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1. Introduction 
 

Alexis Claude Clairaut is French mathematician born in 

Parisian (1713) and died in1765, [1].  

 

This paper consists of three sections; the formula and the 

solution for the Clairaut equation are illustrated in the first 

section. While the second section presented the methods for 

find the numerical approximate solution which are the 

moment and Galerkin methods and the third section 

considered the numerical examples to clarify these methods 

and finally in the last section the compare between these 

methods for which gives best numerical approximate solution 

near to the general solution. 

 

2. The Formula and the Solution Method for 

the Clairaut Equation [2], [3] 
 

Clairaut's equation is a first order differential equation has 

the form 

n = sn' + n'                                        (1) 

Where    is a suitable function. 

 

The solution of this equation can be obtained by letting  n' = 

h(s), so that 

n = sh + h                                          (2) 

By differentiating each side with respect to s, we get  

d
n ' sh ' h h '

dh


    

d
h sh ' h h '

dh


    

d
s h ' 0

dh

 
  

 
                               

 (3) 

So we obtain two possible solutions for (3) which are 

h ' 0       or      
d

s 0
dh


   

For the first case  

dh
h ' 0

ds
   

By integrate each side with respect to s, we obtain 

h = b, where c is constant 

 

 

Then from equation (2) we get the general solution  

n = bs + (b)                                   (4) 

When we applying an initial condition n(s0) = n0, we get the 

regular solution 

For the second case  

d
s 0

dh


   

Simplified that, we get 

d
s

dh


   

This equation along with the rearranged equation (2) 

d
n h (h)

dh


      

Which is singular solution. 

 

3. Methods for Find Numerical Approximate 

Solution [4], [5] 
 

Suppose n(s)  is the numerical approximated solution as the 

following form 
M

0

1

n(s) ψ (s) ψ (s) 





   

Where 
0ψ (s)  satisfy the initial conditions. 

Substitution this form into given Clairaut's equation we get 

the residual of the numerical approximation solution notion 

by N(s). 

 

In both methods in this work put  

N(s)L ds 0 ( 1,2,...,M) 


   

where the number of the weighted L  is exactly equal the 

number of   in n(s) . 

 

3.1 Method of Moment [6], [7] 

 

In this method L
 are chosen from the family of polynomials, 

that is mean 

L s ( 1,2,...,M)

    

 

3.2 Galerkin Method [8], [9] 

 

In Galerkin method L  are considered as 
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L ψ ( 1,2,...,M)     

 

4. Application Examples  
 

Example (1): 

Take the equation   n = sn' + (n)
3
, n(0) = n0. 

 

Solution:   

To find the general solution 

Put  h = n'. Then  (h) = h
3
 

2d
3h

dh


  

n0 = b(0) + b
3
    

1
3
0b n  

Hence the general solution is 
1
3

00n n s n   

To find the singular solution 

n =  – 2h
3
   ,   s =  – 3h

2
 

So   

3

2s
n 2

3

 
  

 
   is the singular solution. 

 
Figure 1: The singular and general solutions 

 

To find the numerical approximate solution  

We have   n = sn' + (n)
3
, n(0) = 1  and  n(1) = 0. 

0ψ (s) j vs   which is satisfy the initial condition.  

So 
0ψ (s) 1 s  . 

Put   2

1 1ψ (s) s , ψ (s) s  .  

Thus   2

1 1 2 2 0 1 2n(s) ψ (s) ψ (s) ψ (s) 1 ( 1)s s           

After substitute 
2 3

1 2 22 3

n n n
1 2s , 2 , 0

s s s
  

  
    

  

  
 

in given Clairaut equation we get that 
2

1 1 2 3 0 1 2N(s) ψ (s) ψ (s) ψ (s) 1 s s          

By using the method of moment   
0

1L s 1    and  1

2L s  

By solving 
1

0

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 1.890    and  

2 0  . 

Thus  
1n (s) 1 0.890s  . 

By solving 
2

1

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 1.5    and  

2 0.00001 0   . 

Thus  
1n (s) 1 0.5s  . 

Hence if we take the integration on any interval [a,b] we 

acquire linear equation. 

By using the Galerkin method 

1L s   and  2

2L s  

By solving 
1

0

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 2.009    and  

2 1.099  . 

Thus  2

2n (s) 1 1.009s 1.099s    

By solving 
2

1

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 4.135    and  

2 1.889  . 

Thus  2

2n (s) 1 3.135s 1.889s    

Therefore if we take the integration on any interval [a,b] we 

do not acquire linear equation. 

 

Example (2): 

Take the equation   n = sn' + (n')
2
, n(0) = 1  and                  

n(1) = 0. 

Solution:   

To find the general solution 

Put  h = n'. Then  n = s h + 2h
2
 

n' = sh' + h + 4hh'      h'(s + 4h) = 0 

h' = 0   or   s + 4h = 0 

h' = 0      h =  

Hence the general solution is 

n = s + 2
2 

To find the singular solution 

s + 4h = 0      
s

h
4


  

So   21
n s

8


   is the singular solution. 

To find the numerical approximate solution  

0ψ (s) j vs   which is satisfy the initial condition. So 

0ψ (s) 1 s  . 

Put   2 2

1 1ψ (s) s s , ψ (s) s   .  

Thus   2

1 2 1n(s) 1 s ( )s       

Therefore 
2

1 1 2 3 0 1 2N(s) ψ (s) ψ (s) ψ (s) 1 s s          

By using the method of moment   
0

1L s 1    and  1

2L s  

By solving 
1

0

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 0    and  

2 0.999  . 

Thus  2

1n (s) 1 0.999s  . 

By solving 
2

1

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 0.000001 0      and   

2 1.899  . 

Thus  
1n (s) 1 1.899s  . 

Hence if we take the integration on any interval [a,b] we 

acquire linear equation. 

By using the Galerkin method 

1L s    and   2

2L s  
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By solving 
1

0

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 0.099     and   

2 1.099  . 

Thus  2

2n (s) 1 0.099s s    

By solving 
2

1

N(s)L ds 0 ( 1,2)    we obtain a system after 

solving it we get 
1 1.001     and   

2 3.221  . 

Thus  2

2n (s) 1 1.001s 2.22s    

Hence if we take the integration on any interval [a,b] we do 

not acquire linear equation. 

 

5. Conclusion  
 

The numerical approximate solution gives by method of 

moment is the best with respect to the Galerkin method since 

the first method represent the numerical approximate solution 

as lines which is exactly the solution for Clairaut's equation, 

while the second method not gives that. 
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