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Abstract: Heat diffusion particularly in buried pipes is of great interest in oil and gas industries. This research models heat transfer in 

square cross-section pipes for simplicity, under isotropic conditions. Heat transfer in the exterior domain of the pipe is investigated to 

determine temperature profile. The governing equation is then reformulated into BIE using Green’s theorem, and due to singularities, 

BEM is used to discretize the integral equations which are the solved numerically and the results illustrated graphically. 
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1. Preliminaries 
 

1.1 Notation and Terminology 

 

U-Temperature in Kelvin:𝐪-Heat flux vector:  α- Thermal 

diffusivity:  k-Thermal conductivity: kx U , ky U  and 

kz U  are temperature dependent thermal conductivities in 

the x, y and z directions respectively:  s-Surface:  N -Number 

of nodes: x, y - Cartesian co-ordinate: xp , yp  -Co-ordinates of 

point p inside the solution domain or at the boundary.Γ1-The 

inner boundary of the solution domain:Γ2-The outer 

boundary of the solution domain: Γ2-The outer boundary of 

the solution domain:Γ = Γ1UΓ2:R-Region enclosed by Γ. 

BEM  Boundary Element Method:BIE-Boundary 

Integral Equation: BVP-Boundary Value Problem: PDE-

Partial Differential Equation 

 

1.2 Introduction 

 

BEM is one of the numerical techniques designed for 

solving BVPs in partial differential equations (PDEs). 

Integral equations constitute the foundation of the BEM, and 

have been known for more than a century. In particular, it is 

known for a long time that the solutions of BVPs can also be 

expressed as solutions of an integral equation. As early as 

1903 Fredholm[4] already used discretized integral 

equations for potential problems. His work can be 

considered the basis for the indirect formulation of the 

BEM; the functions that appear in the indirect formulation 

do not have a physical meaning, though physical quantities 

can be derived from these functions. 

 

The breakthrough in the development of the BEM came in 

the nineteen sixties. Jaswon [8] and Symm [6] discretised 

the integral equations for two-dimensional potential 

problems by approximating the boundary of a domain by a 

set of straight lines. At each line element the functions are 

approximated by constants. Their method has a semi-direct 

formulation, as the functions need to be differentiated or 

integrated to obtain physical quantities. A direct formulation 

has been introduced by Rizzo [2], who also used discretised 

integral equations to relate displacements and tractions in 

two-dimensional elasticity theory. 

 

Yan and Wei[12] carried out research on the impact of soil 

and pipe thermal conductivities on performance of 

horizontal buried pipe. They made a conclusion that soil 

temperature distribution around a buried pipe presents a sine 

curve regardless of the soil and pipe thermal conductivities. 

The basic law which gives the relationship between the heat 

flow and the temperature gradient is due to the French 

mathematician Jean Baptist Joseph Fourier (1768 – 1830). 

By Fourier law the rate of heat flow through a surface is 

proportional to the negative temperature gradient across the 

surface. 

𝐪 =  − k∇U                                 1.03  

 

2. Governing Equations 
 

The starting point for our model is the Fourier's Law [3] 

which specifies that heat transfer is governed by the 

eqn 1.03 . 

 

If our system is in steady-state, then Conservation of Energy 

[3] implies that, in the absence of heat sinks or sources, the 

heat flux throughout the region must satisfy: 

∇. 𝐪 =  0                                (3.01a) 
 

In three dimensions the transient heat conduction is given 

by: 
∂

∂x
 kx U 

∂U

∂x
 +

∂

∂y
 ky U 

∂U

∂y
 +

∂

∂z
 kz U 

∂U

∂z
 

+ F x, y, z, t = ρcp

∂U

∂t
 3.01b  

In one dimension, this would imply that heat flux must be 

constant at all points; in more than one dimension, it implies 

that heat flux entering a control region must equal heat flux 

leaving the same region. Without any heat generation and 

considering 2-D heat flow in steady state, the conservation 

of energy eqn.  3.01b  reduces down to Laplace’s equation. 

