
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Shelf Space Allocation Problem Using LNS Solver

Dina Hamad Alghurair
1
,

Hedaya Ghanim Alshammar

2

1, 2Higher Institute of Telecommunication and Navigation, HITN, PAAET, Ardia Block4, Street 602, Kuwait

Abstract: Shelf Space Allocation Problem is the problem of finding a good or an optimal solution for arranging objects on shelves in

a store/warehouse to maximize profit. The SSAP yet remains a topic under research and has recently only been applied on a

commercial level by large warehouses and the generalization of the problem to meet different requirements is still under investigation

by the researchers. The problem considers different shelves with different priorities based on customer experience studies or based on

certain criteria defined by the warehouse manager, while products have different dimensions and different profit margin. The current

study is an item independent, thus it applies to supermarkets, parts warehouses, or any other space allocation problems with similar

distribution criteria. Our study will focus on a simplified version of space allocation problem where we will ignore depth and stacking of

same product on shelves, and not consider any clustering or aggregations beyond the fact that all items of same type are allocated

within the same shelf next to each other. Our implementation will utilize an LNS solver, and present a planogram in motion, showing

the arrangement of products on shelves in a video like sequence to watch the solution improvement and establish a basis for future

improvements and generalization of the problem

Keywords: Shelf Space Allocation Problem, SSAP, LNS, Large Neighborhood Search, PLNS, RLNS, ELNS, Planograms

1. Introduction

Shelf Space Allocation Problem is the problem of solving the

allocation of items on shelves, whether this problem is

directed towards warehouses, supermarkets, or any storage

and allocation service on the market.

The problem on its own has been introduced in the literature

by several researchers and is still under investigation and

have space for improvements, this stems from the fact that a

good allocation can increase the profit of an organization, not

to mention the it can optimally utilize the space at hand given

a predefined criteria set.

This problem can be described in a complicated context, with

many demands and aggregations, and several rules, it can

also be simplified and the solution is generalized for a more

complicated rules.

Our solution will solve this problem and present planograms

in motion to show the change of the objective value and the

improvements while still satisfying the criteria of fitting all

the objects within the minimum and maximum limits.

The solution at hand can be generalized for more

complicated scenarios where similar products can be stacked

on top of each other, and have a certain depth count in each

allocation.

The problem is a large-scale optimization NP Hard problem,

the solution here will present different approaches in the

implementation for the same algorithm using LNS Largest

Neighborhood Heuristics Search that shows how some

approaches are faster than others, and all yield an improved

arrangement from scratch given the products / shelves /

priorities data set.

2. Literature Review

The shelf space allocation problem have been studied in the

literature before in different ways and with different factors,

several approaches have been introduced with different

algorithms, mostly focusing on large retail stores [1]

,[2],[3],[4]. The topic is considered a commercial topic as

companies are increasingly trying to improve their services

and stay ahead in the competitive market.

Customer experience analysis has been applied in large retail

companies such as Walmart to stay ahead in their

competition, utilizing best allocations to maximize their

profits.

Many factors affect total profit of a store, as mentioned in

[1],[5],[6],[4], for instance the products that are most seen

are the ones that are most bought by customers, also the

products should always be available and the stock should

always be replenished.

In [7] Anderson and his colleagues, investigated the customer

preferences for specific brands for the optimal item

allocation of shelves.

In [8] Dreze et al. suggested that the numbers of facings on a

shelf after a certain limit has no importance and will no

longer affect increasing the demand, according to customer

experiences and investigations, so even if there is still more

space available having more items of the same brand no

longer affects the customer purchase process.

In [9] Yang proposed a simplified model to solve the

problem depending on the profitability of the products. Most

of the research of large warehouse focused on more

complicated variables than those available of needed by

small warehouses, such as products grouping and

complicated customer behaviors, advertising and other

factors, while the concept for small warehouses or none

customer oriented warehouses doesn’t include these factors.

Our work here mostly follows Yang simplified model [9] to

establish a basis for a more generalized research on the topic

at hand.

