9)
Let I be a fuzzy invertible ideal of a ring R, I is called fuzzy invertible if there exist $I^{-1} = \lambda_I(x)$ where $\lambda_I(x) = 1$ if $x = 1$.

Theorem: (2.10)
Let X be a fuzzy module of an R-module M. If A, B are two non-empty fuzzy submodules of X and I be a pure fuzzy ideal of R. Then the following statements are equivalent:

1. X is purely–fully cancellation fuzzy module.
2. If $IA \subseteq IB$, then $A \subseteq B$.
3. If $IA \subseteq IB$, then $a \subseteq A$, where $a \subseteq X \ \forall \ t \in [0, 1]$.
4. If $(IA:IB) = (A:B)$.

Proof:
(1)\Rightarrow(2) Let $IA \subseteq IB$, then we have $IB = IA + IB$. Therefore $A \subseteq B$ which is the end proof.

(2)\Rightarrow(3) If $IA \subseteq IB$, then (2) we get $a \subseteq B$. Thus by (1) we have $rIB \subseteq A \ \forall \ t \in [0, 1]$.

Therefore, $IB \subseteq IA$, and hence $rIB \subseteq A$ since (1) implies (2) Thus $IB \subseteq IA$, and hence we get $(IA:IB) = (A:B)$.

(3)\Rightarrow(4) Let $IA = IB$, then (IA:IB) = $\lambda x(x) = 1$ if $x = 1$.

Hence $(A:B) = (A:B)$, and so $B \subseteq A$.

Similarly $(IB:IA) = (B:A)$, then $(B:A) = (A:B)$.

Which implies that $A \subseteq B$. Therefore $A = B$.

Thus X is purely–fully cancellation fuzzy modules.

References

