
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 7, July 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

A Study of Different Type of H-Curvature Tensors 

in Sasakian Manifold 
 

T.S. Chauhan 
 

Associate Professor, Department of Maths, Bareilly College, Bareilly(U.P.), India 

 

 

Abstract: Purpose of the present paper is to study of different H-Curvature tensors in Sasakian manifold. In section 1 is devoted for 

introduction. Section 2 deals to the study of H-Projective curvature tensor, H-Conformal curvature tensor, H-Conharmonic curvature 

tensor, H-Concircular tensor in Sasakian manifold. 
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1. Introduction  
 

An n-dimensional Sasakian manifold M
n
 is an odd 

dimensional Riemannian space, which admits a unit killing 

vector field η
λ 
satisfying: 

(1.1) ηk,i,j = ηjgik - ηkgij 

 

Wherein a comma (,) followed by index denotes the 

operation of covariant differentiation with regard to the 

fundamental tensor gij of the Riemannian space. 

(1.2) R
h
ijk = ∂i{j

h
k}- ∂j{i

h
k} + {i

h
l}{j

l
k} - {j

h
l}{i

l
k} 

 

Whereas the Ricci tensor and the scalar curvature are 

respectively given by 

(1.3) Rjk = R
i
ijk, 

(1.4) R = Rjkg
jk

 

and 

(1.5) ∂i = (∂/∂x
i
) 

 

A tensor Sij is defined as 

(1.6) Sij
 
= - F

a
i Raj 

then we have 

(1.7) Sij = - Sji 

and 

(1.8) F
a
i Saj

 
= - Sia

 
F

a
j. 

 

2. H-Curvature Tensor 
 

H-Projective curvature tensor in the Sasakian manifold is 

defined as [5]: 

(2.1) P
h
ijk = R

h
ijk + {1/(n+2)}(Rik

 
δ

h
j - Rjk

 
δ

h
i + Sik F

h
j       

- Sjk
 
F

h
i + 2Sij

 
F

h
k). 

 

Definition 2.1: 
 

A Sasakian manifold is called H-Projective Recurrent if it 

satisfies the following condition 

(2.2) ▼l
 
P

h
ijk = λl

 
P

h
ijk. 

Wherein λl
 
is H-Projective recurrent vector. 

 

Definition 2.2: 
 

A Sasakian manifold is said to be H-Projective symmetric if 

it satisfies the following condition 

(2.3) ▼l P
h
ijk = 0. 

 

Definition 2.3: 
 

A Sasakian manifold is termed as H-Projectively flat if 

(2.4) P
h
ijk = 0. 

In  this  regard,  we  have  the  following  theorem: 

 

Theorem 2.1: 
 

If Sasakian manifold is H-projectively flat then the Ricci 

tensor holds the relation Rij = -{2/(n+2)}(Sin F
n

j          + F 

Sij). 

 

Proof: 

 

Transvecting equation (2.1) by ghm, we get 

(2.5) Pijkm = Rijkm + {1/(n+2)}(gjmRik - gimRjk + SikFjm - 

SjkFim + 2SijFkm). 

 

Transvecting equation (2.5) with g
km

 and using equation 

(1.8), we get 

(2.6) Pij = Rij + {2/(n+2)}(Sin F
n
j + F Sij). 

 

If a Sasakian manifold is H-projectively flat then equation 

(2.6) becomes reduced in the form 

(2.7) Rij = -{2/(n+2)}(Sin F
n
j + F Sij). 

 H-Concircular tensor is given by 

(2.8) C
h
ijk = R

h
ijk

 
+ {R/n(n+2)}(gik δ

h
j - gjk δ

h
i + Sik

 
F

h
j - 

Sjk F
h

i + 2Fij
 
F

h
k). 

 

Definition 2.4: 
 

A Sasakian manifold is called Sasakian manifold with 

recurrent H-Concircular curvature tensor, if it satisfies 

(2.9) ▼l
 
C

h
ijk = λl

 
C

h
ijk 

for some non-zero recurrence vector λl. 

 

Definition 2.5: 
 

A Sasakian manifold is said to be H-Concircular symmetric 

if it satisfies the following condition 

(2.10) ▼l C
h
ijk = 0. 

