FI-Semihollow and FI- Semilifting Modules

Dr.Sahira M. Yaseen¹, Layla H. Helal²

¹Department of Math., College of Science, University of Baghdad, Baghdad, Iraq

²Department of Civil Eng. College of Eng.University of Baghdad, Baghdad, Iraq

Abstract: Let R be a commutative ring with identity and let M be a left unital Rmodule. In this paper we also give a generalization of semihollow and modules, namely FI- semihollow, FI- semilifting modules respectivly. We study the properties of this concept.

Keywords: semihollow module, semilifting module, fully invariant submodule.

1. Introduction

Let R be a commutative ring with identity and M be a left unital R-module. A submodule N of R-module M is called small in M (denoted by $N \ll M$) if $N + K \neq M$ for each proper submodule K of Mand M is called a hollow module if every proper submodule is small in M, [2]. A submodule N of R-module M is called fully invariant submodule of M if $f(N)\subseteq N$, for every $f\in Hom(M,M)$.Clearly 0and M are fully invariant submodule of M.The R-module is called duo module if every submodule of M is fully invariant [3].

In [4] there was given the concepts of semismall submodule semihollow modules and semilifting modules as a generalization of the concepts of small submodule, hollow modules and lifting modules. Where a submodule N of R-module M I,is called semismall ($N \ll_s M$) if N=0 or for each nonzero submodule Kof M, then N/K \ll M/K.

In this paper we introduce the concept of FI-semihollow module and FI-semilifting module as a generalization of semihollow and semilifting modules and study the basic properties of this type of modules and give some characterizations for such modules.

Lemma (1):[4]

Let N be a submodule of R-module M, $N\ll_s M$ iff N+L=M for all L≤ M implies K+L=M For all K≤ N, K \neq (0). Lemma (2):[4]

- 1) IF N \ll_s M and A \lt N then A \ll_s M.
- 2) IF X, Y are submodule of M such that $X \ll_s Y$ then $X \ll_s M$.
- 3) IF N \ll_s M and K<M such that K \subseteq N then N/K \ll_s M/K.
- 4) Let $M=M_1\bigoplus M_2$ and N < M such that $N=N_1\bigoplus N_2$, IF $N\ll_s M$ then $N_1\ll_s M_1$ and $N_2\ll_s M_2$.
- 5) Let $N < N_1 < M$ if $N \ll_s M$ and N_1 is direct summand then $N \ll_s N_1$.

1- FI-Semi Hollow module

An non-zero R-module M is called semihollow iff every proper submodule of M is Semismall, [4]. In this section we introduce the concept of FI-semihollow module and we study the properties of this concept. **Definition** (1.1):-Anon zero R-module M is called FIsemihollow if every fully invariant proper submodule of M is Semismall.

A ring R is called FI-semihollow if R is FI-semihollow as an R-module , Equivalently every two sided ideal of R is semismall.

Remarks and Examples (1.2):-

- 1) Every hollow and semihollow is FI-semihollow module.
- 2) IF M is Duo module then semihollow and FI-semihollow are equivelent.
- Z as Z-module is not semihollow and not FI-semihollow since 2Z is fully invariant proper submodule and 2Z+3Z=Z but 6Z+3Z≠ M, 6Z< 2Z
- Z₂⊕Z₈ as Z-module is FI-semihollow which is not Duo module.
- 5) Every simple R-module is FI-semihollow

Proposition (1.3):

FI-semihollow is closed under isomorphism.

Proof:

Let M, M' be R-modules and M is FI-semihollow, let f: M \rightarrow M' be an R-isomorphism, we have to show that M' is FIsemihollow, let N be fully invariant proper Submodule of M', Now,f⁻¹(N) is proper submodule of M, If f⁻¹(N) =M then f (f⁻¹(N)) =N= M' which is comtoduction. Thus f⁻¹(N) is proper submodule if M to show f⁻¹(N) is fully invariant of M.Let g: M \rightarrow M, since N is fully invariant of M', thus fgf⁻¹(N) \subseteq N and f⁻¹f (g(f⁻¹(N)) \subseteq f⁻¹(N), then g(f⁻¹(N)) \subseteq f⁻¹(N). Thus f⁻¹(N) is fully invariant of M, since M is FI-semihollow , thus f⁻¹(N) \ll_s M and by [4] prop. (1.3)and(N \ll_s M').

Proposition (1.4):

Let M be a FI- semihollow and N be a submodule of M with N/K is direct summand of M/K for each proper submodule K of N then N is FI-semihollow.

Proof: Let L be a proper fully invariant submodule of N then $L\ll_{s}M$, by Lemma(2).

Let K be a proper submodule of L then L/K \ll M/K and by hypothesis L/K is a direct summund of M/K then L/K \ll_s N/K [4], hence L \ll_s N

Volume 6 Issue 7, July 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Remark (1.5): FI-semihollow need not be indecomposable , Z_6 as Z-module is semihollow then FI-semihollow which is decomposable.

