
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 7, July 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

A Study of Some Geometric Properties of 

Meromorphic Univalent Functions Associated with 

Ruscheweyh Derivative 
 

Kassim A. Jassim
1
, Faeza Khaleel Shabeeb

2 

 
1, 2College of Science, Department of Mathematics-University of Baghdad 
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1. Introduction 
 

Let S denote the class of functions of the from 

 

f (z) = z
-1

 +  𝑎𝑛𝑧𝑛
𝑛=1 ,𝑎𝑛 0,nN ={ 1 , 2 , …}   (1.1) 

 

which are meromorphic univalent functions in the punctured 

unit disk U*={zℂ ; 0<|z|<1} .The hadamard product (or 

convolution) of two functions f and 𝑔 

 

(f *𝑔) (z) = z
-1

 +  𝑎𝑛𝑏𝑛𝑧𝑛
𝑛=1 ,         (1.2) 

where𝑔 (z) = z
-1

 +  𝑏𝑛𝑧𝑛  ,   
𝑛=1 𝑏𝑛 0 

 

Also, a function 𝑓𝑆  is meromorphic starlike function of 

order 𝛿 ( 0 𝛿< 1) if  

− 𝑅𝑒  
𝑍 𝑓 ′  𝑍 

𝑓   𝑧 
 > 𝛿   , for 𝑧 ∈ 𝑈∗,    (5)  

and a function  𝑓𝑆  is meromorphic convex of order 𝛿 (0 

𝛿< 1) if  

− 𝑅𝑒  1 +  
𝑍 𝑓 ′′  𝑍 

𝑓 ′ 𝑧 
 > 𝛿 , for  𝑧 ∈ 𝑈∗. 

The Ruscheweyh derivative of order is denoted by 𝐷𝑓and 

is defined as follows 

𝐷𝑓 𝑧 =
1

𝑧 1 − 𝑧 +1
∗ 𝑓 𝑧 = 

𝑧 +  𝐷𝑛 ()𝑎𝑛𝑧𝑛

∞

𝑛=𝑝

,  > −1, 𝑧 ∈ 𝑈∗.                                    

where  

𝐷𝑛  =
  + 1   + 2 … . ( + 𝑛 + 1)

(𝑛 + 1)!
 

Our aim of thispaper is to study the class S(,,) 

containing of function f  and satisfying 

 

𝑧  (𝐷𝑓(𝑧))

𝐷𝑓(𝑧)
+1

2𝑧  (𝐷𝑓 𝑧 )

𝐷𝑓(𝑧)
+2𝛼

 <                             (1.3) 

Where 

𝐷𝑓 𝑧 =  𝑧−1 +    𝐷𝑛 ()
𝑛=1 𝑎𝑛𝑧𝑛 .            (1.4) 

 

Many authors studied classes of meromorphic functions 

which are univalent and multivalent like W. G. Atshan in 

[1,2] , B. A. Frasin and M. Darus in [3],A. R. S. Juma and H. 

Zirar in [4] ,L. Liu in [5], L. Liu and M. Srivastava in [6], J. 

E. Miller in [7] ,  and M. L. Mogra in [8],R. K. Raina and H. 

M. Srivastava in [9] and N. Xu and D. Yang in [10]. 
 

2. Coefficient Inequality 
 

Theorem (2.1) Let the function f defined by (1.1). Then 

fS(,,) if and only if 

 

  𝑛 + 1 + 2 (𝑛 + ) 
𝑛=1 𝐷𝑛 ()𝑎𝑛 < 2(1 − )  (2.1) 

where , 0 ≤< 1  , 0 <≤ 1. 

 

Proof. Assume the condition (2.1) is satisfied, therefore 

 𝑧 (𝐷𝑓(𝑧))′ + (𝐷𝑓(𝑧))  

−  2𝑧 (𝐷𝑓(𝑧))′ + 2 (𝐷𝑓(𝑧))   

=  −𝑧−1 +  𝐷𝑛 ()
𝑛=1 𝑛𝑎𝑛𝑧𝑛 + 𝑧−1 +  𝐷𝑛 ()

𝑛=1 𝑎𝑛𝑧𝑛  –  

  −2𝑧−1 + 2  𝐷𝑛 ()


𝑛=1
 𝑛𝑎𝑛𝑧𝑛 + 2𝑧−1

+ 2 𝐷𝑛 ()


𝑛=1
𝑎𝑛𝑧𝑛   

 =  𝐷𝑛 ()
𝑛=1  (𝑛 + 1)𝑎𝑛𝑧𝑛  –  2(1 − )𝑧−1 −

2𝑛=1𝐷𝑛() (𝑛+)𝑎𝑛𝑧𝑛 

 𝐷𝑛 ()


𝑛=1
 𝑛 + 1 𝑎𝑛 + 2 𝐷𝑛 ()



𝑛=1
 𝑛 +  𝑎𝑛  

− 2 (1 − )  

 𝐷𝑛 ()


𝑛=1

  𝑛 + 1 + 2 𝑛 +   𝑎𝑛 − 2 1 −   0 . 

