Antioxidant Properties of Vernonia amygdalina Leaf Extract on Semen Characteristics and Seminal Plasma Biochemistry of Cockerels Reared in a Semi-Humid Environment

Ojo, O. A.¹, Lawal, K. F.²

Department of Animal Production, Fisheries and Aquaculture, Kwara State University, Nigeria

Abstract: Rearing of birds is a major means of meeting the growing demand of animal protein in Nigeria and the world as a whole. Heat stress poses a major threat to the success of poultry farming as it causes reduced feed intake and weight gain among others. Commercial antioxidants are expensive and not readily available especially to small holder farmers, therefore there is an urgent need to source for a cheaper, unconventional source of antioxidant to mitigate the adverse effect of heat stress. A total number of 45 cockerels were randomly distributed into 5 treatment groups, replicated 3 times with 3 cockerels per replicate under elevated summer temperature to investigate the effect of Vernonia amygdalina leaves extract (VALE) supplementation via drinking water on their reproductive characteristics which lasted for eight weeks. Parameters evaluated under semen qualitative analysis were: semen color, volume, concentration, motility, pH, live dead ratio, mass activity, morphology while under seminal biochemistry; lipid peroxidation (MDA) and total antioxidant capacity (GPx and SOD) were evaluated. The results of proximate analysis revealed the presence of high crude protein (23.68%), moisture (6.68%), ash (8.90%), crude lipids (0.37%), crude fibre (7.32%), CHO (53.03%) and calorific value (1295.19kJ/mole). The result of phytochemical screening revealed saponin (+++), tannin (+++), phenol (+++), flavonoid (++), alkaloid (++), glycoside (+++) and anthraquinone (++). Results obtained from semen quality showed that the volume (0.62ml) and concentration (615 x 10⁶) were higher in birds given 90mls of VALE, also the values of SOD was higher at 90mls (1069.19u/l) while that of GPx was lowest at T9 (12.50u/l). In conclusion, VALE at 90mls can be used as a natural source of antioxidant. Further studies can be conducted using higher concentrations of VALE.

Keywords: Vernonia amygdalina, heat stress, cockerel, leaf extract, semen, motility, concentration

1. Introduction

The environmental condition of some parts of Nigeria and many other countries remains hot and humid in certain part of the year. This represent a major constraint for livestock production especially poultry, therefore adversely influencing the survival of birds, as they are more prone to changes in the environment as compared to other domesticated animals, resulting into heat stress (Askar and Ismail, 2012). Heat stress encompasses high environmental temperature and humidity, thereby hindering proper thermoregulatory processes such as mineral imbalance, increased panting, high mortality and affects semen quality and fertility in male birds (Yahav, 2000a). Influence of seasonal changes on semen quality of domestic fowl has been documented (Sahin et al., 2002a, b; SantiagoMoreno et al., 2011). Heat stress increases lipid oxidant as a result of increased free radical generation which enhances the formation of reactive oxygen species and induces oxidative stress in cells (Altan et al., 2003). According to McDaniel et al. (1996), report showed that an ambient temperature of > 31°C represents a heat stress condition in poultry causing depressed rooster sperm motility, viability and fertilization potential (Sahin et al., 2002a, b). Also environmental temperature at ejaculation has an important effect on exogenous physiological factors influencing avian sperm motility (Ashizawa and Sano, 1990; Wishart and Wilson, 1999). Use of synthetic antioxidants such as vitamin C are not easily affordable and available to local farmers, coupled with the increasing advocacy for organic agriculture has necessitated sourcing for other viable alternative. Natural antioxidants such as vitamin C, tocopherols, flavonoids and other phenolic compounds are known to be present in certain plants. Vernonia amygdalina is one of such plant that has been identified to contain natural antioxidants (Farombi and Owoeye, 2011). Study conducted by Igile et al. (1994) and Adesanoye and Farombi (2010), showed that the antioxidant mechanism has been attributed to the presence of flavonoids. The flavones were luteolin, luteolin 7-β-glucoronoside and luteolin-7,0, β-glucoside, with luteolin showing greater antioxidant activity than the other two (Cook, 1996; Prabhakar, et al., 2006; Farombi, and Owoeye, 2011). Although, several studies have reported that the use of Vernonia amygdalina leaves as feed supplements in livestock (Farombi and Owoeye, 2011; Nwogwugwu et al., 2015), the natural antioxidant effect of Vernonia amygdalina leaves on the semen characteristics of cockerels reared under high ambient temperature as compared with use of a synthetic antioxidant (vitamin c) is scanty. Therefore, the objective of this study was conducted to examine the effect of various levels of Vernonia amygdalina leaves extract (VALE) as a possible replacement for synthetic source of antioxidant (vitamin C) on the semen characteristics and seminal biochemistry parameters of cockerels under heat stress condition.