 
Or 

 
Since U is frequently a potential function, this equation is 

also known as potential equation. 
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A boundary value problem which is of practical interest 

requires solving the Laplace equation (3.03) in the two 

dimensional region R bounded by a simple closed curve 

Γsubject to the boundary conditions  

U = f1 x, y  for  x, y ∈ Γ1 
∂U

∂n
= f2 x, y  for  x, y ∈ Γ2                (3.04) 

wheref1 and f2 are suitably prescribed functions and  Γ1 and 

Γ2 are non-intersecting curves such that Γ1UΓ2 = Γ 

 

It is worth noting that the Laplace equation is both linear and 

homogeneous while the boundary conditions we are 

specifying are linear and non-homogeneous. This creates a 

problem because separation of variables requires 

homogeneous boundary conditions. 

 

The boundary conditions in eqn. (3.04)imply that at each 

and every point on the boundary, either the temperature or 

the heat flux (but not both) is known. To determine the 

temperature field in the region R, one has to solve 

eqn. 3.03 to find the solution that satisfies the prescribed 

boundary condition on Γ. 

 

The normal derivative 
∂U

∂n
 is defined by 

∂U

∂n
= nx

∂U

∂x
+ ny

∂U

∂y
                                (3.05) 

 

Here the unit normal vector  nx , ny  on Γ is taken to be 

pointing away from the region R. It is worth noting that the 

vector may vary from point to point on Γ. Thus, nx , ny  is a 

function of x and y. 

 

The boundary conditions prescribed in eqn.(3.04) are 

assumed to be well posed so that the boundary value 

problem has a unique solution, that is, it is assumed that one 

can always find a function U(x, y) satisfying eqns.(3.03) and 

(3.04) and that there is only one such function. 

 

In general, it is difficult (if not impossible) to solve exactly 

the BVP defined by eqns. 3.03 −(3.04). The mathematical 

complexity depends on the geometrical shape of the region 

R and the boundary conditions given in (3.04). 

 

Exact solutions can only be found for relatively simple 

geometries ofR (such as square and circular regions) 

together with particular boundary conditions. For more 

complicated geometries, one may have to resort to numerical 

(approximate) techniques. 

 

2.1 The transformation from Cartesian coordinates to 

polar coordinates 

 

We consider eqn 3.03  above and the parametric equations:  

x =  r cos θand y =  r sin θ; where r is the radius of the pipe 

and thus a constant. We therefore have the laplace equation 

 3.03  in polar form as  

∂²U

∂r²
+

1

r

∂U

∂r
+

1

r²

∂²U

∂θ²
= 0                                          3.14  

Eqn.  3.14  is independent ofθ, hence it becomes; 

∂²U

∂r²
+

1

r

∂U

∂r
= 0                                                    (3.15) 

Whose solution is:U r = A lnr + B 

Where A and B these can be determined if we know U r  

and 
∂U

∂r
 on the boundary of the pipe.. This solution blows up 

as r →  ∞ so it is only of limited interest in estimating the 

temperature distribution near the pipe. When the boundary at 

ground level is introduced, it becomes clear wecannot 

parameterize the solution by 𝑟 alone. The purpose of 

highlighting this solution is that it provides the basis for the 

Fundamental Solution of Laplace's Equation. 

 

2.2 Fundamental solutions 

 

To derive this fundamental solution, we consider the 

Laplace equation ∇²U = 0 in ℝ² which contains singularity 

at the point  xp , yp . We expect the solution to be symmetric 

about this point  xp , yp , since δ xp − x, yp − y  is 

symmetric about this point. We thus adopt a local polar 

coordinates system about the singular point  xp , yp . 

Let r =   xp − x ² +  yp − y ² 

 The Laplace equation in polar coordinates is: 

1

r

∂

∂r
 r

∂U

∂r
 +

1

r²

∂²U

∂θ²
= 0 

For r > 0, δ xp − x, yp − y = 0 and owing to the 

symmetry, 
∂²U

∂θ²
 is zero. The equation above becomes:    

1

r

∂

∂r
 r

∂U

∂r
 =

∂²U

∂r²
+

1

r

∂U

∂r
= 0 which has solution U = Blnr +

A with A and B constant. We put A = 0 and to determine the 

constant B, we apply Green’s theorem to U and 1 in a small 

disc Dr(with boundary Cr), of radius r around the origin 

 xp , yp . 

 

It can be shown that ∇²G = −δ x − ε in V. 