Recall that a submodule N of an R-module M is called coclosed in M if whenever $N/K' \ll M/K$ then N=K \forall K submodule of M contained in N[5]

This means N is coclosed if whenever K<N, N/K is not small in M/K, it is known that the only proper coclosed submodule in semihollow module is simple submodule.

We have the following Remark.

Remark: Every proper fully invariant coclosed submodule of a semihollow module is a simple submodule.

Proof: let N be fully proper coclosed submodule of FIsemihollow module M, since M is FI-semihollow then N/K \ll M/K \forall K \leq N since N is coclosed, N=K then N issimple.

Corollary: Every non-zero coclosed fully invariant submodule of FI-semihollow module is FI-semihollow.

Proof: Since every simple is FI-semihollow.

2. FI-Semilifting modules

An R-module M is called semilifting if for any submodule N of M there exist submodules K, K' 0f M such that $M=K\oplus K'$ with $K \le K$ and $N \cap K' \ll_s N$ (equivalently $N \cap K' \ll_s M$). In this section we introduce the notion of FI-semilifting modules and discus some properties of this kind of modules which are generalization of semilifting module.

Definition (2.1) :

An R-module M is called FI-semilifting if for any fully invariant submodule N of M there exist submodules K, K' of M such that $M=K\oplus K'$ with $K\subseteq N$ and $N\cap K' \ll_s N.[4]$ The following theorem given a characterization of FI-semilifting modules.

Theorem (2.2) :Let M be an R-module,then the following statement are equivalent :

- 1) M is FI-semilifting
- 2) Every fully invariant submodule N of M, N can be written as $N=A \oplus B$ where A is direct summand of M and $B\ll_s M$.
- For every fully invariant submodule N of M, there exist a direct summand K of M such that K≤ N and N/K≪s M/K.

Proof:It is clearsame like theorem 3.3 in [4].

It is known that every hollow is lifting, but the converse is not true (see Remark 1.1.7. in 11).

Remark (2.3) :

1) Every FI-semihollow is FI-semilifting

Proof: - let N be fully invariant submodule of M if $N \neq M$, $N \ll_s M$, $N = (0) \bigoplus N$ the result follows directly by (theorem2.2)

2) Every semisimple module is lifting hence semilifting and then FI- semilifting.

Proposition (2.4) :

An indecomposable R-module is FI-semihollow if and only if FI-semilifting.

Proof: Let M be FI-semihollow then M is FI-semilifting by Remark (2.3)

Conversely suppose that M is FI-semilifting and A fully invariant proper submodule of M, by (Theorem.2.2),We have $A=N \oplus D$ where N is a direct summand of M and $D\ll_s M$ but M is indecomposable. Then either N= (0) or N=M then M=N⊆ A which implies that A=M which is contradiction, thus N= (0), So A=D \ll_s M, hence M is FI-semihollow.

Proposition (2.6) :

If an R-module M is FI- semihollow then M/N is FI-semihollow for every fully invariant proper submodule N of M.

Proof: Assume that M is FI-semihollow and let N be fully invariant proper submodule of M

Let K/N be fully invariant proper submodule of M/N,Such that $\frac{M}{N} = \frac{K}{N} + \frac{H}{N}$ where H \subseteq M and N \subset H. Then $\frac{M}{N} = \frac{K+H}{N}$, So it implies M=K+H, now since K/N is fully invariant of M/N and N is fully invariant proper of M thus K is fully invariant by (lemma 1.2.23[6]) then K \ll_s M, So K+H=M, H \leq M then K'+H=M, \forall K' \subset K (Lemma1).Hence we have $\frac{K'+H}{N} = \frac{M}{N}$ then $\frac{M}{N} = \frac{K'}{N} + \frac{H}{N} \forall \frac{K'}{N} \subseteq \frac{K}{N}$, K' \neq N, thus $\frac{M}{N}$ is FI- semihollow module.

References

- [1] D.Kasch,Modules and rings ,Acadimic Press,London,1982
- [2] P.Feury, "Hollow Modules and Local Endomorphism Rings", pac.J.Math., 53 (1974), 379-385.
- [3] A.C. Ozcan, Duo Modules, Glasgow math. J. Trust 48,2006, pp.533-545.
- [4] I.M.Ali and L.S.Mahmood, "Semismall submodules and Semi-lifting Modules", Proc. of 3rd Scientific Conference of College of Science, University of Baghdad 24-26 March(2009), 385-393.
- [5] Y.Talebi and T.amoozegar fully invariant TM- Lifting Module, Albanian J.of Math. V.3(2009), 49-53, ISSN 1930-1235.
- [6] Y. Talebi and T.AmoozeGar, strong FI-Lifting module.International Electronic J.of Algebra 3(2008), 75-82.

DOI: 10.21275/ART20175783

Licensed Under Creative Commons Attribution CC BY