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Abstract: Present paper is devoted to the study of stretch curvature tensor of h-isotropic non-Riemannian Finsler manifold. Section 1
is devoted to the study of h-curvature tensor. Section 2 deals to the study of stretch curvature tensor of h-isotropic Finsler manifold.
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1. h-Curvature Tensor:

Let F" be a Finsler space of n-dimension with the
fundamental function L(x,x) and gj(x, x) be the
fundamental tensor. The angular metric tensor hj; is defined
as
(L1 hy=g5— L7k

Wherein
(12) %=gz¥.

A Finsler manifold of scalar curvature is given as follows
(13) Rij =K Lzhij
(1.4)  Ri= Kk - i) + (L3)L7 (K - hyKy)
Wherein (/) denotes (9/0%).
Contracting equation (1.4) by o', we obtain
(15)  Ri= (U3)LANWK, - hKy).
We have [1]:
(1.6)  Hhij = Rijon - 2Cin R'i«
Consequently yields
(1.7)  Hhiijk = K(9niGi - 9nkij) + Bhijk - Bhikj
Wherein
(1.8) Bk = (L3Y{(L°Knmj + 3Kk + (2xnhikc = i -
XK}

The relation between the h-curvature tensor Ry of the
Cartan connection CL and the hrcurvature tensor Hy;j, of the
Berwald connection B[ is as follows
(1.9) Ruijk = Hpijic + ChiIRIjk — Phij.k + Phik,j = Qnijk

Wherein

(1.10)  Quijk = PriiP'ic - PrcP’;

Consequently, yields
(1.11)  Huij = Hinjk + 2(Ruijk + Qniji)
and
(1.12)  Huijk = 2(Phij - Prikj) - Hinjk - 2CiRijk

By virtue of equations (1.7) and (1.11), we get
(1.13)  Hyje = Hinjie + (yrhig) [ K i + (13)L2K i + Kk
+ KpXi

, h+j KL% M hidKgy + (U3)L2Komy + Kinkj + Kk
+ KLY

In view of equation (1.7), the equation (1.12) reduces in the
form
(1-142 Hiije = (1/3) e hag) [Nl L2Kom + 3Kinkj + Kik) +
hin (LK ,

+ 3KiX; + Kjki) + hni( LKy + 3Kk + Kk - Hinji

Contracting equation (1.9) with g™, we obtain

(115) Rjk = ij + C|lek + Pk,j — Pj,k - ij.
In this regard, we have a theorem:
Theorem 1.1:

If the h-curvature tensor Ry of a Finsler manifold Fn(n>2)
of scalar curvature and skew-symmetric tensor Qpi With
respect to j and k are equal, then the condition Hy;j + Chi.R'jk
— Phij,k + Phik,j =0 holds gOOd.

Proof:
Since the tensor Qi is skew-symmetric with respect to j
and k then equation (1.9) reduces in the form

(1.16)  Ruijk = Huijk + CritR'j — Priji + Phikj + Qi
Inserting Rpij = Qnij in the equation (1.16), we get
(1.17)  Hpij + CrilR'j — Phijx + Prikj = 0.

2. Stretch Curvature Tensor of h-Isotropic
Finsler Manifold:

The Finsler manifold F" is said to be h-isotropic, if the h-
curvature tensor Ry holds the following condition

(2.1)  Ruijk = R(9niGik - IniGi).

where R is constant.

The components Py, of hv-curvature tensor P? is defined as
(2.2)  Prij = (Cijn - Chiki) + CriiP'i - CiiP'hi

Wherein Cyand
(23)  Pijc= Prijx”

are components of the (h)hv-torsion tensor C and the (v)hv-
torsion tensor P* respectively and (,) denotes (8/6x").

h-isotropic non-Riemannian Finsler manifold is given as
follows [4]:

(24) Rhijk = O

(25)  Cpit Rl = Ruik

(28)  Puijx - Prikj = Chit R'i

In Cartan’s theory, the stretch curvature tensor Ty iS
defined as
(2.7)  Thi = 2(Phijk — Phik;)

In this regard, we have theorems:

Theorem 2.1:
In a Finsler manifold F"(n>2), if the hv-curvature tensor Ppj
is symmetric with respect to first two indices then the stretch
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curvature tensor Ty is also symmetric with respect to first
two indices.

Proof:
Interchanging the indices h and i in equation (2.7), we get
(2.8)  Tinjk = 2(Pinjk - Pink;)

If the hv-curvature tensor Py is symmetric with respect to
the indices h and i then the equation (2.8) becomes
(29)  Tinik = 2(Pnijk - Phik;)
From equations (2.7) and (2.9), we obtain
(2.10)  Thij = Tinjk

Hence, the stretch curvature tensor Ty is symmetric with
respect to first two indices.

Theorem 2.2:

In the h-isotropic non-Riemannian Finsler manifold F", the
h-scalar curvature vanishes iff the stretch curvature tensor
vanishes.

Proof:
By virtue of equations (2.1), (2.5), (2.6) and (2.7).
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