 
∂v

∂n
Γr

dS =  ∇²vdV = −  δ x − ε 

DrDr

dV = −1 

We now choose B to make 
∂v

∂nΓr
dS = −1. 

In polar coordinates 
∂v

∂n
=

∂v

∂r
=

B

r
 and dS = rdθ (going 

around circle Γr). Hence : 

 
B

r

2π

0

rdθ = B  dθ = −1.      This implies that B = −
1

2π

2π

0

 

This gives v = −
1

2π
ln r   which can be written as:   v =

−
1

4π
ln r2. Hence; 

v = −
1

4π
ln   xp − x 

2
+  yp − y 

2
  

We replace v with G to get . 

G x, y|xp , yp = −
1

4π
  xp − x 

2
+  yp − y 

2
        (3.25) 

which is the fundamental solution of 2-D Laplace equation 

at a point p =  xp , yp  

 

G is defined everywhere in ℝ² apart from at  xp , yp where it 

is singular. We can now transform the PDE eqn. (3.15) into 

a Boundary Integral Equation (BIE) which we can solve 

numerically on the boundary of the pipe. 
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2.3  Reciprocal relation 

If U1 and U2 are two solutions of eqn.(3.03) in the region R, 

bounded by simple closed curve Γ, then it can be shown that:  

  U2

∂U1

∂n
− U1

∂U2

∂n
 ds x, y = 0                    (3.26 )  

Γ

 

By substituting eqn. 3.05  

Equation (3.26) above provides a reciprocal relation between 

any two solutions of Laplace’s equation in the region R 

bounded by the curve Γ. 

 

We derive this reciprocal relation from the two-dimensional 

version of divergence theorem. 

 

According to the divergence theorem, if  𝐅 = u x, y 𝐢 +

v x, y 𝐣 is a well-defined function such that  ∇. F =
∂u

∂x
+

∂v

∂y
 

exists in the region bounded by the simple closed curveΓ, 

then 

 𝐅. 𝐧

Γ

ds x, y 

=  ∇

R

. Fdxdy                                                                           

This implies that 

  unx + vny ds x, y =   
∂u

∂x
+

∂u

∂y
 dxdy

RΓ

 

Where 𝐧 =  nx , ny  is the unit normal vector to the curve Γ, 

pointing away from region R. 

Since U1 and U2 are solutions to eqn.(3.03) i.e the Laplace 

equation, we can write 

∂2U1

∂x2
+

∂2U1

∂y2

= 0                                                                                                                                      
∂2U2

∂x2
+

∂2U2

∂y2

= 0                                                                                                                                          
 If we multiply the first equation by 

U2and the second one by U1 and take the difference of the 

resulting equations, we obtain 
∂

∂x
 U2

∂U1

∂x
− U1

∂U2

∂x
 +

∂

∂y
 U2

∂U1

∂y
− U1

∂U2

∂y
 

= 0                                                  
which we can integrate over R to give 

  
∂

∂x
 U2

∂U1

∂x
− U1

∂U2

∂x
 +

∂

∂y
 U2

∂U1

∂y
− U1

∂U2

∂y
  

R

dxdy

= 0                                 
An application of the divergence theorem to convert the 

double integral over R into a line integral over Γ gives 

   U2

∂U1

∂x
− U1

∂U2

∂x
 nx

Γ

+  U2

∂U1

∂y
− U1

∂U2

∂y
 ny ds x, y 

= 0                             
Which is essentially eqn.(3.26). 

 

 

3. Direct Boundary Element Method 
 

The choice of BEM is informed by the fact that it can be 

applied where any potential problem is governed by a 

differential equation that satisfies the Laplace equation. 

 

Given the advantages of this approach, we shall now use this 

method to obtain a solution for eqn. (3.15). There are a 

couple of different ways this can be done via the Direct 

Method (which solves for U and  
∂U

∂N
 directly) or the Indirect 

Method (which solves for a density function which then 

generates solutions for U). We shall use the Direct Method 

because in this case it has the advantage of immediately 

yielding the boundary temperature, which we will then use 

to generate temperature profiles on the boundary. 

