Diversity, Abundance and Interspecific Correlation in Water-Birds at Anasagar Lake, Ajmer

Dr. Indu Yadav¹, Rashmi Swaroop²

¹Lecturer, Department of Zoology, SPC Government College, Ajmer

² PhD Scholar and CSIR Senior Research Fellow, Department of Zoology, SPC Government College, Ajmer

Abstract: Anasagar Lake, situated in the north west of the Ajmer city is an important habitat for many resident and migratory birds. Various anthropogenic activities in most of its catchment area have turned the lake into severely polluted water body. The perceived beautification of the lake has further added to the decline of avifaunal diversity around the lake. Water-birds play a very significant role in ecosystems. During this study seasonal variation in the diversity and abundance of water-birds and the correlation between their occurrences and numbers of individuals were determined. Transect walk, point transect and direct observation methods were deployed for water birds' survey from April 2016 to March 2017. During the total 92 visits made at the study site, forty species of water-birds belonging to 16 families and 9 orders were recorded. Diversity variables selected for the study were Shannon-Weiner diversity index, species richness, Shannon's equitability/evenness, effective number of species, mean frequency of occurrence and mean abundance of water-bird species. For relationship between occurrences and between numbers of individuals of different species, Karl Pearson's coefficient of correlation and coefficient of determination i.e. R-squared was used. Seasonal Variation in the various diversity variables at Anasagar Lake shows that during winter season species richness and mean abundance of species were highest but values of Shannon Weiner diversity index, Shannon's equitability and effective number of species for winter season were the least. Exactly opposite happened during autumn. This suggests indirect relationship in these variables. Mean frequency of occurrence of species was highest during monsoon and lowest in summer. This indicates that during monsoons water-birds frequently come out in search of new foraging opportunities for their old foraging and resting platforms are submerged. Correlation analysis between numbers of individuals of waterbird species revealed that there were significant positive correlations among 9 pairs of water-bird species including birds like Black headed gull, Little grebe, Great white pelican, Great cormorant, Indian cormorant, Little cormorant, Eurasian coot, Eurasian spoonbill and Lesser flamingo. Highest correlation was observed between Cormorant species and between Black headed gull and Great white pelican. These observations can be attributed to the fact that these species prefer similar habitat variables. Significant correlations were found between occurrences of four pairs of water-bird species i.e. between Common teal, Black headed gull, Great white pelican and Pied kingfisher. The results with the taxonomic families corroborated with the correlations in individual species. Order wise correlation analysis brought out that orders Suliformes and Pelicaniformes are correlated in terms of numbers of individuals throughout the year. Presence of one species indicates the potential of habitat for other correlated species, which can be explored further. For conserving the avifaunal diversity at the scenic Anasagar Lake, it is also necessary to monitor the water quality and encourage the growth of favourable emergent vegetation around the lake. For this study, CSIR New Delhi must be thanked for their indispensable support in the form of Senior Research Fellowship.

Keywords: Anasagar Lake, Water-birds, Correlation, Diversity, Abundance, Frequency of occurrence, Species richness.

1. Introduction

The tranquil Anasagar Lake, which is situated in the north west of the city (Latitude 26°47' N& Longitude 74°62' E) has been an important touristic and religious spot for people. While it was primarily created for the domestic water supply, it has now turned into a severely polluted water body. It is an important habitat for many resident and migratory birds. In most of its catchment area, various anthropogenic activities like washing, farming and religious activities take place. According to Pandey et al.(2013) disposal of raw sewage and municipal wastewater is one of factors contributing to deterioration of water quality of Anasagar Lake. Yet, no proper attention is being paid to biodiversity and ecology of this treasured and aesthetic lake. The perceived beautification of the lake which has been taking place recently has further added to the decline of avifaunal diversity around the lake. Attempts have been made from time to time to study the population of wetland birds but there is no systematic record of avifauna of Anasagar Lake to refer. The local bird watchers are very much discouraged by the increasing pollution around and inside the lake which is the cause of awful stinking of the lake. Limnological studies related to primary productivity by Ranga and Koli (2011) have clearly indicated that the lake has been in eutrophic condition and is highly under pressure of city encroachment and urbanization.