2. Materials and Method

Experimental Site
The experiment was conducted at the Kwara State University Teaching and Research Farm, Malete, Kwara...
State, with average daytime temperature of 26-39°C and relative humidity of 60-80%.

Animal Feeding and Management
Forty five Issa Brown cockerels of 24 weeks old were purchased from a reputable farm in Ilorin for the experiment. The weights of the birds ranged from 3.0-4.0kg. The birds were acclimatized for 14 days in 4 tyre cages for physiological adjustment to the environment. Grower mash was fed to the birds in relation to their body weight gain per day with ad libitum clean water supply from the beginning till the end of the experiment which lasted for 8 weeks.

Collection and Processing of Plant Material
The leaves of Vernonia amygdalina were collected fresh from Apatap-Yakuba area of Kwara State. The leaves collected were rinsed with distilled water and then air dried at room temperature for seven days. The dried leaves were then blended into a powdery form with an electronic blender and kept in an air tight container. The blended portion weighed 500g.

Chemical Analysis
The proximate analysis of Vernonia amygdalina sample was determined chemically according to the official methods of analysis described by the Association of Official Analytical Chemist (AOAC, 1990). The Vernonia amygdalina leaf extract was also subjected to phytochemical screening.

Extraction Procedure
Distilled water was boiled at 99°C. 500mls of the boiled distilled water was then added to 50g Vernonia amygdalina powder so that 1g of powder received 10mls of boiled distilled water. The mixture was first stirred with a stirring rod and was later placed on a mechanical stirrer for 4-6 hours, after which the mixture was sieved using a cheese cloth. The extract obtained was then filtered using Whatman filter paper into a conical flask. The extract was then stored in a refrigerator ready for use and the process was repeated every week throughout the time of the experiment. This method was adopted with some modifications (Nwogugwu et al., 2015).

Administration of the Extract and Experimental Design
The birds were divided into five treatments having three replicates per treatment and three birds per replicate. Treatment one which served as the control received no extract of Vernonia amygdalina, while treatment 2 received 0.6g of vitamin C into 1500mls of water and treatment 3, 4 and 5 received the extract at 30mls, 60mls and 90mls in 1000mls respectively via their drinking water. VALE was administered every day. The experiment was a completely randomized design (CRD).

Semen Collection and evaluation
The semen was collected by manual massage technique. The semen was collected into small bottles and placed in a flask containing warm water maintained at 35-37°C to maintain the environmental temperature of the sperm cell close to the body temperature to enhance the motility before the commencement of laboratory analysis. Visual assessment of the semen colour was carried out. The volume of the ejaculated sample was determined with the use of collection tube. Motility is the subjective estimation of the motile sperm cells in a given sperm volume. It was estimated on a microscope stage at 37°C. Semen was diluted with a normal saline. A haemocytometer slide was used based on the same principle as in red blood cell count. After the appropriate dilution of semen, a drop was placed on the slide. Five squares diagonally from the upper left to the lower right of the haemocytometer are counted. Dilution ratio was 1:7. Concentration equals figure obtained multiplied by 1,000 multiplied by dilution factor. The degree of acidity or alkalinity of the semen was determined using a pH, combi-9. Eosin yellow stain was prepared and wetted on microscope slide. The stained slide was air-dried and a drop of diluted semen was placed on it. The normal and abnormal sperm are viewed under the light microscope.