 

Then by maximum modulus theorem, we get the result. 

For the Converse, assume that 

𝑧  (𝐷 𝑓(𝑧))

𝐷 𝑓(𝑧)
+1

2𝑧(𝐷 𝑓(𝑧))

𝐷 𝑓(𝑧)
+2𝛼

 <  is satisfied.  

Therefore, 

 
 𝐷𝑛 ()

𝑛 =1  𝑛+1 𝑎𝑛 𝑧𝑛

2  1− 𝑧−1−2  𝐷𝑛 ()
𝑛 =1  𝑛+ 𝑎𝑛 𝑧𝑛  <.Since  𝑅𝑒(𝑧)  𝑧  for all 

z, we have  

Re  
 𝐷𝑛 ()

𝑛 =1  𝑛+1 𝑎𝑛 𝑧𝑛

2  1− 𝑧−1−2  𝐷𝑛 ()
𝑛 =1  𝑛+ 𝑎𝑛 𝑧𝑛 <.Then by choosing the 

value of z on the real axis and letting z→ 1 − through values 

, we get 

   𝑛 + 1 + 2 𝑛 +   


𝑛=1
𝐷𝑛 ()𝑎𝑛 <  2 1 −  . 
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Corollary (2.1) If fS(,,) , then 

𝑎𝑛
2 1− 

[𝑛+1+2 𝑛+ ]𝐷𝑛 ()
 (2.2) 

where, 0 ≤< 1  , 0 <≤ 1. 

 

3. Distortion and Growth Theorem 
 

Theorem (3.1) If the function f defined by (1.1) is in the 

class S(,,), then for 0<|z|=r<1, we have 

 

 𝑓 𝑧  
 1 

𝑟
+

(1−)

1+(1+)
 𝑟 and 𝑓 𝑧  

 1 

𝑟
−

(1−)

1+(1+)
 𝑟  (3.1) 

 

Proof 

Since𝑓 𝑧 be a function in S(,,),then we have from 

Theorem(2.1) 

   𝑛 + 1 + 2 𝑛 +   


𝑛=1
𝐷𝑛  𝑎𝑛 <  2 1 −  . 

Then 

 𝑓 𝑧  =  𝑧−1 +  𝑎𝑛



𝑛=1 
𝑧𝑛   𝑧−1 +   𝑎𝑛



𝑛=1 
 𝑧 𝑛  


1

𝑟
+  𝑟  𝑎𝑛


𝑛=1 , 

By theorem (2.1),  

we get |𝑎𝑛 |
𝑛=1 

2(1−)

[1+(1+)] +1  +2 
. 

Then 

 𝑓 𝑧  
 1 

𝑟
+ 

2(1 − )

[1 + (1 + )]  + 1   + 2 
 𝑟 

Also,  

 𝑓 𝑧  
 1 

𝑟
−  

2(1 − )

[1 + (1 + )]  + 1   + 2 
 𝑟 . 

 

Corollary (3.2) If the function f defined by (1.1) is in the 

class S(,,), then for 0<|z|=r<1, we have 
1

𝑟2 −
2(1−)

[1+(1+)] +1  +2 
 𝑓′ 𝑧  

1

𝑟2 +
2(1−)

[1+(1+)] +1  +2 
             

(3.2) 

 

4. Radii of Star Likeness and Convexity 
 

The following results giving the radii of starlikeness and 

convexity of the function 𝑓 𝑧 S(,,) . 