Water-birds and their natural habitats play a very significant role in ecosystems. A systematic knowledge of their diversity and abundance can help in their conservation. Avifaunal diversity has been continually reducing because of ongoing habitat destruction and the anthropogenic activities (Grewal B, 2000). During this study seasonal variation in the diversity and abundance of water-birds and the correlation between their occurrences and numbers of individuals were determined. This information will be crucial in the ecological management and sustainable development of the lake.

2. Methods

The geographical area under study is Anasagar Lake, Ajmer which is almost 8 miles (13 km) in circumference. The water-spread area of lake varies between 97 and 182 ha, and the depth ranges from 1.9 m to 4.4 m. Its catchment area including Nagpahar hills and Taragarh hills covers 70.6 km². Capacity of lake is 2052 million liters (13 feet). The climate

Volume 6 Issue 7, July 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

of the region is semi-arid with strong seasonality of rainfall. The summer season (April - June) experiences high temperature (max. 44.0°C) and during winters (December -January) it goes down to as low as 5.0°C. Most of the annual precipitation (784.0 mm) is received from July to September (Sharma et al., 2008).

Transect walk, point transect and direct observation methods were deployed for water birds' survey which were regularly done from April 2016 to March 2017. The observations started at 6AM and lasted till 10 AM except winters when birds were observed till 11 AM. Water-birds were identified at their first detection using Nikon 7x35 CF binoculars and Nikon camera (26X zooming capacity). Identification of water-birds was done using field guides (Ali, 2012; Grimmett et al., 2011).

Diversity variables selected for monitoring the seasonal variation in diversity at the lake were Shannon-Weiner diversity index (H), species richness (S), Shannon's equitability/evenness (EH= H/lnS), effective number of species {EXP(H)}, mean frequency of occurrence, mean abundance of water-bird species.

For the study of seasonal patterns in diversity variables, four climatological seasons of three months each were followed based on the climate of Ajmer according to the city wise data of Indian Meteorological Department. These are Winter, occurring from January to March, Summer or premonsoon season, lasting from April to June, Monsoon or rainy season, lasting from June to September and Postmonsoon or autumn season, lasting from October to November. In Ajmer, October and November are usually cloudless.

For relationship between occurrences and numbers of individuals of different species Karl Pearson's coefficient of correlation and coefficient of determination i.e. R-squared was used as a statistical measure of how close the data are to the fitted regression line (Steel, R. G. D.; Torrie, J. H., 1960; Frost, 2013). Calculations were done using Data Analysis ToolPak of Microsoft Excel 2016.

3. Results and Discussion

Total 92 visits were made at the study site. Forty species of water-birds belonging to 16 families and 9 orders were recorded at the Lake during the period. Table 1 shows the taxonomic families, scientific and common names of the recorded water-bird species and their residing status in India.

Fourteen of the 40 species belonged to the order Charadriiformes and 12 belonged to the order Pelicaniformes. Family wise distribution of water-birds is shown in Table 2, which indicates that most species (9) belonged to the heron family Ardeidae. This family was previously kept under the order Cinconiformes but recent phylogenomic studies show that herons and ibises (Threskiornithidae) are more closely related to pelicans than storks (Hackett et al., 2008). Family Scolopacidae is represented by 8 species at Anasagar Lake. At Anasagar lake, waterhen family Rallidae is represented by 4 species, Phalacrocoracidae by 3 species; and Anatidae, Recurvirostridae, Charadridae and Threskiornithidae by 2 species each while Laridae, Sternidae, Podicipedae, Pelicanidae, Cinconiidae, Phoenicopteridae, Alcedinidae and Cerylidae are represented by one species per family.

Seasonal Variation in the various diversity variables at Anasagar Lake shows that during winter season species richness and mean abundance of species were highest but value of Shannon Weiner diversity index, Shannon's equitability and effective number of species for winter season were least as compared with those for the other three seasons. For autumn season values of Shannon Weiner diversity index, Shannon's equitability and effective number of species were highest while species richness and mean abundance of species were lowest (values depicted in Table 3 and figures 1.1 to 1.6). This suggests indirect relationship in these variables. Mean frequency of occurrence of species was highest during monsoon and lowest in summer. This indicates that during monsoons water-birds frequently come out in search of new foraging opportunities for their old foraging and resting platforms are submerged.

