
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 7, July 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Shelf Space Allocation Problem Using LNS Solver 
 

Dina Hamad Alghurair
1
,
 
Hedaya Ghanim Alshammar

2
  

 
1, 2Higher Institute of Telecommunication and Navigation, HITN, PAAET, Ardia Block4, Street 602, Kuwait 

 

Abstract: Shelf Space Allocation Problem is the problem of finding a good or an optimal solution for arranging objects on shelves in 

a store/warehouse to maximize profit. The SSAP yet remains a topic under research and has recently only been applied on a 

commercial level by large warehouses and the generalization of the problem to meet different requirements is still under investigation 

by the researchers. The problem considers different shelves with different priorities based on customer experience studies or based on 

certain criteria defined by the warehouse manager, while products have different dimensions and different profit margin. The current 

study is an item independent, thus it applies to supermarkets, parts warehouses, or any other space allocation problems with similar 

distribution criteria. Our study will focus on a simplified version of space allocation problem where we will ignore depth and stacking of 

same product on shelves, and not consider any clustering or aggregations beyond the fact that all items of same type are allocated 

within the same shelf next to each other. Our implementation will utilize an LNS solver, and present a planogram in motion, showing 

the arrangement of products on shelves in a video like sequence to watch the solution improvement and establish a basis for future 

improvements and generalization of the problem 
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1. Introduction 
 

Shelf Space Allocation Problem is the problem of solving the 

allocation of items on shelves, whether this problem is 

directed towards warehouses, supermarkets, or any storage 

and allocation service on the market. 

 

The problem on its own has been introduced in the literature 

by several researchers and is still under investigation and 

have space for improvements, this stems from the fact that a 

good allocation can increase the profit of an organization, not 

to mention the it can optimally utilize the space at hand given 

a predefined criteria set.  

 

This problem can be described in a complicated context, with 

many demands and aggregations, and several rules, it can 

also be simplified and the solution is generalized for a more 

complicated rules. 

 

Our solution will solve this problem and present planograms 

in motion to show the change of the objective value and the 

improvements while still satisfying the criteria of fitting all 

the objects within the minimum and maximum limits. 

 

The solution at hand can be generalized for more 

complicated scenarios where similar products can be stacked 

on top of each other, and have a certain depth count in each 

allocation. 

 

The problem is a large-scale optimization NP Hard problem, 

the solution here will present different approaches in the 

implementation for the same algorithm using LNS Largest 

Neighborhood Heuristics Search that shows how some 

approaches are faster than others, and all yield an improved 

arrangement from scratch given the products / shelves / 

priorities data set. 

 

2. Literature Review  
 

The shelf space allocation problem have been studied in the 

literature before in different ways and with different factors, 

several approaches have been introduced with different 

algorithms, mostly focusing on  large retail stores [1] 

,[2],[3],[4]. The topic is considered a commercial topic as 

companies are increasingly trying to improve their services 

and stay ahead in the competitive market. 

 

Customer experience analysis has been applied in large retail 

companies such as Walmart to stay ahead in their 

competition, utilizing best allocations to maximize their 

profits. 

 

Many factors affect total profit of a store, as mentioned in 

[1],[5],[6],[4], for instance the products that are most seen 

are the ones that are most bought by customers, also the 

products should always be available and the stock should 

always be replenished. 

 

In [7] Anderson and his colleagues, investigated the customer 

preferences for specific brands for the optimal item 

allocation of shelves. 

  

In [8] Dreze et al. suggested that the numbers of facings on a 

shelf after a certain limit has no importance and will no 

longer affect increasing the demand, according to customer 

experiences and investigations, so even if there is still more 

space available having more items of the same brand no 

longer affects the customer purchase process. 

 

In [9] Yang proposed a simplified model to solve the 

problem depending on the profitability of the products. Most 

of the research of large warehouse focused on more 

complicated variables than those available of needed by 

small warehouses, such as products grouping and 

complicated customer behaviors, advertising and other 

factors, while the concept for small warehouses or none 

customer oriented warehouses doesn’t include these factors.  

 

Our work here mostly follows Yang simplified model [9] to 

establish a basis for a more generalized research on the topic 

at hand. 
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3. Large Neighborhood Search To Solve SSAP 
 

Heuristics based on large neighbourhood search have been 

recently tested and showed great results in solving NP hard 

problems and various large-scale optimization problems such 

as transportation and scheduling problems, including vehicle 

routing problems, and the Travelling Sales Man Problem.  