 

Theorem (4.1) If a function f S(, ,), then f  is 

meromorphically starlike function of order 𝛿 , 0 𝛿 1  in 

the disk  𝑧 𝑅1, where  

 

𝑅1 =
𝑖𝑛 𝑓
𝑛

 
 𝑛+1+2 𝑛+  𝐷𝑛 () 1−𝛿 

2 1−  (𝑛+𝛿+2)
 

1

𝑛 +1
           (4.1) 

 

Proof 

It is sufficient to show that 

 
𝑧𝑓 ′ 𝑧 

𝑓(𝑧)
+ 1   1 − 𝛿 , 

 
𝑧𝑓 ′ 𝑍 

𝑓(𝑍)
+ 1 =   

𝑍 𝑓  𝑍 +  𝑓(𝑍)

𝑓(𝑍)
 

=  
−𝑍−1 +   𝑛 𝑎𝑛


𝑛=1 𝑧𝑛 + 𝑍−1 +  𝑎𝑛


𝑛=1 𝑧𝑛

𝑍−1 +    𝑎𝑛
𝑛=1 𝑧𝑛

  

=  
 (𝑛 + 1)

𝑛=1 𝑎𝑛𝑧𝑛+1

1 +  𝑎𝑛

𝑛=1 𝑧𝑛+1

 
 (𝑛 + 1)

𝑛=1 𝑎𝑛  𝑧 𝑛+1

1 −   𝑎𝑛

𝑛=1 |𝑧|𝑛+1

 

The last expression must bounded by 1- 𝛿 if  

 (𝑛 + 1)


𝑛=1 
𝑎𝑛  𝑧 𝑛+1 1 − 𝛿 −  1 − 𝛿  𝑎𝑛



𝑛=1 
 𝑧 𝑛+1 , 

 (𝑛 + 𝛿 + 2)
𝑛=1 𝑎𝑛  𝑧 𝑛+1 1 − 𝛿 . 

 

Then by theorem(2.1), we have 

 
  𝑛 + 1 + 2 𝑛 +   𝐷𝑛 ()

2 1 −  



𝑛=1
𝑎𝑛 < 1 . 

 Hence 

 𝑧 𝑛+1
  𝑛 + 1 + 2 𝑛 +   𝐷𝑛 () 1 − 𝛿 

2 1 −  (𝑛 + 𝛿 + 2)
, 

Also, 

 𝑧   
 𝑛+1+2 𝑛+  𝐷𝑛 () 1−𝛿 

2 1−  (𝑛+𝛿+2)
 

1

𝑛+1
. 

Therefore, we get the result. 

 

Theorem (4.2). If  a function f S(, ,), then  f  is 

meromorphically convex function of order 𝛿 ,( 0 𝛿 1) in 

the disk  𝑧 𝑅2 , where  

 

𝑅2 =
𝑖𝑛 𝑓
𝑛

 
 𝑛+1+2 𝑛+  (1−𝑠)

2𝑛 1− (𝑛+𝛿+2)
 
𝑛+1

      (4.2) 

 

Proof. It is sufficient to show that 

 
𝑧𝑓 ′′ (𝑧)

𝑓 ′(𝑧)
+ 2  1 − 𝛿 , 

 
𝑧𝑓 ′′  𝑧 + 2𝑓 ′ (𝑧)

𝑓 ′ (𝑧)
 =  

2𝑍−2 +   𝑛(𝑛 − 1)𝑎𝑛

𝑛=1 𝑍𝑛−1 −  2𝑍−2 + 2   𝑛 𝑎𝑛


𝑛=1 𝑍𝑛−1

−𝑍−2 +    𝑛 𝑎𝑛

𝑛=1 𝑧𝑛−1

  

=  
 𝑛(𝑛+1)

𝑛 =1 𝑎𝑛 𝑧𝑛 +1

−1+  𝑛  𝑎𝑛

𝑛 =1 𝑧𝑛+1  

 𝑛(𝑛+1)
𝑛 =1 𝑎𝑛  𝑧 𝑛 +1

1−  𝑛  𝑎𝑛

𝑛 =1 |𝑧|𝑛+1 . 

 

The last expression must bounded by 1 − 𝛿.Therefore, 

 𝑛(𝑛 + 1)


𝑛=1 
𝑎𝑛  𝑧 𝑛+1 1 − 𝛿

−  1 − 𝛿  𝑛 𝑎𝑛



𝑛=1 
 𝑧 𝑛+1 

 𝑛(𝑛 + 𝛿 + 2)


𝑛=1 
𝑎𝑛  𝑧 𝑛+1 1 − 𝛿 

Then by theorem(2.1), we have 

 
  𝑛 + 1 + 2 𝑛 +   𝐷𝑛 ()

2 1 −  



𝑛=1
𝑎𝑛 < 1 . 