Correlation analysis between numbers of individuals of water-bird species revealed that there were significant positive correlations among 9 pairs of species out of the total 40 water-bird species observed during the period. Karl Pearson's coefficient of correlation (r) for Black headed gull and Little grebe; Black headed gull and Great white pelican; Great cormorant and Indian cormorant; Great cormorant and Little cormorant: Indian cormorant and Little cormorant: Indian cormorant and Great white pelican; Indian cormorant and Eurasian coot; Great white pelican and Eurasian coot; and Eurasian spoonbill and Lesser flamingo are given in Table 4. Correlations are also depicted in Figure 2 with the respective values of coefficient of determination. Highest correlation was observed between different Cormorant species and between Black headed gull and Great white pelican. These observations can be attributed to the fact that these species prefer similar habitat variables.

Significant correlations were found between occurrences of four pairs of water-bird species i.e. between Common teal and Black headed gull; Common teal and Great white pelican; Black headed gull and Great white pelican; and Great white pelican and Pied kingfisher. Values of Karl Pearson's 'r' and R-squared are depicted in the Table 5 and Figure 3 for each of these pairs.

When correlation analysis was done between the taxonomic families of water-birds it was found that the numbers of individuals of family Laridae and Podicipedae; Laridae and Pelicanidae; and Phalacrocoracidae and Pelicanidae are significantly correlated (Table 6 and figure 4). Similar correlations were found between occurrences of species of family Laridae and Pelicanidae; Recurvirostridae and Charadriidae; and Pelicanidae and Cerylidae. These results with the families corroborated with the correlations in individual species. Order wise correlation analysis brought out that order Suliformes and Pelicaniformes are correlated in terms of numbers of individuals throughout the year. These correlations hint towards the overlapping niches which are related to the morphology and food of water-birds. Yet, variation in abundance of every species is different and this requires a customised approach for their conservation and management. Presence of one species indicates the potential of habitat for other correlated species, which can be explored further. For conserving the avifaunal diversity at the scenic Anasagar Lake, it is also necessary to monitor the water quality and encourage the growth of favourable emergent vegetation around the lake.

4. Acknowledgements

I express my sincere gratitude to my research supervisor Dr. Indu Yadav for her gracious guidance throughout the study. I acknowledge all faculty and staff members of Zoology Department, SPC Government College, Ajmer for encouraging and taking interest in this research. I must thank CSIR, New Delhi for their indispensable support in the form of Senior Research Fellowship. Thanks to everyone who directly or indirectly helped during this study and this includes my family.

References

- [1] Ali, S. 2012. The book of Indian birds. Bombay: Bombay Natural History Society.
- [2] Coefficient of Determination, Available at: http://businessjargons.com/coefficient-of-determination.html#ixzz4mhRM9JSP [Accessed 19 July 2017].
- [3] Frost, J., Regression Analysis: How Do I Interpret R-squared and Assess the Goodness-of-Fit? Available

at:<http://blog.minitab.com/blog/adventures-instatistics-2/regression-analysis-how-do-i-interpret-rsquared-and-assess-the-goodness-of-fit> [Accessed 19 July 2017].

- [4] Grewal, B. 2000. Birds of the Indian subcontinent. Local colour limited, Honkong: 213.
- [5] Grimmett, R. Inskipp C. and Inskipp, T. 2011. Birds of the Indian Subcontinent London: Chistopher Helm.
- [6] Hackett et al. 2008. A Phylogenomic Study of Birds Reveals Their Evolutionary History. *Science 320, 1763*.
- [7] Koli, V.K. and Ranga, M.M. 2011. Physicochemical status and primary productivity of Ana Sagar lake, Ajmer (Rajasthan), India. Universal Journal of Environmental Research and Technology, 1: 286-292.
- [8] Monthly mean maximum & minimum temperature and total rainfall based upon 1901-2000 data. Available at: <http://www.imd.gov.in/section/climate/climateimp.pdf > [Accessed 19 July 2017].
- [9] Pandey, D. N., Gopal, B. and Sharma K. C.2013. Evidence Based Holistic Restoration of Lake Anasagar, Ajmer, Rajasthan, India
- [10] Sharma K C, Charan P D and Nag Mudita, 2008. An Integrated Restoration Plan for Lake Anasagar: A Threatened Water Body of Ajmer, Rajasthan, India. [online] Available at: <http://wldb.ilec.or.jp/data/ilec/WLC13_Papers/others/2 3.pdf> [Accessed 20 March 2012].
- [11] Steel, R. G. D.; Torrie, J. H., 1960. *Principles and Procedures of Statistics with Special Reference to the Biological Sciences.* McGraw Hill.

