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Abstract: We study the fluid flow through a network of intersected thin pipes with prescribed pressure at their ends. Pipes are either 

thin or long and the ratio between the length and the cross-section is considered as the small parameter. Using the asymptotic analysis 

with respect to that small parameter the effective behavior of the flow is found. At each junction an explicit formula for computing the 

value of the pressure is found. The interior layer phenomenon in vicinity of the junction is studied. We generalize the junction formula 

on the case of adiabatic compressible flow. 
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1. Introduction 
 

In everyday life, we recognize three states of matter: solid, 

liquid and gas. Although different in many respects, liquids 

and gases have a common characteristic in which they differ 

from solids: they are fluids, lacking the ability of solids to 

offer a permanent resistance to a deforming force. 

 

A fluid is a substance which deforms continuously under the 

action of shearing forces, however small they may be. 

Conversely, it follows that: If a fluid is at rest, there can be 

no shearing forces acting and, therefore, all forces in the 

fluid must be perpendicular to the planes upon which they 

act. 

 

2. Fluid Flow in Pipes 
 

We will be looking here at the flow of real fluid in pipes – 

real meaning a fluid that possesses viscosity hence looses 

energy due to friction as fluid particles interact with one 

another and wall. Recall from Level 1 that the pipe the shear 

stress induced in a fluid flowing near a boundary is given by 

Newton's law of viscosity:  

τ ∝ du/ dy 

 

This tells us that the shear stress, τ, in a fluid is proportional 

to the velocity gradient - the rate of change of velocity 

across the fluid path. For a “Newtonian” fluid we can write 

τ μ = du/ dy 

 

Where the constant of proportionality, μ, is known as the 

coefficient of viscosity (or simply viscosity). Recall also that 

flow can be classified into one of two types, laminar or 

turbulent flow (with a small transitional region between 

these two). The non-dimensional number, the Reynolds 

number, Re, is used  

Re = ρud/ μ 

 

3. For A Flow Pipe 
   

Laminar flow: Re < 2000  

Transitional flow: 2000 < Re < 4000  

Turbulent flow: Re > 4000  

 

It is important to determine the flow type as this governs 

how the amount of energy lost to friction relates to the 

velocity of the flow. And hence how much energy must be 

used to  

 

4. Move The Fluid 
 

Pressure loss due to friction in a pipeline. Consider a 

cylindrical element of incompressible fluid flowing in the 

pipe, as shown  

     

 
Figure 1: Element of fluid in a pipe 

 

 

The pressure at the upstream end, 1, is p, and at the 

downstream end, 2, the pressure has fallen by Δp to (p-Δp).  

 

The driving force due to pressure (F = Pressure x Area) can 

then be written driving force = Pressure force at 1 - pressure 

force at 2 

               pA –(p-∆p)A = ∆pA= ∆p  

 

The retarding force is that due to the shear stress by the 

walls 

=shear stress x area over which it acts 

=  x area of pipe wall 

= w πdL  

 

As the flow is in equilibrium, 

 

Driving force = retarding force 

            ∆p = w πdL 

                  ∆p =   

Giving an expression for pressure loss in a pipe in terms of 

the pipe diameter and the shear stress at the wall on the pipe. 

The shear stress will vary with velocity of flow and hence 

with Re.   
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5. Relationship between Velocity and Pressure 

Loss in Pipes 
 

This graph shows that the relationship between pressure loss 

and Re can be expressed as 

Laminar                ∆p α u 

Turbulent               ∆p α u
a 

 
 

Turbulent Flow 

The head loss in turbulent flow in a circular pipe is given by, 

hf = 2fLv
2
 / D = ∆p /  

where f is the friction factor, defined as 

f = w / ( v
2
/2) 

where w is wall shear stress. 

The value of friction factor f depends on the factors such as 

velocity (v) , pipe diameter (D) , density of fluid ( ) , 

viscosity of fluid ( ) and absolute roughness (k) of the pipe. 

 

These variables are grouped as the dimensional numbers 

NRe and k/D 

Where NRe = Dv /  = Reynolds number and k/D is the 

relative roughness of the pipe. 

 

Blasisus, in 1913 was, the first to propose an accurate 

empirical relation for the friction factor in turbulent flow in 

smooth pipes, namely 

f = 0.079 / NRe
0.25

 

 

This expression yields results for head loss to + 5 percent for 

smooth pipes at Reynolds numbers up to 100000. 

 

For rough pipes, Nikuradse, in 1933, proved the validity of f 

dependence on the relative roughness ratio k/D by 

investigating the head loss in a number of pipes which had 

been treated internally with a coating of sand particles 

whose size could be varied. 

 

Thus, the calculation of losses in turbulent pipe flow is 

dependent on the use of empirical results and the most 

common reference source is the Moody chart, which is a 

logarithmic plot of f vs. NRe for a range of k/D values. A 

typical Moody chart is presented as figure. 

 

There are a number of distinct regions in the chart. 

 

1) The straight line labeled 'laminar flow', representing f = 

16/NRe, is a graphical representation of the Poiseuille 

equation. The above equation plots as a straight line of 

slope -1 on a log-log plot and is independent of the pipe 

surface roughness. 

2) For values of k/D < 0.001 the rough pipe curves 

approach the Blasius smooth pipe curve. 

 

6. Conclusion 
 

An attempt has been made in this experimental apparatus to 

study pressure losses in various components in a piping 

system consisting of straight pipes, sudden expansion and 

contraction, bends and valves. The general trends and 

magnitudes obtained during experiments will be the 

indication of the pressure loss from various components in 

the pipe system. However, in practical situations, such 

combinations are not adopted over a short span length. The 

normally accepted design criterion for pressure tapping’s is 

30 to 50 pipe diameters away from obstruction. Also, 

sufficient pipe length has been left between each component 

in the circuit to eliminate any adverse influence of the 

neighboring components. Thus, any discrepancies between 

experimental and theoretical results may be attributed due to 

three main factors; 
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