 

To derive the boundary integral equation we let U1 =

G x, y; xp , yp  (the fundamental solution defined in 

eqn.(3.25) and U2 = U, where U is the required solution of 

the boundary value problem defined by eqn.(3.03) and 

(3.04). 

 

Since G x, y; xp , yp  is not well defined at the point  xp , yp , 

the reciprocal relation in eqn.(3.26) is valid for U1 =

G x, y; xp , yp  and U2 = U only if  xp , yp  does not lie in the 

region R U Γ. Thus  

  U x, y 
∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y 

= 0 

                     for  xp , yp ∉ R U Γ            (3.27) 

For the case in which  xp , yp  lies in the region R, 

eqn.(3.26) is valid if we replace Γ by Γ U Γε , where Γε  is a 

circle of centre  xp , yp  and radius ε. This is because 

G x, y; xp , yp  and its first order partial derivatives (with 

respect to x or y) are well defined in the region between 

Γand Γε . Thus we can write 

  U x, y 
∂

∂n
 G x, y; xp , yp  

Γ U Γε

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y 

= 0             
This implies that 

  U x, y 
∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y 

=                         

      −   U x, y 
∂

∂n
 G x, y; xp , yp  

Γε

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y                     (3.28) 

It is worth noting that the divergence theorem is not only 

applicable for the simply connected regions but also for 

multiply connected ones as in the case of this study. The unit 
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normal vector to Γε  (the inner boundary) points towards the 

centre of the circle). 

 

Equation (3.28) holds for any radius 

ε > 0, 𝑠𝑜 𝑙𝑜𝑛𝑔 𝑎𝑠 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒Γε  lies completely inside the 

region bounded by Γ. We can let ε → 0+ in the eqn.(3.28). 

this gives 

  U x, y 
∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y 

=                                

− lim
ε→0+

  U x, y 
∂

∂n
 G x, y; xp , yp  

Γε

− G x, y; xp , yp 
∂

∂n
 U x. y   ds s, y                      (3.29) 

Using polar coordinates r and θ centered about  xp , yp  as 

defined by x − xp = rcos θand y − yp = rsin θ, we can 

write 

G x, y; xp , yp 

=
1

2π
ln r                                                                                                                    (3.30a) 

∂

∂n
 G x, y; xp , yp  

= nx

∂

∂x
 G x, y; xp , yp  

+ ny

∂

∂y
 G x, y; xp , yp                                      (3.30b) 

We evaluate the terms on the right hand side. 
∂

∂x
 G x, y; xp , yp  =

1

2π

∂

∂x
 ln   x − xp 

2
+  y − yp 

2
   

   =
x − xp

2πr2
 =

cos θ

2πr
 

Similarly 
∂

∂y
 G x, y; xp , yp  =

sin θ

2πr
 

Hence eqn.(3.30b) becomes 
∂

∂n
 G x, y; xp , yp  =

nx cos θ + ny sin θ

2πr
             (3.30c) 

 

The Taylor series of U(x, y) about the point  xp , yp  is given  

byU x, y =     
∂m U

∂xk ∂ym −k
 U(x, y)   

 x,y = xp ,yp  

m
k=0

∞
m=0

 x−xp  
k
 y−yp  

m −k

k! m−k !
 

On the circle Γε , r = ε. Thus 

U x, y =     
∂m U

∂xk ∂ym−k
 U x, y    

 x,y = xp ,yp  

m

k=0

∞

m=0

εm coskθsinm−kθ

k!  m − k !
 

                                             for (x, y) ∈  Γε                                                                                           (3.31)  
 

Similarly we have 

∂

∂n
 U x, y  =     

∂m U

∂xk ∂ym−k
 

∂

∂n
 U x, y     

 x,y = xp ,yp  

m

k=0

∞

m=0

εm coskθsinm−kθ

k!  m − k !
 

                                             for (x, y) ∈  Γε                                                                                             (3.32)
 

using equations (3.30c), (3.31)  and (3.32) and writing 

ds x, y = εdθ with θ ranging from 0 to 2π,we attempt to 

evaluate the limits on the right hand side of eqn.(3.29). 

On Γε , the normal vector [nx , ny] is given by 

 −cosθ, −sinθ .  We also utilize trigonometric identity 

cos2θ + sin2θ = 1 to get. 