Tables & Figures:

	Table 1: Water-birds observed at Anasagar Lake	0 77	
Family	Scientific Name	Common Name	*Residing Status
Anatidae	Anas poecilorhyncha Forster, JR, 1781	Spot billed duck	R
	Anas crecca Linnaeus, 1758	Common teal	W
Scolopacidae	Calidris minuta (Leisler, 1812)	Little stint	W
Scolopucidue	Calidris pugnax (Linnaeus, 1758)	Ruff (Reeve for female)	W
	Gallinago gallinago (Linnaeus, 1758)	Common snipe	W
	Calidris temminckii (Leisler, 1812)	Temmnick's stint	W
	Limnodromus semipalmatus (Blyth 1848)	Asian dowitcher	W
	Tringa ochropus Linnaeus, 1758	Green sandpiper	W
	Tringa stagnatilis (Bechstein, 1803)	Marsh sandpiper	W
	Tringa totanus (Linnaeus, 1758)	Common redshank	W
Laridae	Chroicocephalus ridibundus (Linnaeus, 1766)	Black headed gull	W
Sternidae	Sterna aurantia Gray, JE, 1831	Indian river tern	R
Recurvirostridae	Himantopus himantopus (Linnaeus, 1758)	Black winged stilt	R
	Recurvirostra avosetta Linnaeus, 1758	Pied avocet	W
Charadriidae	Charadrius dubius Scopoli, 1786	Little ringed plover	RW
	Vanellus indicus (Boddaert, 1783)	Red wattled lapwing	R
Podicipedidae	Tachybaptus ruficollis (Pallas, 1764)	Little grebe (Dabchick)	R
Phalacrocoracidae	Phalacrocorax carbo (Linnaeus, 1758)	Great cormorant	R
	Phalacrocorax fuscicollis Stephens, 1826	Indian Cormorant	R
	Microcarbo niger (Vieillot, 1817)	Little cormorant	R

Table	1.	Water	hirde	observe	te he	Anasagar	Lake	during	the	study	vear
Lanc	1.	v ator	onus	ODSCI W	Juai	Anasagai	Lake	uuring	unc	Study	ycar

Volume 6 Issue 7, July 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

Pelicanidae	Pelecanus onocrotalus Linnaeus, 1758	Great white pelican	RW
Ardeidae	Ardea alba Linnaeus, 1758	Great white egret	R
	Ardea cinerea Linnaeus, 1758	Grey heron	RW
	Ardea pupurea Linnaeus, 1766	Purple heron	R
	Ardeola grayii (Sykes, 1832)	Indian pond heron	R
	Bubulcus ibis (Linnaeus, 1758)	Cattle egret	R
	Egretta garzetta (Linnaeus, 1766)	Little egret	R
	Ixobrychus sinensis (Gmelin, 1789)	Yellow bittern	R
	Mesophoyx intermedia (Wagler, 1829)	Intermediate egret	R
	Nycticorax nycticorax (Linnaeus, 1758)	Black crowned night heron	R
Threskiornithidae	Platalea leucorodia Linnaeus, 1758	Eurasian spoonbill	R
	Threskiornis melanocephalus (Latham, 1790)	Black headed ibis	R
Cinconiidae	Mycteria leucocephala (Pennant, 1769)	Painted stork	R
Phoenicopteridae	Phoenicopterus minor (Geoffroy Saint-Hilaire, E, 1798)	Lesser flamingo	RW
Rallidae	Amaurornis phoenicurus (Pennant, 1769)	White-breasted waterhen	R
	Fulica atra Linnaeus, 1758	Eurasian coot	R
	Gallinula chloropus (Linnaeus, 1758)	Common moorhen	R
	Porphyrio porphyrio (Linnaeus, 1758)	Purple swamphen	R
Alcedinidae	Alcedo atthis (Linnaeus, 1758)	Common kingfisher	R
Cerilidae	Cervle rudis (Linnaeus, 1758)	Pied kingfisher	R