 

Large neighbourhood search methods explore a complex 

neighbourhood by use of heuristics. Using large 

neighbourhoods makes it possible to find better candidate 

solutions with each iteration thus traversing a more promising 

search path reducing the solution space that the problem is 

looking in; tell we find an optimal solution or stop by using 

specific criteria like time and return the resulting solution. 

 

 
Figure 1: LNS Solution space down to the optimal solution 

 

In the LNS the neighbourhood is defined implicitly by a 

destroy and a repair method (try-error-destroy-repair-try…) . 

A destroy method destructs part of the current solution 

whereas a repair method rebuilds the destroyed Solution. 

 

The destroy method typically contains an element of 

stochasticity such that different parts of the solution are 

destroyed in every invocation of the method. The 

neighbourhood N(x) of a solution x is then defined as the set 

of solutions that can be reached by first applying the destroy 

method and then the repair method. 

 

LNS heuristic typically alternates between an infeasible 

solution and a feasible solution: the destroy operation creates 

an infeasible solution, which is brought back into feasible 

form by the repair heuristic. Alternately the destroy and 

repair operations can be viewed as fix/optimize operations: 

the fix method (corresponding to the destroy method) fixes 

part of the solution at its current value while the rest remains 

free, the optimize method (corresponding to the repair 

method) attempts to improve the current solution while 

respecting the fixed values. Such an interpretation of the 

heuristic may be more natural if the repair method is 

implemented using MIP Mixed Integer Problem or constraint 

programming solvers. 

 

In our SSAP for instance we fix the current the product 

allocation on one shelf while the remaining values are 

randomly generated in search for a better solution, same 

applied for other variables. 

 

Local search techniques are very effective to solve hard 

optimization problems. Most of them are, by nature, 

incomplete. In the context of constraint programming for 

optimization problems, the basic idea is to iteratively relax a 

part of the problem, then to use constraint programming to 

evaluate and bound the new solution by using fix and 

optimize principle mentioned earlier. 

 

LNS is a two-phase algorithm, which partially relaxes a given 

solution and repairs it. Given a solution as input, the 

relaxation phase builds a partial solution (or neighbourhood) 

by choosing a set of variables to reset to their initial domain; 

The remaining ones are assigned to their value in the 

solution. Even though there are various ways to repair the 

partial solution, the focus is on the technique in which 

Constraint Programming is used to bound the objective 

variable and to assign a value to variables not yet 

instantiated. These two phases are repeated until the search 

stops (optimality proven, time limit reached or any other 

criteria defined by the developer, in our case we choose a 

time criteria of 3 times number of analysed products). 

 

All LNS methods are problem dependent, so several 

approaches have been proposed by researchers to generalize 

the LNS and make it problem independent, thus, the 

following methods have been proposed by researchers: 

Propagation and explanation based methods. 

 

A simplified general algorithm for the LNS method can be 

viewed as: 

 

Table 1: LNS Search method (Found in [10] ) 

Algorithm :Large Neighbourhood Search 

Requirement: an initial solution S 

procedure LNS 

while Optimal solution not found and a stop criterion is 

not encountered do 

relax(S) 

S’=   findSolution() .  The current partial solution is then 

repaired in order to improve 

the current solution 

if S’ != NULL then . An improving solution has been 

found 

S = S’ 

end if 

end while 

end procedure 

 

3.1 PLNS 

 

One drawback of LNS is that the relaxation process is quite 

often problem dependent. Some works have been dedicated 

to the selection of variables to relax through general concept 

not related to the class of the problem treated. However, in 

conjunction with CP (Constraint Programming), one generic 

approach, namely Propagation-Guided LNS, has been shown 

to be very competitive with dedicated ones. It must, in a way, 
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automatically detect the problem structure in order to be 

efficient. 

 

In [10] the authors define two neighbourhood selection 

methods relying on information coming from constraint 

propagation. The first method defines the set of variables to 

freeze by incrementally building a partial assignment, starting 

from an empty scope. The underlying idea is that of freezing 

related variables. The volume of domain reduced, it helps to 

link variables together inside or outside partial solutions. 

 

The algorithm uses the current size of the domains of the 

decision variables to control the size of the neighbourhood, 

and then when a variable is frozen, propagation occurs, by 

tracing the volume of the domain reduction. We can detect 

which variables are linked to the frozen variable; this 

information will be utilized to choose the next variable to 

freeze, so the algorithm becomes: 

 

Table 2: PLNS guided search method (algorithm source 

[10]) 

Propagation Guided LNS method. 