 U x, y 
∂

∂n
 G x, y; xp , yp  ds x, y 

Γε

= −
1

2π
U xp , yp  dθ

2π

0

 

          −
1

2π
  

εm

k!  m − k !

m

k=0

∞

m=1

  
∂m U

∂xk ∂ym−k
  

 x,y = xp ,yp  

 coskθsinm−k

2π

0

θdθ                                     

                → −U xp , yp  as ε → 0+ 3.33  

and 

 G x, y; xp , yp 

Γε

∂

∂n
 U x. y  ds x, y 

=
1

2π
    

∂m U

∂xk ∂ym−k
 

∂

∂n
 U x, y     

 x,y = xp ,yp  

m

k=0

∞

m=1

 

                                                                

×
εm+1ln ε 

k!  m − k !
 coskθ

2π

0

sinm−kθdθ                                 (3.34) 

                    → 0 as ε → 0+  since εm+1 ln ε → 0 as ε
→ 0+ for m = 1,2, … ……  

 

Consequently, as ε → 0+, equation  3.29  becomes 

U xp , yp =   U x, y 
∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y  

                                                                              for  xp , yp 

∈ R                                                         (3.35) 

Together with the fundamental eqn.(3.31), eqn.(3.29) 

provides us with a boundary integral solution for 2-D 

Laplace’s equation. 

If both U and 
∂U

∂n
 are known at all points on Γ, the line 

integral in eqn.(3.35) can be evaluated to calculate U at any 

point  xp , yp  in the interior of R. From the boundary 

conditions (3.04), at any given point on Γ, either U or 
∂U

∂n
 , 

not both, is known. To solve the interior boundary problem, 
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we must find the unknowns either U or 
∂U

∂n
 on the outer and 

inner boundaries. 

Rather than having an expression relating the value of U at 

some point inside the domain to boundary integrals, a more 

useful expression would be one relating the value of U at 

some point on the boundary to boundary integrals. 

In case the point  xp , yp  lies on Γ,  eqn.(3.29) holds if we 

replace the curve Γ by D U Dε  

If  Γε  is the circle of centre  xp , yp  and radius ε, then D is 

part of Γ that lies outside Γε  and Dε  is part of Γε  that lies 

inside R. Thus  

 

  U x, y 
∂

∂n
 G x, y; xp , yp  

D

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y  

= −   U x, y 
∂

∂n
 G x, y; xp , yp  

Dε

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y                          (3.36) 

As ε → 0+, the curve D in eqn.(3.36) tends to Γ. Thus we 

write 

  U x, y 
∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y  

= − lim
ε→0+

  U x, y 
∂

∂n
 G x, y; xp , yp  

Dε

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y                (3.37)    

We expect Dε  to tend to a semi-circle as ε → 0+, if  xp , yp  

lies on a smooth part of Γ. It then follows that in attempting 

to  evaluate the limit on the right hand side of eqn.(3.36), we 

have to integrate over only half a circle. 

Eqns 3.33  and  (3.34) becomes 

lim
ε→0+

 U x, y 

Dε

∂

∂n
 G x, y; xp , yp  ds x, y 

= −
1

2
U xp , yp   ,                               

lim
ε→0+

 G x, y; xp , yp 

Dε

∂

∂n
 U x. y  ds x, y 

= 0                                   
Hence eqn. (3.37)becomes 

1

2
U xp , yp =   U x, y 

∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y  

for  xp , yp  lying on a smooth part of  Γ                          (3.38) 

 

Together with the boundary conditions in eqn.(3.04), 

eqn. (3.38)can be utilized to obtain a numerical procedure 

for determining the unknown U and/ or 
∂U

∂n
 on the boundary 

Γ. Once U and 
∂U

∂n
 are known at all points on Γ, the solution 

of the interior boundary value problem defined eqns(3.03)-

(3.04) is given by eqn.(3.35) at any point  xp , yp  inside R. 