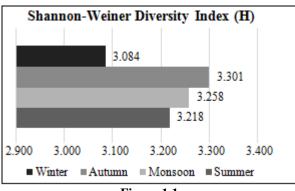

*Grimmett

Table 2: Family-wise distribution of water-bird species

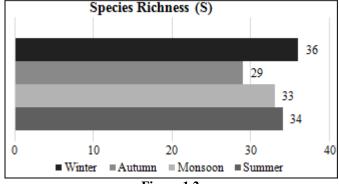
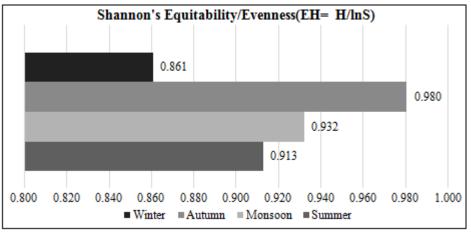
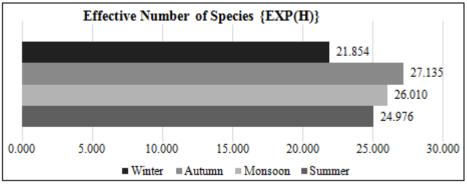

Order Family	Sum of No. of Species		
Anseriformes	2		
Anatidae	2		
Charadriiformes	14		
Charadriidae	2		
Laridae	1		
Recurvirostridae	2		
Scolopacidae	8		
Sternidae	1		
Cinconiiformes	1		
Cinconiidae	1		
Coraciiformes	2		
Alcedinidae	1		
Cerylidae	1		
Gruiformes	4		
Rallidae	4		
Pelicaniformes	12		
Ardeidae	9		
Pelicanidae	1		
Threskiornithidae	2		
Phoenicopteriformes	1		
Phoenicopteridae	1		
Podicipediformes	1		
Podicipedae	1		
Suliformes	3		
Phalacrocoracidae	3		
Grand Total	40		

 Table 3: Seasonal Variation in diversity and abundance of water-birds


Diversity Variables	Summe	Monso	Autu	Wint
Diversity variables				
	r	on	mn	er
Shannon-Weiner Diversity	3.218	3.258	3.301	3.084
Index (H)				
Species Richness (S)	34	33	29	36
Shannon's Equitability/	0.913	0.932	0.980	0.861
Evenness (EH= H/lnS)				
Effective Number of	24.976	26.010	27.13	21.85
Species {EXP(H)}			5	4
Mean Frequency of	0.329	0.498	0.466	0.443
Occurrence				
Mean Abundance	2.983	2.601	1.837	4.442



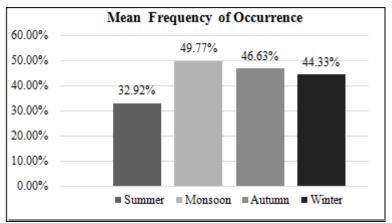
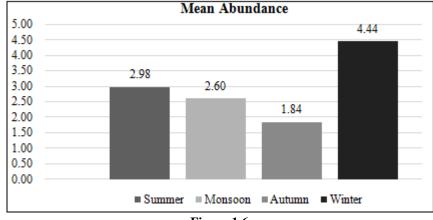
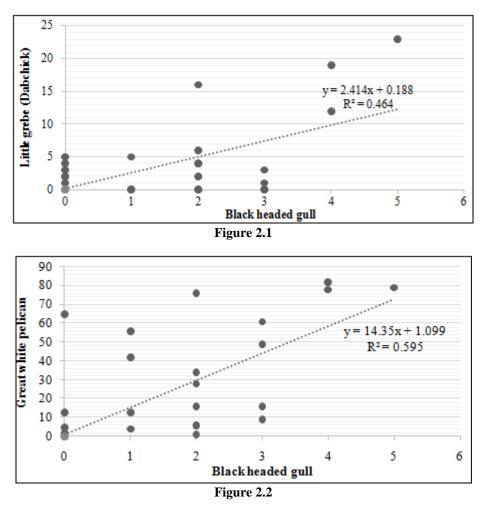