While fragment size is greater than desired size 

If variable list is empty then 

Choose unbound variable randomly 

Else 

Choose variable in variable list 

End if 

Freeze variable and propagate 

Update variable list 

End while 

 

3.2 RLNS 

 

The LNSFactory provides pre-defined configurations. Here is 

the way to declare LNS to solve a problem: 

 

LNS Factory.rlns (solver, ivars, 30, 20140909L, new Fail 

Counter(solver, 100)); solver. Find Optimal Solution 

(ResolutionPolicy. MINIMIZE, objective); It declares a 

Random LNS which, computes a partial solution based on 

ivars. If no solution are found within 100 fails (Fail Counter 

(solver, 100)), a restart is forced. Then, every 30 calls to this 

neighbourhood, the number of fixed variables is randomly 

picked. 20140909L is the seed for the java.util.Random. it 

uses a Random selection scheme of the variables thus it is the 

slowest method out of the three mentioned here. While the 

PLNS gives an outstanding performance with optimal or near 

optimal results. 

 
3.3 ELNS 

 

An explanation is a subset of constraints and decisions which 

justifies a solver event such as a domain modification or a 

conflict they are used in various paradigms for improving 

search. It can be seen as an explicit trace of the propagation 

mechanism making it possible to identify a set of constraints 

and decisions (variable assignments, cuts) responsible for the 

current state of the domain of a Variable.  

 

One is based on an explanation of the inability to repair a 

solution; the other is based on an explanation of the non-

optimal nature of the current solution. An explanation 

records some sufficient information to justify an inference 

made by the solver (domain reduction, contradiction, etc.). It 

is made of a subset of the original propagators of the problem 

and a subset of decisions applied during search. Explanations 

represent the logical chain of inferences made by the solver 

during propagation in an efficient and usable manner.[11] 

 

In a way, they provide some kind of a trace of the behaviour 

of the solver as any operation needs to be explained. 

Explanations have been successfully used for improving 

constraint programming search process. Both complete and 

incomplete techniques have been proposed.  

 

Those techniques follow a similar pattern: learning from 

failures by recording each domain modification with its 

associated explanation (provided by the solver) and taking 

advantage of the information gathered to be able to react 

upon failure by directly pointing to relevant decisions to be 

undone. Complete techniques follow a most-recent based 

pattern while incomplete technique design heuristics to be 

used to focus on decisions more prone to allow a fast 

recovery upon failure. 

 

Explanations are computed in a bottom-up way, from the 

conflict to the first event generated, keeping only relevant 

events to compute the explanation of the conflict. 

 

4. Implemented Problem Formulation 
 

The implemented problem has been simplified to include the 

following variables and constraints 

n : number of products to allocate 

m : number of shelves 

ai : length of facing of product i 

Tj : length of shelf j 

Li : minimum number of facings required for product i 

Ui : maximum number of facings required for product i 

xij : number of facings of product i on part k of shelf j 

yij = 1 if facings of product i are assigned to shelf j, 0 

otherwise 

Pi : profit per unit of product i 

Cj : priority coefficient of shelf j 

Pij = PiCj : profitability of product i if placed on shelf j 

i = 1.. n, j = 1 .. m 

Objective Function: Maximization of total profit given by : 

 
(1)  Which means that the summations of all profits per unit 

product multiplied by the number of facings for a product for 

all products in the system allocated on all shelves in the 

system, the maximization of this value is the maximization of 

the total profit.   

 

Subject to the following constraints: 
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(2) Which says that the summation of the length of all facings 

of product i allocated on a shelf j is less than the length of the 

shelf for all shelves in the system. 

 
 

(3) This constraint states that a product can lie only on one 

shelf, thus this Boolean variable is either 1 or 0, it will be 1 if 

facing I lies on shelf j otherwise it will be 0, thus summation 

of all these variables will be 1 will make the product shelf 

positioning condition hold, so for this variable there will be 

nXm different variables, the summation of all variables in the 

same column is 1. 

 
 

(4) The lower bound and upper bound of the number of 

facings of a given product, is defined by input, all product 

facing variables are limited by minimum number of facings 

condition and maximum number of facings condition defined 

by the input data. 