Lipid Peroxidation
Malondialdehyde (MDA) an index of lipid peroxidation was determined using the method of Bucke and Aust (1978). 1.0ml of sample was added to 2ml of MDA reagent and boiled at 100°C for 15 minutes. The reaction mixture was then allowed to cool down. The flocculent materials were removed by centrifuging at 3000 rpm for 10 minutes. The supernatants were removed and its absorbance will be read at 532nm against a blank. MDA was calculated using the molar extinction coefficient for MDATBA-complex of 1.56 x 10³ M⁻¹ cm⁻¹.

Total Antioxidant Capacity
The total antioxidant capacity of sample was determined with phosphomolybdenum using ascorbic acid as the standard. The assay was based on the reduction of Mo (vi) to Mo (v) by the extract/fractions and the subsequent formation of a green phosphomolybdate (v) complex at acidic pH 0.1ml of the extract/fraction (100ug/ml) solution was combined with 3ml of reagent (0.6M sulphuric acid, 28M sodium phosphate and 4M ammonium molybdate). The tubes were capped and incubated in a boiling water bath at 95°C for 90 minutes. After the samples had cooled to room temperature, absorbance of the aqueous solution of each was read at 695nm against blank in a spectrophotometer. The blank solution contained 3ml of reagent solution and the appropriate volume of the same used for the sample and it was incubated under the same conditions as the rest of the samples (Baydar et al., 2007).

3. Results and Discussion

<table>
<thead>
<tr>
<th>Table 1: Proximate analysis of Vernonia amygdalina leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Values</td>
</tr>
</tbody>
</table>
Table 1 shows the result of proximate analysis of Vernonia amygdalina leaves. The result revealed that Vernonia contain appreciable amount of crude protein (23.68%), crude fibre (7.32%), moisture (6.68%), crude fat (0.37%), ash (8.90%), carbohydrate (53.03%) and calorific value (1295.19KJ/mole). The crude protein value (32.5%) reported by Getahun(1976) was higher than the value obtained in this study. Udochukwu et al. (2015) also reported much higher crude protein (35.7%) in Vernonia amygdalina leaves. The semen pH of cockerels recorded by other researchers was 7.3 ± 0.01, 7.4 ± 0.02 and 7.5 ± 0.01 (Bah et al., 2001, Peters et al., 2008 and Tuncer et al., 2008). The accessory sex gland fluid is generally alkaline. No significant effect was recorded in the sperm concentration values of the cockerels which ranged between 540 - 615 × 10⁹. The highest value (615 × 10⁹) was also obtained in birds given 90mls of VALE. Supplementation of 60mls and 90mls of Vernonia amygdalina leaves extract (VALE), T5=90mls of Vernonia amygdalina leave extract (VALE),

Table 3: Phyto chemical screening of Vernonia amygdalina leaves

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Saponin</th>
<th>Flavonoid</th>
<th>Tannin</th>
<th>Alkaloid</th>
<th>Phenol</th>
<th>Steroid</th>
<th>Glycoside</th>
<th>Anthraquinone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative Abundance</td>
<td>++++</td>
<td>+++</td>
<td>++++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: Present at low levels (+), present at moderate levels (++), present at high levels (+++).

Table 3 shows the result of the phytochemical screening of Vernonia amygdalina leaves. It revealed that Vernonia amygdalina contained essential compounds, saponin (+++), flavonoid (++), tannin (+++), alkaloid (+++), phenol (+++), steroid (+++), glycoside (++), anthraquinone (++). The presence of these compounds implies that Vernonia amygdalina leaves could be utilized as an unconventional source of antioxidant to alleviate heat stress effect on the semen characteristics of cockerels and also a nutritional valuable and healthy ingredient for poultry. Antioxidant activity of the compounds has also been reported (Udochukwu et al., 2015). Their antioxidant activity was higher than the conventional antioxidants such as ascorbic acid, which is also present in large amounts in Vernonia leaves (Igile et al., 1995). An examination of the phytochemicals of Vernonia species affords the opportunity to examine a range of fairly unique compounds (Getahun, 1976).

