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Abstract: Present paper is devoted to the study of stretch curvature tensor of h-isotropic non-Riemannian Finsler manifold. Section 1 

is devoted to the study of h-curvature tensor. Section 2 deals to the study of stretch curvature tensor of h-isotropic Finsler manifold. 
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1. h-Curvature Tensor: 
 

Let F
n 

be a Finsler space of n-dimension with the 

fundamental function  L(x,ẋ) and gij(x, ẋ) be the 

fundamental tensor. The angular metric tensor hij
 
is defined 

as 

(1.1) hij = gij – L
-2

 ẋiẋj 

 Wherein 

(1.2) ẋi
 
= gij

 
ẋ

j
. 

 

A Finsler manifold of scalar curvature is given as follows 

(1.3) Rij = K L
2
hij 

(1.4) Rijk = K(ẋjgik - ẋkgij) + (1/3)L
2
(hikK/j

 
- hijK/k) 

 Wherein (/) denotes (∂/∂ẋ
i
). 

 Contracting equation (1.4) by g
jk

, we obtain 

(1.5) Ri = (1/3)L
2
(h

j
iK/j

 
- h

k
iK/k). 

 We have [1]: 

(1.6) Hhijk = Rijk/h - 2Cilh R
l
jk

 
 Consequently yields 

(1.7) Hhijk = K(ghjgik - ghkgij) + Bhijk
 
- Bhikj 

 Wherein 

(1.8) Bhijk = (1/3){(L
2
K/h/j + 3K/hẋj)hik + (2ẋhhik - ẋkhhi

 
- 

ẋihhk)K/j} 

 

The relation between the h-curvature tensor Rhijk of the 

Cartan connection C and the h-curvature tensor Hhijk
 
of the 

Berwald connection B is as follows 

(1.9) Rhijk = Hhijk + ChilR
l
jk

 
– Phij,k + Phik,j - Qhijk 

 Wherein 

(1.10) Qhijk = PhljP
l
ik - PhlkP

l
ij 

 Consequently,  yields 

(1.11) Hhijk = Hihjk + 2(Rhijk + Qhijk) 

and 

(1.12) Hhijk = 2(Phij,k - Phik,j) - Hihjk - 2C
l
hiRljk 

 By virtue of equations (1.7) and (1.11), we get 

(1.13) Hhijk = Hihjk + (λjk-λkj)[hhj{Kgik
 
+ (1/3)L

2
K/i/k + K/iẋk 

+ K/kẋi 

+ KL
-2

ẋ
i
ẋ

k
}+ hik{Kghj

 
+ (1/3)L

2
K/h/j + K/hẋj + K/jẋh 

+ KL
-2

ẋ
h
ẋ

j
}] 

 

In view of equation (1.7), the equation (1.12) reduces in the 

form 

(1.14) Hhijk = (1/3)(λjk-λkj)[hik(L
2
K/h/j + 3K/hẋj + K/jẋh) + 

hkh(L
2
K/i/j  

+ 3K/iẋj + K/jẋi) + hhi(L
2
K/k/j + 3K/kẋj + K/jẋk) - Hihjk  

 

 

Contracting equation (1.9) with g
hi

, we obtain 

(1.15) Rjk = Hjk + ClR
l
jk

 
+ Pk,j – Pj,k - Qjk. 

 In this regard, we have a theorem: 

 

Theorem 1.1: 

If the h-curvature tensor Rhijk of a Finsler manifold F
n
(n>2) 

of scalar curvature and skew-symmetric tensor Qhikj
 
with 

respect to j and k are equal, then the condition Hhijk + ChilR
l
jk

 
– Phij,k + Phik,j = 0 holds good. 

 

Proof: 
Since the tensor Qhijk

 
is skew-symmetric with respect to j 

and k then equation (1.9) reduces in the form 

(1.16) Rhijk = Hhijk + ChilR
l
jk

 
– Phij,k + Phik,j + Qhikj 

 Inserting Rhijk = Qhikj
 
in the equation (1.16), we get 

(1.17) Hhijk + ChilR
l
jk

 
– Phij,k + Phik,j = 0. 

 

2. Stretch Curvature Tensor of h-Isotropic 

Finsler Manifold: 
 

The Finsler manifold F
n
 is said to be h-isotropic, if the h-

curvature tensor Rhijk holds the following condition  

(2.1) Rhijk = R(ghjgik - ghkgij), 

where R is constant.  

 

The components Phijk of hv-curvature tensor P
2
 is defined as 

(2.2) Phijk = (Cijk,h - Chjk,i) + ChjlP
l
ik - CijlP

l
hk 

 Wherein Cijk and  

(2.3) Pijk = Phijkẋ
h
  

 

are components of the (h)hv-torsion tensor C and the (v)hv-

torsion tensor P
1
 respectively and (,) denotes (∂/∂x

i
). 

 

h-isotropic non-Riemannian Finsler manifold is given as 

follows [4]: 

(2.4) Rhijk = 0 

(2.5) Chil R
l
jk = Rhijk 

(2.6) Phij,k - Phik,j = Chil R
l
jk  

 

In Cartan’s theory, the stretch curvature tensor Thijk is 

defined as 

(2.7) Thijk = 2(Phij,k – Phik,j) 

 In this regard, we have theorems: 

 

Theorem 2.1: 
In a Finsler manifold F

n
(n>2), if the hv-curvature tensor Phijk 

is symmetric with respect to first two indices then the stretch 
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curvature tensor Thijk is also symmetric with respect to first 

two indices. 

 

Proof: 

Interchanging the indices h and i in equation (2.7), we get 

(2.8) Tihjk = 2(Pihj,k - Pihk,j) 

 

If the hv-curvature tensor Phijk is symmetric with respect to 

the indices h and i then the equation (2.8) becomes 

(2.9) Tihjk = 2(Phij,k - Phik,j) 

 From equations (2.7) and (2.9), we obtain 

(2.10) Thijk = Tihjk 

 

Hence, the stretch curvature tensor Thijk is symmetric with 

respect to first two indices. 

 

Theorem 2.2: 
In the h-isotropic non-Riemannian Finsler manifold F

n
, the 

h-scalar curvature vanishes iff the stretch curvature tensor 

vanishes. 

 

Proof: 
By virtue of equations (2.1), (2.5), (2.6) and (2.7). 
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