 
 

(5) is a bound for the entire system which means that the 

input sample actually meets the minimum space 

requirements, that means, that before going into attempting to 

solve the problem we need to verify that there is enough 

space in the shelves to hold the summation of the minimum 

bounds of the number of facings multiplied by the length of 

facings in a shelf for all products and all shelves. For the 

purpose of implementation and considering that a product is 

only located on one shelf, the objective can be rewritten as 

the following 

 
where yij will denote the location of product xi. 

 

The Y here will become a 2D array of 0s and 1s, which will 

become variable array along with xi, thus the problem in (6) 

is not completely linear, however in our implementation, the 

Choco Solver, can still handle this type of product of the two 

variables. 

 

The LNS solver will iterate the Binary array as well as 

scanning the range of the X array between the lower bound 

and the upper bound to improve the final solution, depending 

on which approach is applied (RLNS, ELNS, PLNS). 

 

Other solvers cant work the product of two variables (which 

makes the problem not truly linear), however; in our case, the 

none linearity is considered as simple as: Product of a Binary 

Variable with a Bounded variable (and generalizing it for all 

the variables at hand). Delinearization of the problem using 

constraint-programming methods can be done as the 

following[13]: 

 

 

Considering:  

  (7) 

      (8) 

        (9) 

   (10) 

      (11) 

The delinearization can be described using 7 constraints as 

the following. 

         (12) 

            (13) 

        (14) 

      (15) 

  (16) 

 (17) 

  (18) 

Delinearization is only needed for solvers that cant handle 

the product of two variables. 

 

In the implementation, extra variables have been created for 

the problem to allow the previous formulation to be adapted 

to the Choco solver and to create a successful solution. 

 

5. Solver Choice 
Implementation is mainly distributed into three main 

sections: 

1) Modeling the problem, solving, and solution iteration 

2) Planogram drawing and motion, double buffered drawing 

mechanism 

3) GUI interaction and information processing using 

multithreading operations. 

 

6. Planogram Drawing Concepts and Method 
 

The planogram is drawn as mentioned before using double-

buffered images, and consists of several components and 

several layers for drawing where each component knows how 

to draw itself within the given boundaries and information, 

the sequence of drawing the planograms happens as the 

following: 

Copy image to 

foreground graphics 
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Figure 2: planogram drawing sequence 

 
Figure 3: Planogram drawing 

Figure 4: drawing planograms steps and method 

 

As the planogram may contain hundreds of visual elements 

all to be drawn separately, the wise choice of drawing for 

smooth visualization is the use of double buffering images, 

where we draw on the background image then copy it one 

time to the front screen image when change occurs. 

 

A. Solver working steps 

 
Figure 5: Solver working steps 

Solver mainly works by defining variables and constraints 

over these variables, these variables are located within 

connected equations same as mentioned in a previous section 

about the mathematical model. 

 

The solver running process consists of the following: 

1) Calculate minimum space required to make sure that the 

problem can be solved, which means that there is enough 

space in the shelves that can allocate the minimum 

number of faces of all products, thus search should stop 

before it begins if this criteria is not met. 

2) Creating the solver 

3) Building the model: 

a) Create and initialize variables which includes: 

 Number of product facings variables (n), which is a 

bounded variable with the minimum and maximum 

number of facings obtained from the data set. 

 Product-shelf pair variables (n): which is bounded by 0 

and the maximum number of shelves in data set. 

 Product-occupancy variables (n): which is a scaled 

version of the product facings variables, scaled by the 

facing length value (a scaled view) 

 Product-profit variables (n): which is a scaled view of 

the product facings variable with the scaling factor as 

being the profit value extracted from the data set 

(scaled view) 

 Product-profit-shelf-coeff variables (n) will be used for 

constraints purposes which is a none linear variable 

resulting from the product of product_profit and the 

shelf coefficient and finally used in the objective 

function, where the objective becomes the summation 

of the variables of this type. 

 Shelf-occupancy variables (n): how much a shelf is 

occupied, bounded by 0 and the length of the shelf. 

 Shelf_coffecient (n) : the coefficient of the shelf a 

product is lying onto. 

 Shelves Boolean variable (n X m)  (which indicate 

whether a product I is located on shelf j ), will also be 

used with constrains to impose the product_shelf rules, 

and that a product should only be located on one shelf. 

 Boolean variables (will contain a list of Boolean 

variables in the system), fattening the previous Boolean 

variables into a list. 

 Objective variable (total profit): which is the 

summation of the none linear variable created earlier of 

the product profit and the shelf coefficient. 

