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Abstract: Let R be a commutative ring with identity and let M be a left unital Rmodule. In this paper we also give a generalization of
semihollow and modules, namely FI- semihollow, FI- semilifting modules respectivly. We study the properties of this concept.
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1. Introduction

Let R be a commutative ring with identity and M be a left
unital R-module. A submodule N of R-module M is called
small in M (denoted by N € M) if N + K # M for each
proper submodule K of Mand M is called a hollow module if
every proper submodule is small in M, [2]. A submodule N
of R-module M is called fully invariant submodule of M if
f(N)EN, for every feHom(M,M).Clearly Oand M are fully
invariant submodule of M.The R-module is called duo
module if every submodule of M is fully invariant [3].

In [4] there was given the concepts of semismall submodule
semihollow modules and semilifting modules as a
generalization of the concepts of small submodule, hollow
modules and lifting modules. Where a submodule N of R-
module M l,is called semismall ( N« M) if N=0 or for each
nonzero submodule Kof M, then N/K<« M/K.

In this paper we introduce the concept of Fl-semihollow
module and Fl-semilifting module as a generalization of
semihollow and semilifting modules and study the basic
properties of this type of modules and give some
characterizations for such modules.

Lemma (1):[4]

Let N be a submodule of R-module M, N« M iff N+L=M

for all L< M implies K+L=M For all K< N, K #(0).

Lemma (2):[4]

1) IF N&s M and A<N then A< M.

2) IF X, Y are submodule of M such that X<Y then X<«
M.

3) IF N«M and K<M such that KEN then N/K<« M/K.

4) Let M=M;®M, and N< M such that N=N;@®N,, IF N«
M then N; <« M and N,<<&s M,

5) Let N< N;< M if N« M and N, is direct summand then
N <<S Nl.

1- FI-Semi Hollow module

An non-zero R-module M is called semihollow iff every
proper submodule of M is Semismall, [4].In this section we
introduce the concept of Fl-semihollow module and we
study the properties of this concept.

Definition (1.1):-Anon zero R-module M is called FI-
semihollow if every fully invariant proper submodule of M
is Semismall.

Aring R is called Fl-semihollow if R is FI-semihollow as an
R-module , Equivalently every two sided ideal of R is
semismall.

Remarks and Examples (1.2):-

1) Every hollow and semihollow is Fl-semihollow module.

2) IF M is Duo module then semihollow and Fl-semihollow
are equivelent.

3) Z as Z-module is not semihollow and not FI-semihollow
since 2Z is fully invariant proper submodule and
27+3Z=7Z but 6Z+3Z+ M , 6Z< 2Z

4) Z,@Zg as Z-module is Fl-semihollow which is not Duo
module.

5) Every simple R-module is FI-semihollow

Proposition (1.3):
Fl-semihollow is closed under isomorphism.

Proof:

Let M, M’ be R-modules and M is Fl-semihollow, let f:
M-M' be an R-isomorphism, we have to show that M' is FI-
semihollow, let N be fully invariant proper Submodule of
M’, Now,f~1(N) is proper submodule of M, If f~1(N) =M
then f (f~1(N)) =N= M’ which is comtoduction. Thus f~(N)
is proper submodule if M to show f~1(N) is fully invariant
of M.Let g: M—=M, since N is fully invariant of M’, thus
fgf"}(N) SN and f~'f (g(f"}(N))< f~}(N), then
g(f~1(N)) € f1(N). Thus f=1(N) is fully invariant of M,
since M is Fl-semihollow , thus f~1(N) « M and by [4]
prop. (1.3)and(N<«s M").

Proposition (1.4):

Let M be a FI- semihollow and N be a submodule of M with
N/K is direct summand of M/K for each proper submodule
K of N then N is FI-semihollow.

Proof: Let L be a proper fully invariant submodule of N
then L«sM, by Lemma(2).

Let K be a proper submodule of L then L/IK«M/K and by
hypothesis L/K is a direct summund of M/K then L/K<«;
N/K [4], hence LN
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Remark ( 1.5): Fl-semihollow need not be indecomposable
, Zg as Z-module is semihollow then Fl-semihollow which is
decomposable.

Recall that a submodule N of an R-module M is called
coclosed in M if whenever N/K'<KM/K then N=K v K
submodule of M contained in N[5]

This means N is coclosed if whenever K<N, N/K is not
small in M/K , it is known that the only proper coclosed
submodule in semihollow module is simple submodule.

We have the following Remark.

Remark: Every proper fully invariant coclosed submodule
of a semihollow module is a simple submodule.

Proof: let N be fully proper coclosed submodule of FI-
semihollow module M , since M is Fl-semihollow then N/K
&« M/K ¥ K<N since N is coclosed , N=K then N issimple.

Corollary: Every non-zero coclosed fully invariant
submodule of FI-semihollow module is FI-semihollow.

Proof: Since every simple is FI-semihollow.

2. FI-Semilifting modules

An R-module M is called semilifting if for any submodule N
of M there exist submodules K, K" 0f M such that M=K@ K’
with K< K and Nn K'« N (equivalently Nn K'« M). In
this section we introduce the notion of Fl-semilifting
modules and discus some properties of this kind of modules
which are generalization of semilifting module.

Definition (2.1) :

An R-module M is called Fl-semilifting if for any fully
invariant submodule N of M there exist submodules K, K’ of
M such that M=K K’ with KE N and NN K" <« N.[4] The
following theorem given a characterization of Fl-semilifting
modules.

Theorem (2.2) :Let M be an R-module,then the following

statement are equivalent :

1) M is Fl-semilifting

2) Every fully invariant submodule N of M, N can be
written as N=A@ B where A is direct summand of M
and B« M.

3) For every fully invariant submodule N of M, there exist a
direct summand K of M such that K< N and N/K<«
M/K.

Proof:It is clearsame like theorem 3.3 in [4].
It is known that every hollow is lifting, but the converse is
not true (see Remark 1.1.7. in 11).

Remark (2.3) :

1) Every Fl-semihollow is FI-semilifting

Proof: - let N be fully invariant submodule of M if N= M,
N« M, N= (0) &N the result follows directly by
(theorem2.2)

2) Every semisimple module is lifting hence semilifting and
then FI- semilifting.

Proposition (2.4) :
An indecomposable R-module is FI-semihollow if and only
if Fl-semilifting.

Proof: Let M be Fl-semihollow then M is Fl-semilifting by
Remark (2.3)

Conversely suppose that M is Fl-semilifting and A fully
invariant proper submodule of M, by (Theorem.2.2),We
have A= N@ D where N is a direct summand of M and D<
M but M is indecomposable.Then either N= (0) or N=M
then M=N< A which implies that A=M which is
contradiction, thus N= (0), So A=D<«s M, hence M is FI-
semihollow.

Proposition (2.6) :

If an R-module M is FI- semihollow then M/N is FI-
semihollow for every fully invariant proper submodule N of
M.

Proof: Assume that M is Fl-semihollow and let N be fully
invariant proper submodule of M

Let K/N be fully invariant proper submodule of M/N,Such

that © = E+ " \where HC M and NcH. Then 2 = X% ,So it
N N N N N

implies M=K+H, now since K/N is fully invariant of M/N
and N is fully invariant proper of M thus K is fully invariant
by (lemma 1.2.23[6]) then K« M, So K+H=M, H< M then
K'+H=M, v K' cK (Lemmal).Hence we have % = % then
M K’

MoX By E X k2N, thus 2 is FI- semihollow
N N N N N N

module.
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