Paper ID: ART20175451 DOI: 10.21275/ART20175451 987

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Large Neighborhood Search To Solve SSAP

Heuristics based on large neighbourhood search have been

recently tested and showed great results in solving NP hard

problems and various large-scale optimization problems such

as transportation and scheduling problems, including vehicle

routing problems, and the Travelling Sales Man Problem.

Large neighbourhood search methods explore a complex

neighbourhood by use of heuristics. Using large

neighbourhoods makes it possible to find better candidate

solutions with each iteration thus traversing a more promising

search path reducing the solution space that the problem is

looking in; tell we find an optimal solution or stop by using

specific criteria like time and return the resulting solution.

Figure 1: LNS Solution space down to the optimal solution

In the LNS the neighbourhood is defined implicitly by a

destroy and a repair method (try-error-destroy-repair-try…) .

A destroy method destructs part of the current solution

whereas a repair method rebuilds the destroyed Solution.

The destroy method typically contains an element of

stochasticity such that different parts of the solution are

destroyed in every invocation of the method. The

neighbourhood N(x) of a solution x is then defined as the set

of solutions that can be reached by first applying the destroy

method and then the repair method.

LNS heuristic typically alternates between an infeasible

solution and a feasible solution: the destroy operation creates

an infeasible solution, which is brought back into feasible

form by the repair heuristic. Alternately the destroy and

repair operations can be viewed as fix/optimize operations:

the fix method (corresponding to the destroy method) fixes

part of the solution at its current value while the rest remains

free, the optimize method (corresponding to the repair

method) attempts to improve the current solution while

respecting the fixed values. Such an interpretation of the

heuristic may be more natural if the repair method is

implemented using MIP Mixed Integer Problem or constraint

programming solvers.

In our SSAP for instance we fix the current the product

allocation on one shelf while the remaining values are

randomly generated in search for a better solution, same

applied for other variables.

Local search techniques are very effective to solve hard

optimization problems. Most of them are, by nature,

incomplete. In the context of constraint programming for

optimization problems, the basic idea is to iteratively relax a

part of the problem, then to use constraint programming to

evaluate and bound the new solution by using fix and

optimize principle mentioned earlier.

LNS is a two-phase algorithm, which partially relaxes a given

solution and repairs it. Given a solution as input, the

relaxation phase builds a partial solution (or neighbourhood)

by choosing a set of variables to reset to their initial domain;

The remaining ones are assigned to their value in the

solution. Even though there are various ways to repair the

partial solution, the focus is on the technique in which

Constraint Programming is used to bound the objective

variable and to assign a value to variables not yet

instantiated. These two phases are repeated until the search

stops (optimality proven, time limit reached or any other

criteria defined by the developer, in our case we choose a

time criteria of 3 times number of analysed products).

All LNS methods are problem dependent, so several

approaches have been proposed by researchers to generalize

the LNS and make it problem independent, thus, the

following methods have been proposed by researchers:

Propagation and explanation based methods.

A simplified general algorithm for the LNS method can be

viewed as:

Table 1: LNS Search method (Found in [10])

Algorithm :Large Neighbourhood Search

Requirement: an initial solution S

procedure LNS

while Optimal solution not found and a stop criterion is

not encountered do

relax(S)

S’= findSolution() . The current partial solution is then

repaired in order to improve

the current solution

if S’ != NULL then . An improving solution has been

found

S = S’

end if

end while

end procedure

3.1 PLNS

One drawback of LNS is that the relaxation process is quite

often problem dependent. Some works have been dedicated

to the selection of variables to relax through general concept

not related to the class of the problem treated. However, in

conjunction with CP (Constraint Programming), one generic

approach, namely Propagation-Guided LNS, has been shown

to be very competitive with dedicated ones. It must, in a way,

Paper ID: ART20175451 DOI: 10.21275/ART20175451 988

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

automatically detect the problem structure in order to be

efficient.

In [10] the authors define two neighbourhood selection

methods relying on information coming from constraint

propagation. The first method defines the set of variables to

freeze by incrementally building a partial assignment, starting

from an empty scope. The underlying idea is that of freezing

related variables. The volume of domain reduced, it helps to

link variables together inside or outside partial solutions.