Table 3: Semen qualitative analysis of cockerels given Vernonia amygdalina leave extract (VALE)

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>T₁ (CONTROL)</th>
<th>T₂ (0.6g Vit. C)</th>
<th>T₃ (30mls)</th>
<th>T₄ (60mls)</th>
<th>T₅ (90mls)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motility (%)</td>
<td>4.00<sup>a</sup></td>
<td>4.00<sup>a</sup></td>
<td>3.50<sup>b</sup></td>
<td>4.00<sup>a</sup></td>
<td>4.00<sup>a</sup></td>
<td>0.11</td>
</tr>
<tr>
<td>Mass Activity (%)</td>
<td>78.33<sup>a</sup></td>
<td>80.83<sup>b</sup></td>
<td>78.53<sup>a</sup></td>
<td>78.33<sup>a</sup></td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>Live-dead ratio (%)</td>
<td>4.89<sup>a</sup></td>
<td>4.97<sup>b</sup></td>
<td>2.40<sup>b</sup></td>
<td>3.57<sup>ab</sup></td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Volume (ml)</td>
<td>7.33</td>
<td>7.37</td>
<td>7.31</td>
<td>7.32</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Concentration (×10⁹)</td>
<td>385</td>
<td>340</td>
<td>340</td>
<td>571</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>TH</td>
<td>T&H</td>
<td>T&H</td>
<td>T&H</td>
<td>T&H</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>CW</td>
<td>CW</td>
<td>CW</td>
<td>CW</td>
<td>CW</td>
<td></td>
</tr>
</tbody>
</table>

Means with the same alphabet has no significant difference.

Keys: T₁ = Control, CW- Creamy white, TH- Taileless head, T&H- Tailed and head
T₂ = 0.6g/1.5 litre of Vitamins C T₃ = 30mls of Vernonia amygdalina leave extract (VALE), T₄ = 60mls of Vernonia amygdalina leave extract (VALE), T₅ = 90mls of Vernonia amygdalina leave extract (VALE),

This value is lower than the value reported by Taneja and Gowe (1979) who reported maximum motility was observed in semen sample with the pH of (7.30). The semen pH of cockerels recorded by other researchers was 7.3 ± 0.01, 7.4 ± 0.02 and 7.5 ± 0.01 (Bah et al., 2001, Peters et al., 2008 and Tuncer et al., 2008). The accessory sex gland fluid is generally alkaline. No significant effect was recorded in the sperm concentration values of the cockerels which ranged between 540 - 615 × 10⁹. The highest value (615 × 10⁹) was also obtained in birds given 90mls of VALE. Supplementation of 60mls and 90mls of Vernonia amygdalina leaves extract in this study gave higher semen concentration (571 × 10⁷ and 615 × 10⁹) compared to those in the control group (540 × 10⁹) and those that received vitamin C (564 × 10⁷). Taneja and Gow, (1962) reported higher level of fertility can be achieved by inseminations with increased sperm concentration in excess of 100 million. Therefore, an increase in the semen concentration has a beneficial effect on reproduction. The values for semen volume obtained for this study ranges from (0.48 to 0.62ml) and no significant difference was observed. This value is lower than the value reported by Taneja and

Volume 6 Issue 8, August 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
compared to T

influenced across the treatments, although a numerical (1995). The MDA and Ca values were not significantly which possess antioxidant activity as reported by Igile

presence of flavonoid component of

Cockerels in T

control group which contain synthetic pharmaceuticals

obtained for cockerels given 30mls (T

3

compared with vitamin C. Result showed that the values

and total antioxidant potential (TAP). In vitro TBARS assay

structural and functional functions of the sperm and their

amygdalina

lipid peroxidation (MDA), superoxide dismutase (SOD) and

GPx = Glutathione peroxidation

MDA = Lipid peroxidation

SOD = Superoxide dismutase

TAP = Total antioxidant potential

SEM = Standard error of means

T

4

= 90mls of Vernonia amygdalina leave extract (VALE)

T

3

= 60mls of Vernonia amygdalina leave extract (VALE)

T

2

= 30mls of Vernonia amygdalina leave extract (VALE)