Figure 1.5

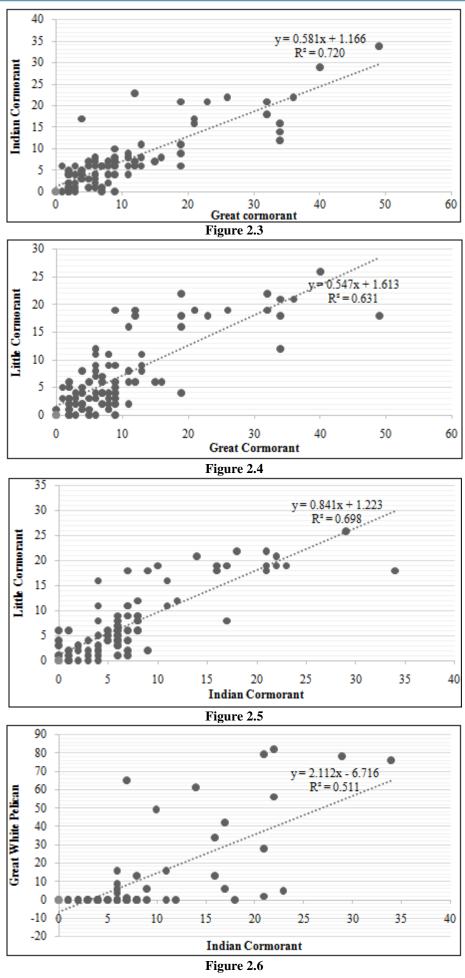
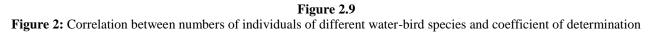


Figure 1.6 Figure 1: Seasonal Variation in Diversity Variables:

Table 4: Significant values of coefficient of correlation (r) between numbers of individuals of different water-bird species						
Species	Black headed gull	Great cormorant	Indian cormorant	Great white pelican	Eurasian spoonbill	
Little grebe (Dabchick)	0.6815					
Great white pelican	0.7715					
Indian cormorant		0.8487				
Little cormorant		0.7944	0.8357			
Great white pelican			0.7150			
Eurasian coot			0.7057	0.6671		
Lesser flamingo					0.6709	


International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017 <u>www.ijsr.net</u> <u>Licensed Under Creative Commons Attribution CC BY</u>

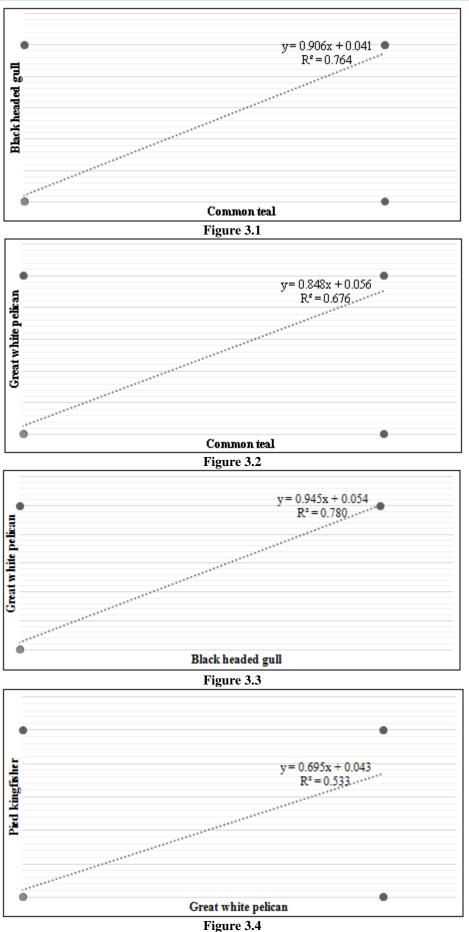
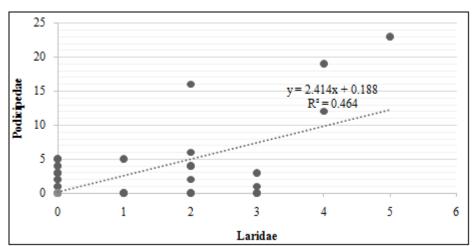
ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 30 25 y = 0.616x + 0.125R² = 0.498 Eurasian Coot 20 15 10 5 0 5 10 15 20 25 30 35 40 0 Indian Cormorant Figure 2.7 30 25 y = 0.197x + 2.854 Eurasian Coot 20 R²=0.445 • 15 10 5 0 20 40 60 80 100 0 Great White Pelican Figure 2.8 25 = 9.5x + 1.25 . 20 R² = 0.450... Lesser flamingo 15 10 5 0 đ 0.5 1 1.5 2 2.5 0