 

b) Constraints: 

 Constraints are modeled based on the formulas 

mentioned earlier, over the variables earlier. 

 shelf_prod_coeff_cons constraint: makes sure that 

shelfs_coeff[i] =coeffs[product_shelf[i]), where 

shelfs_coeff[i] and product_shekf[i] are variables, 

while coeffs is an int array. 

 prod_with_coeff_profit_cons constraint insures that 

product_profit_with_coeff[i] variable is the product of  

product_profit[i] and shelfs_coeff[i] variables. 

 c1 constraint insures that product_shelf[i] = j if 

shelves[i][j] is 1 

 c2 constraint insures that product_shelf[i] != j if 

shelves[i][j] is 0 
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 previous two constraints are connected via if then else 

constraint  

 prod_on_one_shelf_cons constraint insures that 

summation of shelves[i] variables is 1, meaning that 

product lies on one shelf only. 

 prod_shelf_occupany_cons constraint insures that 

prod_shelf_occupany[i] is the result of the product of 

product_occupancy[i] and shelves[i][j] variables 

 shelf_cons insures that the summation of 

prod_shelf_occupany variables array equals to 

shelf_occupancy[j], thus the occupancy of single 

products on the same shelf are equal to the shelf 

occupancy. 

 The final constraint is that the summation of 

product_profit_with_coeff variables equals to the 

objective variable. 

 Constraints are carefully chosen and the slightest error 

or logical error will result in wrong results or in failure 

of finding a result. 

c) Configuring search strategy 

 Defines the search strategy, where we define the main 

strategy as the randomization of Boolean variables 

which indicate that the shelf-product ij pair presence, 

this value will be randomized to find solutions. 

 Lexico UB attempts to randomize the occupancy 

numbers from larger numbers of the upper bound and 

then changing them to improve the solution which 

usually yields a good solution from the first attempt and 

faster search results. 

 Lexico LB attempts to use the lower bounds and increase 

the occupancy numbers up, which usually yields a slow 

search  

 We also add the stop criteria here (which is manual stop 

in our implementation if optimal is not found), we also 

define time limits for the solver to stop after some time 

of running equals to 3 times the number of products in 

seconds. 

d) Listen to solver changes 

 To provide log data to see what is happening. 

e) Solve. 

 The objective function is to Maximize the profit. 

 Uses one of three methods: 

 PLNS : Propagation based (best method and fastest) 

 RLNS: Random based 

 ELNS: Explanation based. 

 

7. Test Cases And Results 
 

In order to test the solver, input data files have been created 

to simulate possible scenarios of shelves and products. 

 

The application will have the option to load a customized 

external file other than those added to the resources and are 

part of the application.  

 

It is important to use similar files as those attached in the 

same formatting and spacing and line intend, as strengthening 

the data file parser or data input is not our main concern in 

this project, we only need to present a way to test the 

different data files over our implementation) 

Bellow you can see a simple text data file and how it is 

formatted, where the first line indicates how many shelves we 

have and how many products we need to place, with all info 

of minimum/maximum spacings allowed, profit, shelf part 

coefficients and product/shelf ids. 

 

Table 3: sample input datafile formatting 

8 8 180 

  item1 class1  1 5 4 90 2.2 

 item2 class1  2 10 4 90 3.1 

 item3 class1  3 8 4 90 2.43 

 item4 class2  4 40 3 90 3.66 

 item5 class2  5 15 3 90 3.44 

 item6 class3  6 5 6 90 2.2 

 item7 class3  7 15 3 90 4.3 

 item8 class4  8 20 4 90 2.6 

  1 1 1.8 3 

 2 1 1.8 2 

 3 1 1.56 2 

 4 2 1.56 2 

 5 2 1.35 2 

 6 2 1.35 1 

 7 3 1.3 1 

 8 3 1.3 2 

 

The above data is combined into one text file of the 

following format (first line contains three numbers, 

indicating, number of product, number of shelves, length of 

shelf, respectively) 

 

Then we read numbers of lines matching the first number, 

then number of lines matching second number, all data are 

separated by tabs or spaces (including first string of each line 

which starts with a tab or space), the parsing is straight 

forward for this file using Scanners. 

 

Bellow we will see the results for 7 samples ranging from 4 

shelves X 8 products up to 260 products to be placed over 90 

shelves, with minimum shelf length of 180cm and maximum 

of 240cm. 