The algorithm uses the current size of the domains of the

decision variables to control the size of the neighbourhood,

and then when a variable is frozen, propagation occurs, by

tracing the volume of the domain reduction. We can detect

which variables are linked to the frozen variable; this

information will be utilized to choose the next variable to

freeze, so the algorithm becomes:

Table 2: PLNS guided search method (algorithm source

[10])

Propagation Guided LNS method.

While fragment size is greater than desired size

If variable list is empty then

Choose unbound variable randomly

Else

Choose variable in variable list

End if

Freeze variable and propagate

Update variable list

End while

3.2 RLNS

The LNSFactory provides pre-defined configurations. Here is

the way to declare LNS to solve a problem:

LNS Factory.rlns (solver, ivars, 30, 20140909L, new Fail

Counter(solver, 100)); solver. Find Optimal Solution

(ResolutionPolicy. MINIMIZE, objective); It declares a

Random LNS which, computes a partial solution based on

ivars. If no solution are found within 100 fails (Fail Counter

(solver, 100)), a restart is forced. Then, every 30 calls to this

neighbourhood, the number of fixed variables is randomly

picked. 20140909L is the seed for the java.util.Random. it

uses a Random selection scheme of the variables thus it is the

slowest method out of the three mentioned here. While the

PLNS gives an outstanding performance with optimal or near

optimal results.

3.3 ELNS

An explanation is a subset of constraints and decisions which

justifies a solver event such as a domain modification or a

conflict they are used in various paradigms for improving

search. It can be seen as an explicit trace of the propagation

mechanism making it possible to identify a set of constraints

and decisions (variable assignments, cuts) responsible for the

current state of the domain of a Variable.

One is based on an explanation of the inability to repair a

solution; the other is based on an explanation of the non-

optimal nature of the current solution. An explanation

records some sufficient information to justify an inference

made by the solver (domain reduction, contradiction, etc.). It

is made of a subset of the original propagators of the problem

and a subset of decisions applied during search. Explanations

represent the logical chain of inferences made by the solver

during propagation in an efficient and usable manner.[11]

In a way, they provide some kind of a trace of the behaviour

of the solver as any operation needs to be explained.

Explanations have been successfully used for improving

constraint programming search process. Both complete and

incomplete techniques have been proposed.

Those techniques follow a similar pattern: learning from

failures by recording each domain modification with its

associated explanation (provided by the solver) and taking

advantage of the information gathered to be able to react

upon failure by directly pointing to relevant decisions to be

undone. Complete techniques follow a most-recent based

pattern while incomplete technique design heuristics to be

used to focus on decisions more prone to allow a fast

recovery upon failure.

Explanations are computed in a bottom-up way, from the

conflict to the first event generated, keeping only relevant

events to compute the explanation of the conflict.

4. Implemented Problem Formulation

The implemented problem has been simplified to include the

following variables and constraints

n : number of products to allocate

m : number of shelves

ai : length of facing of product i

Tj : length of shelf j

Li : minimum number of facings required for product i

Ui : maximum number of facings required for product i

xij : number of facings of product i on part k of shelf j

yij = 1 if facings of product i are assigned to shelf j, 0

otherwise

Pi : profit per unit of product i

Cj : priority coefficient of shelf j

Pij = PiCj : profitability of product i if placed on shelf j

i = 1.. n, j = 1 .. m

Objective Function: Maximization of total profit given by :

(1) Which means that the summations of all profits per unit

product multiplied by the number of facings for a product for

all products in the system allocated on all shelves in the

system, the maximization of this value is the maximization of

the total profit.

Subject to the following constraints:

Paper ID: ART20175451 DOI: 10.21275/ART20175451 989

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(2) Which says that the summation of the length of all facings

of product i allocated on a shelf j is less than the length of the

shelf for all shelves in the system.