Eurasian Spoonbill

Table 5: Significant values of coefficient of correlation (r) between occurrences of different water-bird species

Species	Common teal	Black headed gull	Great white pelican
Black headed gull	0.8741		
Great white pelican	0.8224	0.8836	
Pied kingfisher			0.7303

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

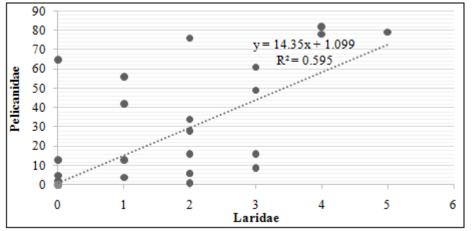

Figure 3: Correlation between occurrences of different water-bird species and coefficient of determination

Table 6: Significant values of coefficient of correlation (r) between numbers of individuals of different taxonomic families

Family	Laridae	Phalacrocoracidae
Podicipedae	0.6815	
Pelicanidae	0.7715	0.6989

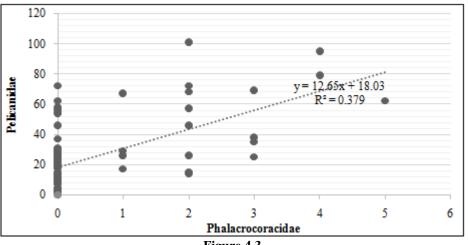


Figure 4: Correlation between numbers of individuals of different taxonomic families and coefficient of determination

Table 7: Significant values of coefficient of correlation (r) between occurrences of individuals of different taxonomic families

Family	Laridae	Recurvirostridae	Pelicanidae
Charadriidae		0.7768	
Pelicanidae	0.8836		
Cerylidae			0.7303

Volume 6 Issue 7, July 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

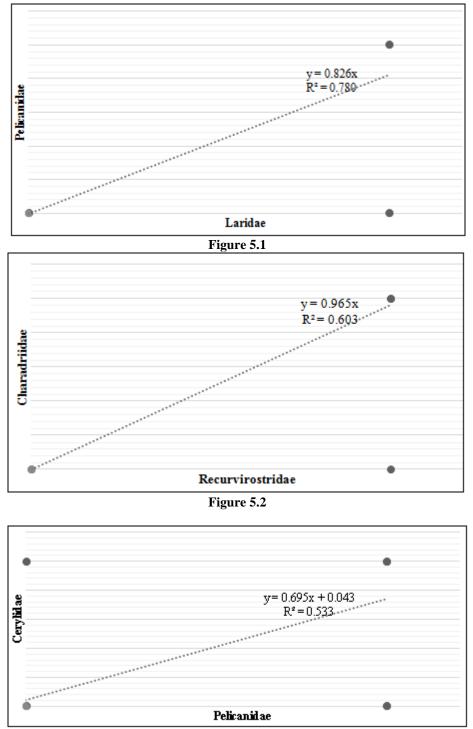


Figure 5.3

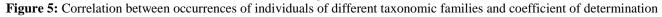


Table 8: Significant value of coefficient of correlation (r) between numbers of individuals of different taxonomic orders

Order	Suliformes
Pelicaniformes	0.6674

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

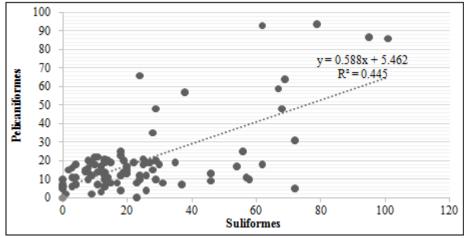


Figure 6: Correlation between occurrences of individuals of different taxonomic orders and coefficient of determination