For convenience, we may write equations (3.27), 3.35 and 

(3.38) as a single equation given as  

β xp , yp U xp , yp 

=   U x, y 
∂

∂n
 G x, y; xp , yp  

Γ

− G x, y; xp , yp 
∂

∂n
 U x. y   ds x, y  

                                                                                                                                                 

(3.39) 

Where we define  

        β xp , yp  

=  

 
 
 

 
   0  if  xp , yp ∉ R U Γ  

1

2
  if   xp , yp 

1 if  xp , yp  ϵ R           

 lies on smooth part Γ     (3.40)  

This eqn.(3.39) contains only boundary integrals  and is 

referred to as the general boundary integral equation. It 

relates the value of U at some point inside the solution 

domain to integral expressions involving U and
∂U

∂n
  over the 

boundary of the solution domain. 

 

3.1 Numerical discretization of the BIE 

We  transform the integral eqn.( (3.39) into a system of 

algebraic equations. The boundary Γ is discretized into N 

small straight line elements Γ 1 , Γ 2 , … … , Γ N−1  and Γ N  

i.eГ ≃ Γ 1 UΓ 2 U … …… . UΓ N−1 UΓ N                                                                     

(3.41) 

These straight lines are called boundary elements. The 

centre of each element is referred to as a collocation node.  

To construct the boundary elements, we put N-well spaced 

out points 

 x 1 , y 1  ,  x 2 , y 2  , …… … ,  x N−1 , y N−1  and 

 x N , y N  on Γ,in the order given following counter 

clockwise direction. 

Defining  x N+1 , y N+1  =  x 1 , y 1  , we take Γ k  to be 

the boundary element from  x k , y k   to  x k+1 , y k+1   for 

k = 1,2, …… … , N 

For approximation of U and 
∂U

∂n
 on the boundary Γ,we 

assume that these functions are constants over each of the 

boundary elements . Specifically, we make the 

approximation: 

U ≃ U
 k 

 and 
∂U

∂n
= P

 K 
 for  x, y 

∈ Γ k  k = 1,2, … …… , N                                             (3.42) 

whereU
 k 

 and P
 K 

 are respectively the values of U and 
∂U

∂n
 at 

the mid-point of Γ k . 

With equations (3.41) and  (3.42), eqn.(3.39) can be written 

as  

β xp , yp U xp , yp 

=   U
 k 

F2
 k  xp , yp 

N

k=1

− P
 K 

F1
 k  xp , yp   3.43  
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where 

F1
 k  xp , yp =  G(x, y;

Γ k 

xp , yp)ds x, y  

      F2
 k  xp , yp 

=  
∂

∂n
Γ k 

 G x, y; xp , yp  ds x, y                    (3.44) 

For a given k, either U
 k 

 or  P
 K 

is known from the 

boundary conditions in eqn.(3.04). Thus, there are N 

unknowns constants on the right hand side of eqn.(3.43). To 

determine their values, we have to generate N equations 

containing the unknowns.  

 

We let (xp , yp) in eqn.(3.43) be given in turn by the mid 

points of  Γ 1 , Γ 2 , …… , Γ N−1  and Γ N   and obtain; 
1

2
U

 m 

=   U
 k 

F2
 k  x

 m 
, y

 m 
 

N

k=1

− P
 k 

F1
 k  x

 m 
, y

 m 
                                              (3.45) 

for m

= 1,2, …… … . , N, and  x
 m 

, y
 m 

  is the mid point of Γ m  

In the derivation of eqn.(3.45),we take β  x
 m 

, y
 m 

 =
1

2
, 

since  x
 m 

, y
 m 

  being the mid- point of Γ m  lies on a 

smooth part of the approximate boundary  i.e. 

Γ 1 UΓ 2 U … …… . UΓ N−1 UΓ N  . 

 

Eqn.(3.45) constitutes a system of N linear algebraic 

equations containing the N unknowns on the right hand side 

of eqn.(3.43). Since both  U
 k 

  andP
 K 

 contain known as 

well as unknown boundary data, it is necessary to write the 

equations with all unknowns appearing on one side as given 

below. 

 a mk  Z k 

N

k=1

=  b mk    for m

N

k=1

= 1,2, …… … . , N                                                                         3.46  

wherea mk  , b mk   and Z k  are defined by  

a mk  

=  
−F1

 k  x
 m 

, y
 m 

    if U is specified over Γ k 

F2
 k  x

 m 
, y

 m 
 −

1

2
δ mk   if 

∂U

∂n
  is specified over Γ k 

  

b mk  

=  
U

 k 
 −F2

 k  x
 m 

, y
 m 

 +
1

2
δ mk    if U is specified over Γ k 

P
 k 

F1
 k  x

 m 
, y

 m 
  if 

∂U

∂n
  is specified over Γ k 

  

δ mk  

=  
0 if m ≠ k                                                                                                    
 1 if m = k                                                                                                     

  

  Z k =  
P

 k 
 if U is specified over Γ k 

U
 k 

 if 
∂U

∂n
  is specified over Γ k 

  (3.47) 

We notice that by collocating the load point U(xp , yp) with 

the nodes k = 1, … …… … . . , N, the we get N system of 

equations. 