(3) This constraint states that a product can lie only on one

shelf, thus this Boolean variable is either 1 or 0, it will be 1 if

facing I lies on shelf j otherwise it will be 0, thus summation

of all these variables will be 1 will make the product shelf

positioning condition hold, so for this variable there will be

nXm different variables, the summation of all variables in the

same column is 1.

(4) The lower bound and upper bound of the number of

facings of a given product, is defined by input, all product

facing variables are limited by minimum number of facings

condition and maximum number of facings condition defined

by the input data.

(5) is a bound for the entire system which means that the

input sample actually meets the minimum space

requirements, that means, that before going into attempting to

solve the problem we need to verify that there is enough

space in the shelves to hold the summation of the minimum

bounds of the number of facings multiplied by the length of

facings in a shelf for all products and all shelves. For the

purpose of implementation and considering that a product is

only located on one shelf, the objective can be rewritten as

the following

where yij will denote the location of product xi.

The Y here will become a 2D array of 0s and 1s, which will

become variable array along with xi, thus the problem in (6)

is not completely linear, however in our implementation, the

Choco Solver, can still handle this type of product of the two

variables.

The LNS solver will iterate the Binary array as well as

scanning the range of the X array between the lower bound

and the upper bound to improve the final solution, depending

on which approach is applied (RLNS, ELNS, PLNS).

Other solvers cant work the product of two variables (which

makes the problem not truly linear), however; in our case, the

none linearity is considered as simple as: Product of a Binary

Variable with a Bounded variable (and generalizing it for all

the variables at hand). Delinearization of the problem using

constraint-programming methods can be done as the

following[13]:

Considering:

 (7)

 (8)

 (9)

 (10)

 (11)

The delinearization can be described using 7 constraints as

the following.

 (12)

 (13)

 (14)

 (15)

 (16)

 (17)

 (18)

Delinearization is only needed for solvers that cant handle

the product of two variables.

In the implementation, extra variables have been created for

the problem to allow the previous formulation to be adapted

to the Choco solver and to create a successful solution.

5. Solver Choice
Implementation is mainly distributed into three main

sections:

1) Modeling the problem, solving, and solution iteration

2) Planogram drawing and motion, double buffered drawing

mechanism

3) GUI interaction and information processing using

multithreading operations.

6. Planogram Drawing Concepts and Method

The planogram is drawn as mentioned before using double-

buffered images, and consists of several components and

several layers for drawing where each component knows how

to draw itself within the given boundaries and information,

the sequence of drawing the planograms happens as the

following:

Copy image to

foreground graphics

Paper ID: ART20175451 DOI: 10.21275/ART20175451 990

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: planogram drawing sequence

Figure 3: Planogram drawing

Figure 4: drawing planograms steps and method

As the planogram may contain hundreds of visual elements

all to be drawn separately, the wise choice of drawing for

smooth visualization is the use of double buffering images,

where we draw on the background image then copy it one

time to the front screen image when change occurs.

A. Solver working steps

Figure 5: Solver working steps

Solver mainly works by defining variables and constraints

over these variables, these variables are located within

connected equations same as mentioned in a previous section

about the mathematical model.

The solver running process consists of the following:

1) Calculate minimum space required to make sure that the

problem can be solved, which means that there is enough

space in the shelves that can allocate the minimum

number of faces of all products, thus search should stop

before it begins if this criteria is not met.

2) Creating the solver

3) Building the model:

a) Create and initialize variables which includes:

 Number of product facings variables (n), which is a

bounded variable with the minimum and maximum

number of facings obtained from the data set.

 Product-shelf pair variables (n): which is bounded by 0

and the maximum number of shelves in data set.

 Product-occupancy variables (n): which is a scaled

version of the product facings variables, scaled by the

facing length value (a scaled view)

 Product-profit variables (n): which is a scaled view of

the product facings variable with the scaling factor as

being the profit value extracted from the data set

(scaled view)

 Product-profit-shelf-coeff variables (n) will be used for

constraints purposes which is a none linear variable

resulting from the product of product_profit and the

shelf coefficient and finally used in the objective

function, where the objective becomes the summation

of the variables of this type.

 Shelf-occupancy variables (n): how much a shelf is

occupied, bounded by 0 and the length of the shelf.