 

Definition 2.6: 
 

A Sasakian manifold is termed as H-Concircular flat if 

(2.11) C
h
ijk = 0. 

H-Conharmonic curvature tensor is given by 
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(2.12) T
h

ijk = R
h
ijk + {1/(n+4)}(Rik δ

h
j - Rjk δ

h
i + gik

 
R

h
j - gjk 

R
h

i + Sik
 
F

h
j - Sjk F

h
i + Fik

 
S

h
j - Fjk S

h
i + 2Sij

 
F

h
k + 2Fij S

h
k) 

 

Definition 2.7: 
 

A Sasakian space satisfying the following condition 

(2.13) ▼l
 
T

h
ijk = λl

 
T

h
ijk 

for some non-zero recurrence vector λl, will be called a 

Sasakian manifold with recurrent H-Conharmonic curvature 

tensor. 

 

Definition 2.8: 
 

A Sasakian manifold is said to be H-Conharmonic 

symmetric if it satisfies the following condition 

(2.14) ▼l T
h
ijk = 0. 

 

Definition 2.9: 
A Sasakian manifold is termed as H-Conharmonic flat if 

(2.15) T
h

ijk = 0. 

 

H-Conformal curvature tensor in the Sasakian manifold is 

given by 

(2.16) B
h
ijk = R

h
ijk + {1/(n+4)}( Rik δ

h
j - Rjk δ

h
i + gik

 
R

h
j       

- gjk R
h
i + Sik

 
F

h
j - Sjk F

h
i + Fik

 
S

h
j - Fjk S

h
i + 2Sij

 
F

h
k + 2Fij S

h
k) 

- {R/(n+2)(n+4)}(gik δ
h

j - gjk δ
h

i + Fik F
h
j - Fjk F

h
i + 2Fij F

h
k). 

 

Definition 2.10: 
 

A Sasakian space satisfying the relation 

(2.17) ▼l
 
B

h
ijk = λl

 
B

h
ijk 

is termed as Sasakian space with recurrent H-Conformal 

curvature tensor. 

 

Definition 2.11: 

 

A Sasakian manifold is said to be H-Conformal symmetric 

if it satisfies the following condition 

(2.18) ▼l B
h
ijk = 0. 

 

Definition 2.12: 
 

A Sasakian manifold is termed as H-Conformal flat if 

(2.19) B
h
ijk = 0. 

 

From equations (2.12) and (2.16), we get 

(2.20) B
h
ijk = T

h
ijk - {R/(n+2)(n+4)}(gik δ

h
j - gjk δ

h
i + Fik F

h
j 

- Fjk F
h

i + 2Fij F
h

k). 

 

By virtue of equations (2.8) and (2.20), we obtain 

(2.21) B
h
ijk = T

h
ijk + {n/(n+4)}( R

h
ijk = C

h
ijk), 

 In  this  regard,  we  have  the  following  theorems: 

 

Theorem 2.2: 
 

In a Sasakian manifold is H-projective curvature tensor, H-

concircular tensor and H-conharmonic curvature tensor are 

flat then H-conformal curvature tensor is also flat. 

 

Proof: 

 

By virtue of equations (2.4), (2.11), (2.15), (2.19) and 

(2.21). 

Theorem 2.3: 
 

In a Sasakian manifold is H-projective curvature tensor, H-

concircular tensor and H- conformal curvature tensor are flat 

then H-conharmonic curvature tensor is also flat. 

 

Proof: 

 

By virtue of equations (2.4), (2.11), (2.15), (2.19) and 

(2.21). 

 

Theorem 2.4: 

 

In a Sasakian manifold is H-projective curvature tensor, H-

conformal tensor and H-conharmonic curvature tensor are 

flat then H-concircular curvature tensor is also flat. 

 

Proof: 

 

By virtue of equations (2.4), (2.11), (2.15), (2.19) and 

(2.21). 

 

Theorem 2.5: 
 

In a Sasakian manifold is H-conformal curvature tensor, H-

concircular tensor and H-conharmonic curvature tensor are 

flat then H- projective curvature tensor is also flat. 

 

Proof: 

 

By virtue of equations (2.4), (2.11), (2.15), (2.19) and 

(2.21). 
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