The diagonal elements of the matrices containsingular 

integrals because the distance vanishes at the nodes. All 

other matrix elements contain regular integrals. We note that 

  Z 1 ,   Z 2 , …… …… . ,   Z N−1  and   Z N  are the N unknown 

constants on the right hand side of eqn.(3.43), while a mk   

and b mk   are known coefficients. 

 

Once eqn. (3.46) is solved for the 

unknowns  Z 1 ,   Z 2 , … …… … . ,   Z N−1  and   Z N , the 

values of U and 
∂U

∂n
 over the element Γ k ,as given by U

 k 
 

and  P
 k 

respectively, are known for  

k
= 1,2, …… …… . . , N                                                                                                                                      

Eqn.(3.43) with β xp , yp = 1  provides us with an explicit 

formula for computing U in the interior of R i.e. 

U xp , yp ≃   U
 k 

F2
 k  xp , yp 

N

k=1

− P
 K 

F1
 k  xp , yp   for  xp , yp 

∈ R                             (3.48) 

The integrals (3.44) can be evaluated analytically and their 

expressions are given by: 

F1
 k  xp , yp =

ℓ k 

2π
 ln ℓ k  

+  1 +
B k  xp , yp 

2A k 
 ln  1

+
B k  xp , yp 

2A k 
 

−
B k  xp , yp 

2A k 
ln  

B k  xp , yp 

2A k 
 − 1  

   for 4A k E k  xp , yp −  B k  xp , yp  
2

= 0                                                                                       
and 

F1
 k  xp , yp =

ℓ k 

4π
 2 ln ℓ k  − 1 −

B k  xp ,yp  

2A k ln  
B k  xp ,yp  

2A k  +

1+Bkxp,yp2Akln1+Bkxp,ypAk+Ekxp,ypAk+4AkEkxp,yp
−Bkxp,yp2Ak×arctan2Ak+Bkxp,yp4AkEkxp,yp−Bkxp,y
p2−arctanBkxp,yp4AkEkxp,yp−Bkxp,yp2 

        for 4A k E k  xp , yp −  B k  xp , yp  
2

> 0                                                                          
On the  other hand, 

F2
 k  xp , yp = 0    for 4A k E k  xp , yp −  B k  xp , yp  

2

= 0                                            
And 
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F2
 k  xp , yp 

=
ℓ k  nx

 k  x k − xp + ny
 k  y k − yp  

π 4A k E k  xp , yp −  B k  xp , yp  
2

×

 
 
 
 

arctan

 

 
2A k + B k  xp , yp 

 4A k E k  xp , yp −  B k  xp , yp  
2

 

 

− arctan

 

 
B k  xp , yp 

 4A k E k  xp , yp −  B k  xp , yp  
2

 

 

 
 
 
 
 

                for 4A k E k  xp , yp −  B k  xp , yp  
2

> 0                                                                                

where A k =  ℓ k  
2
, B k  xp , yp =  −ny

 k  x k − xp +

nxkyk−yp2ℓk 

E k  xp , yp =  x k − xp 
2

+  y k 

− yp 
2

, and  ℓ k  is the length of  Γ k  

 nx
 k , ny

 k  =
 y k+1 − y k , x k − x k+1  

ℓ k 
 

is the nornal vector to Γ k  pointing away from R  
 

4. Methods of Solution and Discussion of 

Results  
 

This chapter presents computation and discussion of results 

on heat distribution in bounded region R obtained using 

BEM and analytical solution. Rearranging 

eqn 3.48 according to the specified conditions, we develop 

BEM code for the computation of the solution. We now 

consider a 2-D square domain; with aspect ratio 1:1. Inside 

this square is a square pipe with dimensions 0.4× 0.4. 
Temperature and fluxes are specified on some boundaries. 