 Shelf_coffecient (n) : the coefficient of the shelf a

product is lying onto.

 Shelves Boolean variable (n X m) (which indicate

whether a product I is located on shelf j), will also be

used with constrains to impose the product_shelf rules,

and that a product should only be located on one shelf.

 Boolean variables (will contain a list of Boolean

variables in the system), fattening the previous Boolean

variables into a list.

 Objective variable (total profit): which is the

summation of the none linear variable created earlier of

the product profit and the shelf coefficient.

b) Constraints:

 Constraints are modeled based on the formulas

mentioned earlier, over the variables earlier.

 shelf_prod_coeff_cons constraint: makes sure that

shelfs_coeff[i] =coeffs[product_shelf[i]), where

shelfs_coeff[i] and product_shekf[i] are variables,

while coeffs is an int array.

 prod_with_coeff_profit_cons constraint insures that

product_profit_with_coeff[i] variable is the product of

product_profit[i] and shelfs_coeff[i] variables.

 c1 constraint insures that product_shelf[i] = j if

shelves[i][j] is 1

 c2 constraint insures that product_shelf[i] != j if

shelves[i][j] is 0

Paper ID: ART20175451 DOI: 10.21275/ART20175451 991

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 previous two constraints are connected via if then else

constraint

 prod_on_one_shelf_cons constraint insures that

summation of shelves[i] variables is 1, meaning that

product lies on one shelf only.

 prod_shelf_occupany_cons constraint insures that

prod_shelf_occupany[i] is the result of the product of

product_occupancy[i] and shelves[i][j] variables

 shelf_cons insures that the summation of

prod_shelf_occupany variables array equals to

shelf_occupancy[j], thus the occupancy of single

products on the same shelf are equal to the shelf

occupancy.

 The final constraint is that the summation of

product_profit_with_coeff variables equals to the

objective variable.

 Constraints are carefully chosen and the slightest error

or logical error will result in wrong results or in failure

of finding a result.

c) Configuring search strategy

 Defines the search strategy, where we define the main

strategy as the randomization of Boolean variables

which indicate that the shelf-product ij pair presence,

this value will be randomized to find solutions.

 Lexico UB attempts to randomize the occupancy

numbers from larger numbers of the upper bound and

then changing them to improve the solution which

usually yields a good solution from the first attempt and

faster search results.

 Lexico LB attempts to use the lower bounds and increase

the occupancy numbers up, which usually yields a slow

search

 We also add the stop criteria here (which is manual stop

in our implementation if optimal is not found), we also

define time limits for the solver to stop after some time

of running equals to 3 times the number of products in

seconds.

d) Listen to solver changes

 To provide log data to see what is happening.

e) Solve.

 The objective function is to Maximize the profit.

 Uses one of three methods:

 PLNS : Propagation based (best method and fastest)

 RLNS: Random based

 ELNS: Explanation based.

7. Test Cases And Results

In order to test the solver, input data files have been created

to simulate possible scenarios of shelves and products.

The application will have the option to load a customized

external file other than those added to the resources and are

part of the application.

It is important to use similar files as those attached in the

same formatting and spacing and line intend, as strengthening

the data file parser or data input is not our main concern in

this project, we only need to present a way to test the

different data files over our implementation)

Bellow you can see a simple text data file and how it is

formatted, where the first line indicates how many shelves we

have and how many products we need to place, with all info

of minimum/maximum spacings allowed, profit, shelf part

coefficients and product/shelf ids.

Table 3: sample input datafile formatting

8 8 180

 item1 class1 1 5 4 90 2.2

 item2 class1 2 10 4 90 3.1

 item3 class1 3 8 4 90 2.43

 item4 class2 4 40 3 90 3.66

 item5 class2 5 15 3 90 3.44

 item6 class3 6 5 6 90 2.2

 item7 class3 7 15 3 90 4.3

 item8 class4 8 20 4 90 2.6

 1 1 1.8 3

 2 1 1.8 2

 3 1 1.56 2

 4 2 1.56 2

 5 2 1.35 2

 6 2 1.35 1

 7 3 1.3 1

 8 3 1.3 2

The above data is combined into one text file of the

following format (first line contains three numbers,

indicating, number of product, number of shelves, length of

shelf, respectively)

Then we read numbers of lines matching the first number,

then number of lines matching second number, all data are

separated by tabs or spaces (including first string of each line

which starts with a tab or space), the parsing is straight

forward for this file using Scanners.