Hence 

 𝑧 𝑛+1
  𝑛 + 1 + 2 𝑛 +   𝐷𝑛 () 1 − 𝛿 

2 1 −  𝑛(𝑛 + 𝛿 + 2)
, 

Also, 

|z|   
 𝑛+1+2 𝑛+  𝐷𝑛 ()(1−𝑠)

2 1− 𝑛(𝑛+𝛿+2)
 
𝑛+1

 

Therefore, we get the result. 

 

5. Convex Linear Combination 
 

In the following theorem, the class S(,,) is closed under 

convex linear combination. 
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Theorem (5.1) .The class S ( , ,) is closed under convex 

linear combination. 

 

Proof: We want to show that function k(z) = (1-µ)𝑓1(z) + 

µ 𝑓2(z), 0 µ  1is in the class S(,,) where𝑓1(z) , 

𝑓2(z)S(,,) and 

 

𝑓1(z) = 𝑧−1+   𝑎𝑛𝑧𝑛
𝑛=1 ,𝑓2(z) = 𝑧−1+   𝑏𝑛𝑧𝑛

𝑛=1 ,   (5.1) 

where  𝑎𝑛 , 𝑏𝑛 0. 
 

By theorem (2.1) we have 

  𝑛 + 1 + 2  (𝑛 + ) 
𝑛=1 𝐷𝑛 ()𝑎𝑛 2  (1-) 

 

and 

  𝑛 + 1 + 2  (𝑛 + ) 𝐷𝑛 ()
𝑛=1 𝑏𝑛 2  (1-). 

 

Therefore, 

k(z) = (1-µ)𝑓1(z) + µ 𝑓2(z) 

= (1-µ) 𝑧−1 +    𝑎𝑛𝑧𝑛
𝑛=1  + µ  𝑧−1 +    𝑏𝑛𝑧𝑛

𝑛=1   

= 𝑧−1 +    1 −  µ 𝑎𝑛 +  µ 𝑏𝑛  
𝑛=1 𝑧𝑛 . Further 

   𝑛 + 1 + 2  (𝑛 + ) 



𝑛=1

  1 −  µ 𝑎𝑛 +  µ 𝑏𝑛  𝐷𝑛 () 

=  𝑛 + 1 + 2  (𝑛 + ) 
𝑛=1  1 −  µ 𝑎𝑛 +   𝑛 + 1 +

𝑛=1

2 (𝑛+)µ 𝑏𝑛 

2(1- µ)  (1-) + 2µ (1- ) = 2(1-), 

 

Therefore the result is follows that k(z) is in the class 

S(,,) 

 

6. Arithmetic Mean 
 

In the following, we shall prove that class S(,,)is closed 

under arithmetic mean. 

 

Theorem (6.1).Let 𝑓1(z) ,𝑓2(z) ….. 𝑓𝑙(z) defined by 𝑓𝑖(z) = 

𝑧−1+   𝑎𝑛 ,𝑖𝑧
𝑛

𝑛=1 ,   (𝑎𝑛 ,𝑖 0 , i = 1, 2…… l)be in the class 

S(,,). Then the Arithmetic mean of 𝑓𝑖(z) , (i = 1 ….. l) 

defined by 

h (z) = 
1

𝑙
 𝑓𝑖

𝑙
𝑖=1  (z)                     (6.1) 

 is also in the class S(,,). 

 

Proof 

By hypothesis we get 

h (z) = 
1

𝑙
  𝑧−1 +   𝑎𝑛 ,𝑖𝑧

𝑛
𝑛=1  𝑙

𝑖=1 = 𝑧−1 + 

  
1

𝑙
 𝑎𝑛 ,𝑖

𝑙
𝑖=1  

𝑛=1 𝑧𝑛  

since 𝑓𝑖  (z)S(,,) for every i = 1,2,…. l.So by using 

theorem (2.1), we get 

that   𝑛 + 1 + 2  (𝑛 + ) 
𝑛=1 𝐷𝑛 ()  

1

𝑙
 𝑎𝑛 ,𝑖

𝑙
𝑖=1   

= 
1

𝑙
    𝑛 + 1 + 2  (𝑛 + ) 𝐷𝑛 ()𝑎𝑛 ,𝑖


𝑛=1  𝑙

𝑖=1  


1

𝑙
 2  1 −  𝑙

𝑖=1 = 2(1-) 

 

7. Hadamard Product 
 

In the following theorem, we obtain the convolution result 

for function belongs to the class S(,,). 