SEM = Standard error of means

TAP = Total antioxidant potential

MDA = Lipid peroxidation

SOD = Superoxide dismutase

GPx = Glutathione peroxidation

Table 4 shows the level of total antioxidant potential (TAP), lipid peroxidation (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) of cockerels given Vernonia amygdalina leave extract (VALE). Lipids are involved in the structural and functional functions of the sperm and their profile may be modified according to physiologic events and/or diet (Mourvaki et al., 2010). VALE has been found to have potential in vitro antioxidant agent. In this study, the in vitro and in vivo antioxidant activity of VALE were quantified by using traditional spectrophotometric thiobarbituric reactive specie (TBARS) assay, superoxide dismutase (SOD) activity, malondialdehyde (MDA) level and total antioxidant potential (TAP). In vitro TBARS assay showed that VALE was a moderate antioxidant agent when compared with vitamin C. Result showed that the values obtained for cockerels given 30mls (T

3

) and 60mls (T

2

) of VALE were significantly higher compared to the positive control group which contain synthetic pharmaceuticals (Vitamin C). Cockerels in T

3

which received 90mls of VALE were not significantly influenced when compared with the control group. This could be attributed to the presence of flavonoid component of Vernonia amygdalina which possess antioxidant activity as reported by Igile et al. (1995). The MDA and Ca values were not significantly influenced across the treatments, although a numerical increase was observed in T

2

(0.071u/l), (6.07mg/dl), T

4

(0.093u/l), (7.11mg/dl) and T

5

(0.073u/l), (6.37mg/dl) compared to T

2

(0.070u/l), (5.70mg/dl). The SOD values of the semen ejaculates did not differ significantly between the treatments under investigation and were creamy-white indicating that the massage technique used may be acceptable for cockerel semen collection to obtain good quality semen for artificial insemination. Creamy-white ejaculates observed in this study were consistent with Peters et al. (2008) who also reported creamy-white ejaculates in heat-stressed cockerels. Machebe and Ezekwe (2005) revealed that variations in semen color may arise in parts due to the presence of contaminants or as a result of low sperm concentration.

Table 4: Total antioxidant capacity, Lipid peroxidation, Calcium, Sodium, Superoxide dismutase and Glutathione peroxidation of cockerels given Vernonia amygdalina leave extract (VALE).

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>T1 (Control)</th>
<th>T2 (60mg of Vit.C)</th>
<th>T3 (30mls)</th>
<th>T4 (60mls)</th>
<th>T5 (90mls)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAP (µg/ml)</td>
<td>76.08</td>
<td>63.67</td>
<td>89.50</td>
<td>95.50</td>
<td>74.42</td>
<td>7.19</td>
</tr>
<tr>
<td>MDA (µ/l)</td>
<td>0.076</td>
<td>0.070</td>
<td>0.071</td>
<td>0.093</td>
<td>0.073</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>6.83</td>
<td>5.70</td>
<td>6.07</td>
<td>7.11</td>
<td>6.37</td>
<td>0.73</td>
</tr>
<tr>
<td>Na (mg/dl)</td>
<td>52.10</td>
<td>9.23</td>
<td>50.55</td>
<td>54.60</td>
<td>60.85</td>
<td>5.54</td>
</tr>
<tr>
<td>SOD (µ/l)</td>
<td>74.67</td>
<td>67.19</td>
<td>728.86</td>
<td>1032.34</td>
<td>1062.19</td>
<td>46.36</td>
</tr>
<tr>
<td>GPx (µ/l)</td>
<td>25.00</td>
<td>52.08</td>
<td>12.50</td>
<td>20.83</td>
<td>16.94</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Means bearing different superscript in the same row differ significantly (P<0.05).

Keys: T1 = Control
T2 = 0.6g of Vitamins C
T3 = 30mls of Vernonia amygdalina leave extract (VALE)
T4 = 60mls of Vernonia amygdalina leave extract (VALE)
T5 = 90mls of Vernonia amygdalina leave extract (VALE)
SEM = Standard error of means

References

[25] Top of For Bottom of Form
[26] Top of Form
[27] Bottom of Form