 

Bellow we will display some graphics of the solutions given 

for the above 8x8 problem, where we have a main GUI to 

display all input/output data, another window to display the 

optimal plot, and a third window to display the planograms 

which show actual placement of products on shelves in a 

graphical manner. 

 

 
Figure 6: program interface 
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Program interfaces allows seeing products information in a 

table, shelf information in another, and the space allocation 

process and updated occupancy in a third table, while profit 

and other data is showed in a separate tab. 

 

The interface allows choosing one of the 7 samples, or load a 

customized one, saving planogram images, stopping the 

solver before it completes and searching strategy. 

 

 
Figure 7: Optimal Solution Convergence Plot for sample1 

 

The plot above shows the improvement of the optimal 

solution or the total profit over solution number. 

 

We continue to show the convergence plot for the 7 samples 

over a period of 6 times Number of Product using UB and 

PNLS search strategy. Below are the diagrams for 6 other 

samples 

 
Figure 8: Sample2 optimal convergence plot 

 
Figure 9: Sample3 objective function plot 

 
Figure 10: Sample4 optimal convergence plot 

 
Figure 11: Sample5 optimal convergence plot 

 

 
Figure 12: Sample6 optimal convergence plot 

 
Figure 13: Sample7 optimal convergence plot 

 

Following are the 7 planograms for the 7 sample files we 

tested. 
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Figure 14: Sample1 shelf/product allocation planogram 

(8x8) 

 

The planogram displays in a video like double buffered 

screen on a scrollable background and a canvas that can be 

saved by user for printing or other usages.  

 

 
Figure 15: planogram for sample2.txt (8 products x 4 

shelves) 

 
Figure 16: sample3 (20 Products X 8Shelves) 

 
Figure 17: sample4 (38P x 14S) 

 

 
Figure 18: sample5 (65P x 20S) after 650seconds 

 

 
Figure 19: sample6 (139px50s) after 834seconds 
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For the previous samples (1,2,3,4) a stop criteria of 3 times 

the number of products in seconds has been imposed, which 

is practical for such sample size. However for larger samples 

we make it 6 times to find better solutions.  

 

 
Figure 20: profit increase with the sample size increase 

considering stop criteria of 6xN. Products for all samples 

 

On the other hand, we have tested some samples using the 

Upper bound search strategy and lower bound, and found 

that for our example: Upper bound is more effective for our 

application. Bellow we can see how LB investigates large 

number of solutions but still results with far lower profit 

result than UB using the same time window (444solutions vs 

59 solutions) ($4002 vs $4853.8), as it explores the iterations 

randomly. LB starts by considering the minimum number of 

faces as the basis to search for valid solutions and starts 

incrementing the faces count gradually to fill the space and 

not exceed the shelf space. UB however starts by picking 

larger number of faces immediately. 

 
Figure 21: sample6 using LB and PLNS over 834s 

 
Figure 22:sample6 using LB and PLNS over 834s 

 
Figure 23:sample6 using LB and PLNS over 834s 

 

Bellow are the UB results comparison for the same sample 

data file. 

 
Figure 24:sample6 using UB and PLNS over 834s 

 

 
Figure 25:sample6 using UB and PLNS over 834s 

 

 
Figure 26:sample6 using UB and PLNS over 834s 
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8. Result Analysis Conclusion 
 

We have presented a study for Shelf Space Allocation 

Problem, suggested a simple model to solve the problem in 

general, and proved that it can be solved efficiently using 

Largest Neighborhood Search Based methods. 

 

The implementation presented a detailed GUI with a real 

time planogram frames to watch how the shelves are being 

sorted out and searched for better or optimal solution within 

the criteria’s given. 

 

The solver was able to iterate through hundreds of different 

solutions and improve the profit with each new solution tell 

the best solution was found based on time criteria dependent 

on the sample size. 

 

The allocation utilized the maximum space allowed and 

places products where they yield the best profit and this can 

help stores and warehouses to use their spaces the best way 

possible to improve their profits or reduce expenses.  

 

Upper Bound search strategy also finds a better solution 

much faster than Lower Bound strategy, and Propagation 

based solutions are also faster than Random based solutions. 

 

9. Future Improvements 
 

Our plan is to introduce family concepts into the algorithm 

and see how we can maintain proper aggregations according 

to predefined clustering rules. 

 

We will also work on extending the problem to introduce 

topped up items and depth items as well to allow a more 

generalized algorithm that can be more flexible with the real 

world retail and warehouse item allocation. 
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