 

Theorem (7.1). Let the functions f , 𝑔 of the form (1.1) be in 

the class S(,,). Then  (f *𝑔) ∈ S(,,) .Then (𝑓 ∗ 𝑔) ∈ 

S(,,𝑙) ,where 

𝑙 ≥
22  (1−) 𝑛+1 

  𝑛+1+2(𝑛+) 2𝐷𝑛 ()−42  (1−)(𝑛+)
                (7.1) 

 

Proof  

Let f , 𝑔 ∈S(,,) and so 

 
  𝑛 + 1 + 2(𝑛 + ) 𝐷𝑛 ()

2(1 − )



𝑛=1
𝑎𝑛  ≤ 1 

and 

 
  𝑛+1+2(𝑛+) 𝐷𝑛 ()

2(1−)


𝑛=1 𝑏𝑛  ≤ 1                    (7.2) 

 

We have to find the smallest number  l  such that 

 
  𝑛 + 1 + 2𝑙(𝑛 + ) 𝐷𝑛 ()

2𝑙(1 − )



𝑛=1
𝑎𝑛𝑏𝑛  ≤ 1       (7.3) 

 

By the Cauchy-Schwartz inequality, we get 

 
  𝑛+1+2(𝑛+) 𝐷𝑛 ()

2(1−)


𝑛=1  𝑎𝑛𝑏𝑛 ≤ 1 (7.4) 

 

It is sufficient to show that 
  𝑛+1+2𝑙(𝑛+) 𝐷𝑛 ()

2𝑙(1−)
𝑎𝑛𝑏𝑛 ≤

  𝑛+1+2(𝑛+) 𝐷𝑛 ()

2(1−)
 𝑎𝑛𝑏𝑛    (7.5) 

 

That is, 

 𝑎𝑛𝑏𝑛 ≤
𝑙   𝑛 + 1 + 2(𝑛 + ) 

  𝑛 + 1 + 2𝑙(𝑛 + ) 
 

 

But from (7.4) 

 𝑎𝑛𝑏𝑛 ≤
2 (1 − ) 

  𝑛 + 1 + 2(𝑛 + ) 𝐷𝑛 ()
 

 

Thus it is enough to show that 
2 (1 − ) 

  𝑛 + 1 + 2(𝑛 + ) 𝐷𝑛 ()
 ≤

𝑙   𝑛 + 1 + 2(𝑛 + ) 

  𝑛 + 1 + 2𝑙(𝑛 + ) 
 

 

which simplifies to 

𝑙 ≥
22 (1 − ) 𝑛 + 1 

  𝑛 + 1 + 2(𝑛 + ) 2𝐷𝑛 () − 42 (1 − )(𝑛 + )
 

which proves theorem(7.1) 

 

Theorem (7.2).Let the functions  f , 𝑔 of the form (1.1) be in 

the class S(,,).Then the function  𝑧 = 𝑧−1 +
  𝑎𝑛

2 + 𝑏𝑛
2 ∞

𝑛=1 𝑧𝑛  is in the class S(,,𝛾) , where 

𝛾 =
42 𝑛+1 (1−)2

 1−  𝑛+1+2 (𝑛+) 2𝐷𝑛 ()−82 𝑛+ (1−)2              (7.6) 

 

Proof. Since f , 𝑔 ∈S(,,) , therefore , by theorem (2.1) 

yields 

  
[𝑛+1+2 𝑛+ ]𝐷𝑛 ()

2(1−)
 

2

𝑛=1 𝑎𝑛

2  ≤ 1    (7.7) 

and 

  
[𝑛+1+2 𝑛+ ]𝐷𝑛 ()

2(1−)
 

2

𝑛=1 𝑏𝑛

2  ≤ 1      (7.8) 

 

We obtain from the last two inequalities 

 
1

2
 
[𝑛 + 1 + 2 𝑛 +  ]𝐷𝑛 ()

2(1 − )
 

2

𝑛=1
 𝑎𝑛

2 + 𝑏𝑛
2  ≤ 1 

But  𝑧 ∈S(,,𝛾) if and only if  
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 𝑛 + 1 + 2𝛾 (𝑛 + ) 𝐷𝑛 ()

2𝛾 (1 − )



𝑛=1
 𝑎𝑛

2 + 𝑏𝑛
2  

≤ 1                                                           (7.9) 

 

Therefore, the inequality (7.9) satisfied if 
 𝑛 + 1 + 2𝛾 (𝑛 + ) 𝐷𝑛 ()

2𝛾 (1 − )
 

≤  
1

2
 
[𝑛 + 1 + 2 𝑛 +  ]𝐷𝑛 ()

2 (1 − )
 

2

 

which is imply 

𝛾 ≥  
42 𝑛 + 1 (1 − )2

 1 −   𝑛 + 1 + 2 (𝑛 + ) 2𝐷𝑛() − 82 𝑛 +  (1 − )2
 

which is complete the proof. 