Bellow we will see the results for 7 samples ranging from 4

shelves X 8 products up to 260 products to be placed over 90

shelves, with minimum shelf length of 180cm and maximum

of 240cm.

Bellow we will display some graphics of the solutions given

for the above 8x8 problem, where we have a main GUI to

display all input/output data, another window to display the

optimal plot, and a third window to display the planograms

which show actual placement of products on shelves in a

graphical manner.

Figure 6: program interface

Paper ID: ART20175451 DOI: 10.21275/ART20175451 992

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Program interfaces allows seeing products information in a

table, shelf information in another, and the space allocation

process and updated occupancy in a third table, while profit

and other data is showed in a separate tab.

The interface allows choosing one of the 7 samples, or load a

customized one, saving planogram images, stopping the

solver before it completes and searching strategy.

Figure 7: Optimal Solution Convergence Plot for sample1

The plot above shows the improvement of the optimal

solution or the total profit over solution number.

We continue to show the convergence plot for the 7 samples

over a period of 6 times Number of Product using UB and

PNLS search strategy. Below are the diagrams for 6 other

samples

Figure 8: Sample2 optimal convergence plot

Figure 9: Sample3 objective function plot

Figure 10: Sample4 optimal convergence plot

Figure 11: Sample5 optimal convergence plot

Figure 12: Sample6 optimal convergence plot

Figure 13: Sample7 optimal convergence plot

Following are the 7 planograms for the 7 sample files we

tested.

Paper ID: ART20175451 DOI: 10.21275/ART20175451 993

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 14: Sample1 shelf/product allocation planogram

(8x8)

The planogram displays in a video like double buffered

screen on a scrollable background and a canvas that can be

saved by user for printing or other usages.

Figure 15: planogram for sample2.txt (8 products x 4

shelves)

Figure 16: sample3 (20 Products X 8Shelves)

Figure 17: sample4 (38P x 14S)

Figure 18: sample5 (65P x 20S) after 650seconds

Figure 19: sample6 (139px50s) after 834seconds

Paper ID: ART20175451 DOI: 10.21275/ART20175451 994

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

For the previous samples (1,2,3,4) a stop criteria of 3 times

the number of products in seconds has been imposed, which

is practical for such sample size. However for larger samples

we make it 6 times to find better solutions.

Figure 20: profit increase with the sample size increase

considering stop criteria of 6xN. Products for all samples

On the other hand, we have tested some samples using the

Upper bound search strategy and lower bound, and found

that for our example: Upper bound is more effective for our

application. Bellow we can see how LB investigates large

number of solutions but still results with far lower profit

result than UB using the same time window (444solutions vs

59 solutions) ($4002 vs $4853.8), as it explores the iterations

randomly. LB starts by considering the minimum number of

faces as the basis to search for valid solutions and starts

incrementing the faces count gradually to fill the space and

not exceed the shelf space. UB however starts by picking

larger number of faces immediately.

Figure 21: sample6 using LB and PLNS over 834s

Figure 22:sample6 using LB and PLNS over 834s

Figure 23:sample6 using LB and PLNS over 834s

Bellow are the UB results comparison for the same sample

data file.

Figure 24:sample6 using UB and PLNS over 834s

Figure 25:sample6 using UB and PLNS over 834s

Figure 26:sample6 using UB and PLNS over 834s

Paper ID: ART20175451 DOI: 10.21275/ART20175451 995

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

8. Result Analysis Conclusion

We have presented a study for Shelf Space Allocation

Problem, suggested a simple model to solve the problem in

general, and proved that it can be solved efficiently using

Largest Neighborhood Search Based methods.