The remaining boundary values are computed with our 

numerical model and the results compared to the analytical 

solution to test the accuracy and efficiency of BEM.   

 

The following results were obtained when BEM is 

implemented with the help of FORTRAN 95 software using 

the three types of boundary conditions and different 

boundary discretization nodes. 

 

CASE 1 

When non-homogeneous Neumann boundary conditions are 

specified on both the outer and inner boundaries the results 

of temperature are computed and illustrated in the diagram 

below for N=24 Nodes. 

 

 
Figure 4a: Approximate and analytical temperature profiles for 96 nodes 

 

Case 2 

When non-homogeneous Neumann boundary and Diritchlet 

boundary conditions are specified on both the outer and 

inner boundaries respectively the results of temperature are 

computed and illustrated in the diagram below for N=16 

Nodes. 
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Figure 4b: Approximate and analytical temperature profiles for 16 nodes on the outer boundary. 

 

When non-homogeneous Neumann and Diritchlet boundary 

conditions are specified on both the outer and inner 

boundaries respectively the results of temperature are 

computed and illustrated in the diagram below for N=64 

Nodes. 

 
Figure 4c: Approximate and analytical temperature profiles for 64 nodes on the outer boundary. 

 

Case 3 

When non-homogeneous Neumann boundary and Diritchlet 

boundary conditions are specified on both the inner and 

outer boundaries respectively the results of flux are 

computed and illustrated in the diagram below for N=64 

Nodes. 
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Figure 4d: Approximate and analytical flux profiles for 64 nodes on the outer boundary 

 

Case 4 
When fluxes are specified in the 2

nd
 ,3

rd
 ,5

th
 ,and 8

th
 

boundaries while the temperature is specified on the other 

remaining boundaries (Chauchy boundary conditions given). 

The results at various nodes in the solution domain  are 

computed and some results tabulated as below. 

 

Table 1 

 𝑥𝑝 , 𝑦𝑝  24 Elements 96 Elements Exact 

 0.8,0.9  -0.1609602 -0.1641215 -0.170000 

 0.6,0.9  -0.4223961 -0.4307708 -0.450000 

 0.952,0.85  0.1610184 0.1815919 0.1838040 

 0.82,0.96  -0.2212187 -0.246075 -0.249000 

 0.125,0.875  -0.6750384 -0.7038109 -0.750000 

 

4.2 Discussion of the Results 

 

The temperature distribution around a square pipe presents a 

sine curve. This is in agreement with research carried outby 

Yan and Wei[12] on the impact of soil and pipe thermal 

conductivities on performance of horizontal buried pipe. 

They made a conclusion that soil temperature distribution 

around a buried circular pipe presents a sine curve regardless 

of the soil and pipe thermal conductivities. 

 

Case 2 shows temperature profiles for 16 and 64 number of 

boundary elements respectively. The comparison between 

the analytical and numerical shows that for the 

Diritchletvariable U, even coarse discretization leads to good 

accuracy. The curve appears smooth after the number of 

nodes is increased. 

 

Case 3 shows the flux profiles for 64 number of boundary 

elements respectively. The finer discretization by 64 

elements shows convergence of numerical solution to that of 

analytical solution. 

 

In case 4, we have Cauchy boundary conditions at inner and 

outer boundaries. A few nodes taken within the solution 

domain were compare to the analytical solutions. It’s evident 

that the numerical solution approached the analytical 

solution when the number of boundary elements were 

increased. 

 

5. Conclusion 
 

In this study, we have demonstrated that the BEM is a very 

powerful technique to solve steady state heat equation. The 

circular geometry was transformed to square through linear 

transformation. The collocation method is utilized. BEM 

code was developed. The mathematical software FORTRAN 

95 was used to compute results and graphs were drawn at 

various nodes of discretization using G-Sharp. Two test 

problems were used. The temperature and flux profiles were 

close to the analytical profile. The effect of increasing the 

number of boundary elements resulted in high convergence. 

The numerical values of  temperature within the solution 

domain were in agreement with the analytical solution 

especially when the nodes are increased. 
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