 

8. Closure Theorem 
 

We shall prove the following closure theorems for the class 

S (,,). 

 

Theorem (8.1). Let fj∈S(,,) ,j = 1 , 2 …   s , then 

𝑔 𝑧 =  𝑐𝑗 𝑓𝑗  𝑧 
𝑠
𝑗 =1 ∈ S(,, ),                 (8.1) 

for 𝑓𝑗  𝑧 = 𝑧−1 +  𝑎𝑛 ,𝑗
∞
𝑛=1 𝑧𝑛   , where 𝑐𝑗 = 1𝑠

𝑗 =1 . 

 

Proof. Suppose that  𝑔 𝑧 =   𝑐𝑗 𝑓𝑗  𝑧 
𝑠
𝑗 =1 . Since 𝑓𝑗  𝑧 =

𝑧−1 +  𝑎𝑛 ,𝑗
∞
𝑛=1 𝑧𝑛 ,  

 

Therefore,  𝑔 𝑧 = 𝑧−1 +  𝑒𝑛𝑧𝑛∞
𝑛=1 ,where𝑒𝑛 =

 𝑐𝑗 𝑎𝑛 ,𝑗
𝑠
𝑗 =1 .  

 

Thus  

𝑔 𝑧 ∈ S(,,) if  
[𝑛+1+2 𝑛+ ]𝐷𝑛 ()

2(1−)
𝑒𝑛


𝑛=1  ≤ 1.That is,if 

  
[𝑛 + 1 + 2 𝑛 +  ]𝐷𝑛 ()

2(1 − )
𝑐𝑗 𝑎𝑛 ,𝑗

𝑠

𝑗 =1

∞

𝑛=1

=  𝑐𝑗

𝑠

𝑗 =1

 
[𝑛 + 1 + 2 𝑛 +  ]𝐷𝑛 ()

2(1 − )
𝑎𝑛 ,𝑗

∞

𝑛=1

 

≤  𝑐𝑗
∞
𝑗 =1 = 1. Therefore the proof is completed. 

 

9. Neighborhoods 
 

Now, we define (n,𝛾)-neighborhood of a function f∈ S by 

𝑁n,𝛾={𝑔 ∈S:𝑔 z = 𝑧−1 +  𝑏𝑛

𝑛=1 𝑧𝑛  and 

 𝑛 𝑎𝑛 − 𝑏𝑛  
𝑛=1 ≤ 𝛾, 0 ≤ 𝛾 < 1}             (9.1) 

 

For the identity function𝑒(z)=z, we have 

𝑁n,𝛾 (e)={𝑔 ∈S:𝑔(z) = 𝑧−1 +  𝑏𝑛

𝑛=1 𝑧𝑛    

and  𝑛  𝑏𝑛  
𝑛=1 ≤ 𝛾 } 

 

Definition (9.1).A function  f∈ S  issaid to be in the class 

𝑆𝜇 (,, ) if there exists a function  𝑔 ∈ S( ,, ) such that 

 
𝑓(𝑧)

𝑔(𝑧)
− 1 < 1 − 𝜇 , ( 𝑧 ∈ 𝑈 , 0 ≤  𝜇 < 1 ) 

 

Theorem (9.2) If  𝑔 ∈S(,,) and 

𝜇 = 1 −  
𝛾 1 +  1 +     + 1   + 2 

 1 +  1 +     + 1   + 2 − 2 1 −  
(9.2) 

 

Then 𝑁n,𝛾 (𝑔) 𝑆𝜇 (,,). 