The implementation presented a detailed GUI with a real

time planogram frames to watch how the shelves are being

sorted out and searched for better or optimal solution within

the criteria’s given.

The solver was able to iterate through hundreds of different

solutions and improve the profit with each new solution tell

the best solution was found based on time criteria dependent

on the sample size.

The allocation utilized the maximum space allowed and

places products where they yield the best profit and this can

help stores and warehouses to use their spaces the best way

possible to improve their profits or reduce expenses.

Upper Bound search strategy also finds a better solution

much faster than Lower Bound strategy, and Propagation

based solutions are also faster than Random based solutions.

9. Future Improvements

Our plan is to introduce family concepts into the algorithm

and see how we can maintain proper aggregations according

to predefined clustering rules.

We will also work on extending the problem to introduce

topped up items and depth items as well to allow a more

generalized algorithm that can be more flexible with the real

world retail and warehouse item allocation.

10. Acknowledgment

This paper was created based upon a personal research on

Shelf Space Allocation Problem algorithms, in Higher

Institute for Communication and Training, PAAET

References

[1] P. Hansen and H. Heinsbroek. Product selection and

space allocation in supermarkets. European journal of

operational research, 3(6):474-484, 1979.

[2] A. Lim, B. Rodrigues, and X. Zhang. Metaheuristics

with local search techniques for retail shelf-space

optimization. Management science, 50(1):117-131,

2005.

[3] M. Yang and W. Chen. A study on shelf space allocation

and management. International journal of production

economics, 60-61:309{317, 1999.

[4] F. Zufryden. A dynamic programming approach for

production selection and supermarket shelf-space

allocation. Journal of the operational research society,

[5] F. Buttle. Retail space allocation. International Journal

of Physics Distribution and Material Management,

14(4):3-23, 1984.

[6] J. Cairns. Allocate space for maximum pro_ts. Journal of

Retailing, 39(2):41{55, 1963. 37(4):413-422, 1986.

[7] E. Anderson and H. Amato. A mathematical model for

simultaneously determining the optimal brand collection

and display area allocation. Operations

[8] X. Dreze, S. Hoch, and M. Purk. Shelf management and

space elasticity. Journal of Retailing, 70(4):301-326,

1994. Research, 22(1):13{21, 1974.

[9] M. Yang. An e_cient algorithm to allocate shelf space.

European journal of operational research, 131:107-118,

2001.

[10] Laurent Perron, Paul Shaw, and Vincent Furnon.

Propagation guided large neighbourhood search. In

Mark Wallace, editor, Principles and Practice of

Constraint Programming - CP 2004, volume 3258 of

Lecture Notes in Computer Science, pages 468{481.

Springer, 2004. (also found in google books

https://books.google.com/books?isbn=3540302018)

[11] Explanation-Based Large Neighborhood Search, Charles

Prud'homme, Xavier Lorca Narendra Jussien, 2013

[12] Principles and Practice of Constraint Programming - CP

2004: 10th International Conference, 2004

[13] Coelho, L. (2013, January 7). Linearization of the

product of two variables. Retrieved February 25, 2017,

from http://www.leandro-coelho.com/linearization-

product-variables/

[14] Pisinger, D., & Røpke, S. (2010). Large Neighborhood

Search. In M. Gendreau (Ed.), Handbook of

Metaheuristics (2 ed., pp. 399-420). Springer. From

http://orbit.dtu.dk/files/5293785/Pisinger.pdf

Author Profile

Dina Hamad Alghurair and Hedaya Ghanim Alshammar Both

are Specialist Trainers in Higher Institute for Communication and

Training, PAAET, Kuwait, having Masters of Science in Computer

Engineering and Information Systems, Gulf University, Bahrain,

both working together in education and research.

Paper ID: ART20175451 DOI: 10.21275/ART20175451 996

https://books.google.com/books?isbn=3540302018
http://www.leandro-coelho.com/linearization-product-variables/
http://www.leandro-coelho.com/linearization-product-variables/
http://orbit.dtu.dk/files/5293785/Pisinger.pdf