Proof. Let  f∈ 𝑁n,𝛾 (𝑔) ,we want to find from (9.1) that 

 𝑛  𝑎𝑛 − 𝑏𝑛  


𝑛=1
≤ 𝛾  

 

Which readily implies the following coefficient in equality 

  𝑎𝑛 − 𝑏𝑛  


𝑛=1
≤ 𝛾  ,   ( 𝑛 ∈ 𝑁 ) 

 

Since  𝑔 ∈S(,,) , hence we have from Theorem(2.1) 

 𝑏𝑛



𝑛=1
≤

 (1 − )

[1 +  1 +  ]( + 1)( + 2)
 

 

So that 

 
𝑓(𝑧)

𝑔(𝑧)
− 1 =  

𝑓 𝑧 − 𝑔(𝑧)

𝑔(𝑧)
 =  

  𝑎𝑛 − 𝑏𝑛   𝑧𝑛+1
𝑛=1

1 +   𝑏𝑛  𝑧𝑛+1
𝑛=1

  

≤
  𝑎𝑛 − 𝑏𝑛  

𝑛=1

1 −    𝑏𝑛 
𝑛=1

  ≤  
𝛾

1 −
 1− 

 1+ 1+   +1  +2 

=
𝛾 1 +  1 +     + 1   + 2 

 1 +  1 +     + 1   + 2 −  1 −  
 

 

Then we get 

 
𝑓(𝑧)

𝑔(𝑧)
− 1 ≤

𝛾 1 +  1 +     + 1   + 2 

 1 +  1 +     + 1   + 2 −  1 −  
= 1 − 𝜇 

Therefore, by definition(9.1), 𝑓 ∈ 𝑆𝜇 (,,) 

 

Thus by definition ,𝑓 ∈ 𝑆𝜇 (,,)   for  𝜇 given by (9.2) 

 

10. Partial Sums 
 

Theorem(10.1). Let  f(z)S(,,) is given by (1.1) .Also 

𝑓1(z) and 𝑓𝑘(z) defined by 

𝑓1(z) = z
-1

       and    

    𝑓𝑘(z) = z
-1

 +  𝑎𝑛𝑧𝑛𝑘
𝑛=1  , (n  N/ {1}).         (10.1) 

Suppose that  

 𝑑𝑛 |𝑎𝑛

𝑛=1 | 1,         (10.2) 

where  𝑑𝑛 ∶=  
[𝑛+1+2 𝑛+ ]𝐷𝑛 ()

2 1− 
 .  

Furthermore, 

  Re  
𝑓(𝑧)

𝑓𝑘 (𝑧)
  1 - 

1

𝑑𝑘+1
 ,z U, nN               (10.3) 

And 

Re 
𝑓𝑘(𝑧)

𝑓(𝑧)
 

𝑑𝑘+1

1+𝑑𝑘+1
.                               (10.4) 

Proof. For the coefficients 𝑑𝑛  given by (10.2)  

𝑑𝑛+1>𝑑𝑛> 1 .                            (10.5) 

Therefore, 

 𝑎𝑛 + 𝑑𝑘+1
𝑘
𝑛=1  𝑎𝑛


𝑛=𝑘+1  𝑑𝑛𝑎𝑛


𝑛=1  1     (10.6) 

By setting 

𝑔1(z) = dk+1 
𝑓(𝑧)

𝑓𝑘 (𝑧)
−  1 −  

1

𝑑𝑘+1
   

                               = dk+1 
𝑓(𝑧)

𝑓𝑘 (𝑧)
− 1 +  

1

𝑑𝑘+1
  

                             = 1 + 
𝑑𝑘+1  𝑎𝑛 𝑧𝑛+1

𝑛 =𝑘+1

1+  𝑎𝑛 𝑧𝑛+1𝑘
𝑛 =1

 

Applying (10.6), we get that 

 
𝑔1  𝑧 −1

𝑔1  𝑧 +1
 

𝑑𝑘+1  𝑎𝑛
∞
𝑛=𝑘+1

2−2  𝑎𝑛
𝑘
𝑛 =1 −𝑑𝑘+1  𝑎𝑛

∞
𝑛=𝑘+1

1          (10.7) 

 

Which readily yields the assertion (10.3) of Theorem(10.1). 

If the function                      
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f(z) = z
-1

 +
𝑧𝑘+1

𝑑𝑘+1
                                   (10.8) 

𝑓  (𝑧)

𝑓𝑘 (𝑧)
 = 1-

𝑧𝑘+1

𝑑𝑘+1
 1- 

1

𝑑𝑘+1
 as  z1−.This show the bound in 

(10.3). 

 

Similarly, if we take 

 𝑔2 (z) = (1+ 𝑑𝑘+1)  
𝑓𝑘(𝑧)

𝑓(𝑧)
−  

𝑑𝑘+1

1+ 𝑑𝑘+1
  

                             = 1 - 
 1+ 𝑑𝑘+1  𝑎𝑛 𝑧𝑛 +1∞

𝑛 =𝑘+1

1+  𝑎𝑛 𝑧𝑛+1𝑘
𝑛=1

 

and making use of (10.6), we can deduce that 

 
𝑔2  𝑧 −1

𝑔2  𝑧 +1
 

(1+ 𝑑𝑘+1)  𝑎𝑛
∞
𝑛=𝑘+1

2−2  𝑎𝑛
𝑘
𝑛 =1 −(1+𝑑𝑘+1)  𝑎𝑛

∞
𝑛 =𝑘+1

1 ,  z U.     (10.9) 

 

Which leads to assertion (10.4) of Theorem 

(10.1).Therefore, the proof of Theorem(4.1) is complete. 

 

Theorem(10.2). If  f (z) of the form (1.1) satisfies the 

Theorem (2.1). Then 

 Re  
𝑓 ′ (𝑧)

𝑓𝑘
′ (𝑧)

  1- 
𝑘+1

𝑑𝑘+1
                                     (10.10) 

 

Proof. By setting 

𝑔(z) = 
𝑑𝑘+1

𝑘+1
 
𝑓 ′ (𝑧)

𝑓𝑘
′ (𝑧)

−   1 −  
𝑘+1

𝑑𝑘+1
   

= 
1+ 

𝑑𝑘+1
𝑘+1

 𝑛𝑎𝑛 𝑧𝑛 +1∞
𝑛 =𝑘+1 + 𝑛𝑎𝑛 𝑧𝑛 +1𝑘

𝑛=1

1+  𝑛𝑎𝑛 𝑧𝑛+1𝑘
𝑛=1

 

= 1 + 
𝑑𝑘+1
𝑘+1

 𝑛𝑎𝑛 𝑧𝑛+1∞
𝑛=𝑘+1

1+  𝑛𝑎𝑛 𝑧𝑛+1𝑘
𝑛=1

 , Therefore, 

 
𝑔 𝑧 −1

𝑔 𝑧 +1
 

𝑑𝑘+1
𝑘+1

 𝑛𝑎𝑛  
∞
𝑛=𝑘+1

2−2  𝑛  𝑘
𝑛 =1 𝑎𝑛 −

𝑑𝑘+1
𝑘+1

 𝑛∞
𝑛 =𝑘+1 𝑎𝑛

 1 . 

Now        
𝑔 𝑧 −1

𝑔 𝑧 +1
  1 if 

 𝑛  𝑎𝑛  + 
𝑑𝑘+1

𝑘+1

𝑘
𝑛=1  𝑛|𝑎𝑛 |

𝑛=𝑘+1  1                 (10.11) 

The result is sharp for the function  

f(z) = z + 
𝑧𝑘+1

𝑑𝑘+1
 . 

 

Theorem (10.3). If  f (z) of the form (1.1) satisfies the 

Theorem (2.1) then 

Re  
𝑓𝑘

′ (𝑧)

𝑓 ′ (𝑧)
 

𝑑𝑘+1

𝑘+1 + 𝑑𝑘+1
.                               (10.12) 

 

Proof: By setting 

𝑔(z)  =  
[(𝑘 + 1)  + 𝑑𝑘+1]

k + 1
 
𝑓𝑘

′(𝑧)

𝑓 ′(𝑧)
−

𝑑𝑘+1

[(𝑘 + 1)  +  𝑑𝑘+1]
  

= 1-  
(1+ 

𝑑𝑘+1
𝑘+1

)  𝑛𝑎𝑛 𝑧𝑛 +1∞
𝑛 =𝑘+1

1+  𝑛𝑎𝑛 𝑧𝑛 +1∞
𝑛 =1

, 

and making use  

 𝑛𝑎𝑛 + (1 + 
𝑑𝑘+1

𝑘+1

𝑘
𝑛=1 )  𝑛𝑎𝑛 1∞

𝑛=𝑘+1 . 

We can deduce that 

 
𝑔 𝑧 −1

𝑔 𝑧 +1
 

(1+ 
𝑑𝑘+1
𝑘+1

)  𝑛𝑎𝑛
∞
𝑛=𝑘+1

2−2  𝑛𝑎𝑛 −(1+ 
𝑑𝑘+1
𝑘+1

𝑘
𝑛=1 )  𝑛𝑎𝑛

∞
𝑛 =𝑘+1

 1. 

Therefore, the result of Theorem (10.3) holds. 
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